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The paper provides an idea of generalization of fuzzy relational equations where 
!- and s-norms are introduced. The first part contains an extensive presentation of 
the resolution of fuzzy relational equations; next the solutions are specified for a list 
of several triangular norms. Moreover the dual equations are considered. The 
second part deals with the applicational aspects of these equations in systems 
analysis, decision-making, and arithmetic of fuzzy numbers. (1 1985 Academic Press. 
Inc. 

1. INTRODUCTION 

Since the introduction of fuzzy set theory [ 141 a significant group of 
papers devoted to theoretical and applicational aspects of fuzzy relational 
equations (cf. [S, 9-111) studied by Sanchez [12] and forming a 
generalization of well-known Boolean equations has appeared. 

The aim of this paper is two-fold: 

-to present a generalization of fuzzy relational equations with 
triangular norms and provide the method of their resolution; 

-to discuss applicational aspects of this class of equations, mainly in 
systems analysis, decision-making, and fuzzy arithmetic. 

The paper is organized as follows. Section 2 introduces notation and 
notions which will be useful in further discussion and presents problem for- 
mulation. In Section 3 the resolution of the equation is provided. and the 
results are extended for various structures of fuzzy relational equations, 
such as, composite equations and polynomial equations. The formulation 
of the problems appearing in the fields of interest of fuzzy set theory, such 
as systems analysis, decision-making, and fuzzy arithmetic, is shown and 
discussed in Section 4. 

* On leave from the Department of Automatic Control & Computer Science, Silesian 
Technical University. Gliwice 44-100 Psrtowskiego 16, Poland. 
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GENERALIZED FUZZYEQUATIONS 521 

2. PRELIMINARY REMARKS AND PROBLEM FORMULATION 

Let X, Y, Z,... be fuzzy sets defined on the spaces (universes of discourse) 
x, 9, 3Y, respectively, and R be a fuzzy relation expressed on the car- 
tesian product X x ‘$) x 3 x .. . x. F(X) denotes a family of all fuzzy sets 
defined on the space X, 

F(x)=(x~x~x:x~[o,1]). (1) 

For simplicity of notation, we identify fuzzy sets and fuzzy relations with 
their membership functions. The triangular norms which play a significant 
role in further investigations are defined as follows. 

DEFINITION 1. The r-norm is a continuous two-place function 

t:[0,1]x[0,1]+[0,1] 

satisfying a collection of the properties 

(i) Otx=O, ltx=x 

(ii) ?sty $ zfu if .Y < z and y 6 w monotonicity 

(iii) xry = ytx commutativity 

(iv) (xty) tz = xt(ytz) associativity 

4 I’, z, M’E [O, 11. 

DEFINITION 2. The s-norm is a continuous two-place function 

S:[o,l]x[o,1]-+[o,1] 

such that 

(i) Osx=x, Isx = 1 

(ii) x.sy < u’sz if x<w and )‘<z monotonicity 

(iii ) xsy = ysx commutativity 

(iv) (xs~) sz = xs(ysz) associativity 

.r, ?; z, ICE [O, 11. 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

Considering any t- or s-norm it can be easily noted that the following 
relationship holds true: 

Q xsy=l-(1-x)t(l--y). (12) 
XJE co.11 
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Some I- and s-norms are listed below [6-g 133. 

t-norm 

.ut,~~l-min(l,((l-s)P+(l-~~)P)‘P), 

Sf? ?’ = log,( 1 + (.? - 1 )(s V - 1 )i(.Y - 1 ,), 

Sf 3 ?’ = q 

s-norms 

.VS, J’= min( 1, (.Y” +~a~)’ P), 

-us,]‘= 1 -log,(l +(P- l)(.sP-’ - l)/(s- l)), 

ss3 J‘ = .Y + J’ - .YJ’ 

SSJ J! = (.y( y - 2 ) + s + J’ )j( q( 7 - 1 ) + 1 ). 

p31 (13) 

o<s<x. s#l (14) 

(15) 

i’ 2 0. (16) 

pbl (17) 

O<s<r_t, s#l (18) 

(19) 

y 2 0. (20) 

Moreover, specifying the values of the parameters standing in formulas 
given above, we get 

lim (st,j’)= lim(.~f~!‘)=min(.u,?,) 
p + T \ -* II 

p=l..ur,~‘= lim(.ut,>~)=max(O,s+>~-1) 
I- r 

(21) 

(22) 

y= I. .uf,~‘= lim(.rr,!~)=.Yj’ (23) 
t-1 

(24) 

(25) 

lim ( .TS? ~3) = min( s + ~3. 1 ), (26) 
,- I 

s, j’ E [O, 11. 
For discussion of a general way of constructing the triangular norm by 

use of the theory of functional equations the reader is referred to Aczel’s 
monograph [ 1, Chap. 63. 

We consider a fuzzy relational equation of the type 

Y=XLlR 

and a dual fuzzy relational equation 

I’=XAR 

(27) 

(28 ) 
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where A’EF(X), YEF(~)), REF(XX‘~); “0” and “A” stand for sup-r and 
inf-s compositions, respectively. Making use of the membership functions of 
X, Y and R Eqs. (27 t( 28) are read as follows: 

Y(y) = sup[X(s) tR(x, y)] 
\ t * 

(29) 

I’()-) = inf [X(x) sR(.u, y)]. (30) 
\ t f 

The problem of the resolution of the fuzzy relational equations given above 
is formulated as follows: 

-X, Y are given, determine R, 

-Y, R are given, determine X. 

and will be solved in Section 3. 

3. RESOLUTION OF FUZZY RELATIONAL EQUATIONS 
XOR= YAND XCR= Y 

In order to solve the problems formulated in the previous section let us 
introduce two operators corresponding to the t- and s-norm. 

DEFINITION 3. The Y-operator is a two-place function 

Y: [O, I] x [O, 1-j + [O. l] 

such that 
(i) .uY max(+r, 1) >, max(syy, SE) 

(ii) st(.uY\,) <,I’ 

(iii) - .K Y( .KfJ) 3 J’, 

.K, J’, 1 E [O, 11. 

DEFINITION 4. The P-operator is a two-place function 

B: co, 11 x co, l]-+ [O, 11 

fulfilling the properties 

(31) 

(32) 

(33) 

(34) 

(35 1 

(36) 

(37) 

(38) 
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The @- and @-compositions are defined as follows: 

--the @I( @I ) composition of fuzzy sets XE F(3E ), YE F(v) is the fuzzy 
relation X@ Y, (,I’@ Y)E F(X x ‘2)) with the membership function 

(X@ Y)(.Y, y)= X(x) YYY(.r) (39) 

CX@ Y)(s, y) = Xix) /jY(.l,) (40) 

-the @j( @I ) composition of the fuzzy relation R E F(3E x 9) and the fuzzy 
set YE F(‘z)) is the fuzzy set R @ Y (R @ Y) E F(X) with the membership 
function 

(R @ Y)(x) = ,i$,(f,(R(.v. .I’) YY(F)) 

(R@ Y)(?c)=sup(R(.~,.r)PY(.r)) 
I’ E ‘!I 

(41) 

(42) 

Let us prove the following lemmas. 

LEMMA 1. 

Proof: Rewriting the right side of Eq. (43) in terms of the membership 
functions we get 

(~~(XOR))(X,?‘)=X(.Y) ‘P(XOR)(J)=X(X) Y’[sup(X(z) rR(z,.v))] 
z E x 

=X(x) Y{max[ sup (X(Z) tR(;, ~q)), X(x) tR(.u, y)]} 
zt.E...t.1 

2 X(x) Y(X(s) tR(x, y) 1. (44) 

Applying the inequality (34) we get 

(xO(xUR))(?r,~)~R(zc,?,) (45) 

for every x E 3E, .r E 9, which completes the proof. 

LEMMA 2. 

v v X0(X@ Y)C Y. (46) 
XtR.X) YEF(*go) 

Proqfi The inequality (46) forms a simple consequence of Eq. (33). 
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LEMMA 3. 

v v (R@J Y)ORG Y. (47) 
YeF(‘D) REF(XX’DJ 

Proof: Rewriting the above-stated equation in terms of membership 
functions of R and Y we get 

sup{ inf [R(x, y) YY(y)] tR(x, y)} 
I’E x .F E ‘!, 

(48 1 

and then 

sup{ inf CW, Y) @JTY)I N-G ~1) 
I E x v t ‘lb 

= sup{min[ inf (R(x, z) YY(z)), R(s, y) !PY(y)] tR(x, ~1)) 
IEX ~E~~~1).+~ 

$ sup(UW, y) WY)) fR(x, .v)), (49) 
.v E x 

which, taking into account Eq. (33), involves an inequality 

supC(R(-c y) ‘f’Y(.v)) rR(x, y)] 6 Y(y) 
r E s 

(50) 

for every y E ‘j)), which completes the proof. 

LEMMA 4. 

v v XG R@ (XOR). 
A’ E I;( .X ) R E ,=( .t’ x ‘!I ) 

Proof. We have 

(51) 

inf [R(x, y) Y(sup(X(x) tR(x, y))] 
.L’ E ‘0 .x’E * 

=,i$,[R(x, y) Ymax( sup (X(z) fR(-, Y)), X(x) tR(-x, Y))I (52) 
~CX.~# k 

and Eq. (34) involves the inequality 

inf [R(s, y) Y(sup(X(x) rR(x, y))] 
r E -0 .x E x 

3 inf [R(x, y) Y(X(x) tR(x, y))] 3 X(x) 
? c ‘[I (53) 

for every x E X and hence the proposition. 
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Now we can prove the following theorem. 

THEOREM I. (i ) If‘ .fk~~, .XJ~.F XE F(.X ). I’E F(l) ) ,fir@‘ll sup-r ,/ir:zj, 
relational equatiorl XLI R = Y, then rhr greatest jir:zjs relation i? E F( S x 9) ) 
slrch that X[7 I? = Y holds true is provided by, meuns qf the ,fbrrnulu 

ri = XQ I’. (54) 

(ii) q ji422~7?’ set YE F(+lj ) and jiizz~~ relatiorz R E F(3E x 2) ) satiTfwi. 
equation Xc] R = Y, then the greatesfftz~~ set 2~ F( -3l) (20 R = Y) is equal 
to 

8=R@Y. (55) 

Proof: (i ) Lemma 1 involves an inequality R G ff, denoting 
ff = X@ Y. Moreover from the fact that R c i? we get X0 R c XIII& viz., 
Y c XII ff. Then bearing in mind Lemma 2, we have X0 I? G Y, so finally 
xt1R = Y. 

(ii) Denoting 8= R @ Y, from Lemma 3 we obtain the relationship 
ZOR G Y. The inequality XG 2 involves XOR G ,?OR and then using 
Lemma4 we have X_cRQ Y=$ so 2’OR= Y. 

The similar collection of lemmas can be proved for inf-s fuzzy relational 
equations. 

LEMMA 5. 

LEMMA 6. 

v v XC(X@ Y)? Y. 
.YEFl.X) YEFC'2)J 

LEMMA 7. 

(56) 

(57) 

LEMMA 8. 

V V (R@((XGR)gX. (59) 
XEFIS) RcF(.Xx’~JI 

The following theorem forms a straightforward consequence of these 
lemmas. 
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THEOREM 2. (i ) Zj” fkq~ s&s XE F( X ), YE F( ‘2) ) satisjjv inf-s jiu~~~ 
relational equation XA R = Y, then the least fuq- relation l? E F(X x $3 ) 
fulfilling equation Xc1 R = Y is equal to 

R=X@ Y. (60) 

(ii) Zf fuzz?, set YE F( ‘I) ) and fccrl, relation R E F( 3E x 2) ) sati.s[l- inf-s 
fuzzy relational equation XG R = Y, then the least fztrz.\, set k~ F(X) such 
that kfi R = Y holds true, is equal to 

X=R@Y. (61) 

For the examples of the t- and s-norms specified before we have the 
following operators: 

SY, J’ = 1, if .u<l 

= 1 -((l -J)“-(1 -s)P)‘P, if .Y > J’. p > 1 
(62) 

xY1y= 1, if .Y<J~ (63) 

=log,(l+(s-“- l)(S-l)/(S~r-l)), if .u>j,, O<S<CC, s#l 

xYy,>t= 1, if ~6~1 

= J/X, if .Y>Y 
(64) 

xY/,I’= 1, if X<J 

= (13’ + xy( 1 - ?/))/(.X - J + )‘I’ + XJ’( 1 - I’))) if x > J, 1’ > 0 
(65) 

and 

(66) 

.?$I~ J’ = 0, if x>j (67) 

=1-log,(l+(s’~‘-l)(s-l)/(s’~“-1)), if .u<r’, 

o<s<cG, s#l 

xp,y=o, if ?c>y 

=(J-X)/(1-X), if .x<): 

a Y = 0, if S>J 

=(y-x)/(x(y- 1)-v)+ l), if X<Y, 7 >O. 

The operators Y,, Y*, PI, p2 are also displayed in Figs. l-4. 

(68) 

(69) 
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FIG. 2. xYz.k’ vs x (y =0.3 fixed). 
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/ P= m 

FIG. 3. xj, y vs x (y = 0.3 fixed). 
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FIG. 4. xj2 y vs x (p = 0.3 fixed). 
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4. RESOLUTION OF VARIOUS TYPES OF GENERALIZED 

FUZZY RELATIONAL EQUATIONS 

In the previous section we were interested in the resolution of the 
equation of the simplest structure, viz., Y=XOR (or Y=XAR). We shall 
extend our results for equations possessing the structure 

Y=X,0Xz[7 ‘.’ tlX,,OR (70) 
y= J’,Lxx,n ... L,,,nR (71) 

and composite fuzzy relational equations 

T= SO W’ (72) 

T=SLjrf’ (73) 

where now X,EF(X;), i= I,2 ,..., n, YEF(‘~)), REF()(;=, Xix’l)) and SEF 
(X x J), I+‘E F (3 x ‘r, 1, TE F (3E x Vj ). Applying the membership functions 
of respective fuzzy sets and relations, Eqs. (70)-(73) are read as follows: 

Y(y) = sup (X,(X,) tXz(.uz) t..’ tX,(.u,) tR(x,, x2 ,..., I,,, ,I)) (74) 
r, E *I 
1-2 E .x7 

Y(y)= inf (X,(x,)sXz(x?)s...sX,(x,)sR(,~,,.~z ,..., x,,J’)) (75) 
.Y [ E x , \ItX: 

I,, E x, 

T(s, y) = sup(S(x, Z) tW(r, J)) 
=E .i 

(76) 

T(x, y) = .‘,“f,‘S’“, z) sW(z, 1’)), (77) 

NOW the problem can be formulated as: 

For Eqs. (70)-(71), 
(a) let X,, X, ,..., X,,, Y be given, determine R, 

(b) let R, X,, X, ,..., Xi- , , xi+ , ,..., X,,, Y be given, determine X,. 
(c) let R, Y be given, determine X,, X, . . . . . X,. 

Starting with (a) let us note that Eq. (74) can be rewritten as follows: 

Y(Y) = sup (X(x, rR(,u, Y)) 
VEX:=,*, 

(78) 
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where Xis the fuzzy relation defined on the Cartesian product of Xi’s 
Therefore the greatest fuzzy relation of the Eq. (74) is immediately 
expressed as 

viz., 

l?=XQ Y, (79) 

&x,,x2 )...). r,,y)=(X,(x,) tXz(x,) t.~.M,(-u,)) !m.v) (80) 

XiEX,, JE(1). 
In (b) we obtain 

Y=xJl(x,nx20 “. q x,~,ox,+,oR)=x-,nG 

G+, W) 
i#J 

and then 

(81) 

For (c) we put 

X, = G Q Y. 

Y(y)= (X,ClX~Cl ... q X,,)ClR 

(82) 

(83) 

treating (A’, OX20 ... OX,,) as the fuzzy relation defined on )(I=, Xi in the 
following way: 

(X,0X*0 ... 0X,)(x,, x z ,..., x,)=X,(x,) tX2(x2) t... tX,(x,), (84) 

x, E Xi. This fact yields 

(XJIX,~ ... q X,,)=R@ Y. (85) 

Now the respective fuzzy set 2;~ F(Xi) can be obtained by the projection of 
the relation (A’, 0 X2 L? . . . OX,) on the appropriate space, viz. 

2j=Proj,,(X,0X,B ... OX,) (86) 

fi(Xi) =~y,wup (X,OX~O .z 0X,)(x,, x2 )..., x,) (87) 

x+,e*,-, 
.~,+l~~,+, 
In t x, 
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but we have to underline the fact that fuzzy sets zi, i= 1, 2,..., n, computed 
by means of formula (87) fulfill Eq. (70) if the fuzzy relation 
(X,OXzB ... OX,,) is separable (fuzzy sets Xi are weakly noninteractive 
C61), we get 

8,(x,) tf,(x,) t... &(x,) = (X,nxze ... 0X,)(x,, x2 )...) x,) (88) 

xj E xi. 
The results for inf-s fuzzy relational equations can be derived in an 

analogous way. 
Considering a composite fuzzy relational equation T= SO W we state 

two problems: 

(a) S, T are given, determine W, 
(b) W, T are given, determine S. 

Following the main stream of analysis presented in Section 3 we arrive at 
the following result (cf. [ 121). 

THEOREM 3. (i) Iffuzzy relations SE F( X x 3) and TE F( X x VJ ) jiilfiif 
Eq. (72), then the greatest fuzzy relation @‘E F(3 x ‘I)) satisfying T= SO I@ 
is equal to 

&‘=S’QT (89) 

@(z, y) =ihf,(S’(z, x) W-(x, ?t)) (90) 

(S7 stands for the transpose of S, S’(z, x) = S(x, 2)). 
(ii) Iffuzzy relations WE F(3 x ‘I)) and TE F((x x 93) satisjj Eq. (72) 

then the greatest fuzzy relation ,!? E F(X x 3) satisfying equation T = $0 W is 
provided by the formula 

S=(W@TT)‘- (91) 

3(x, z) = (Ji;fJ W(z, y) YTT(y, x)))‘. (92) 

For the dual fuzzy relational equation (73) we obtain formulas: 

S, T given, the least fuzzy relation m is equal to 

l@=S’@ T. 

-W, T given, the least fuzzy relation S is equal to 

S=(W@TT)? 

(93 1 

(94) 
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We can also consider polynomial fuzzy relational equations (cf. [9]) of the 
type 

6 (A”‘OXElB”‘) = Y, (95) 
i= I 

where A’“EF (3x3), XEF (3x!B), B”‘EF (%3xX)), YEF (Xx9)) and 
all universes of discourse consist of a finite number of elements, X = 
(-Y,, -b.,x,>, 3= {z,, Z2r . . . . z,), %J)= {b, w2, . . . . y-J, ‘1) = (Y,,Y, ,..., y,}. 
Then Eq. (96) can be expressed in the form 

Y=XOA (96) 

where A is the fuzzy matrix constructed on the base of the matrices Ati’ and 
I?“‘, i = 1, 2 ,..., 1, and is equal to 

A = 6 (A”‘@ (,‘i’)T)7 (97) 
i=l 

tB”‘)7 A’“(x,, zz)(B”‘y- ... A”‘(x,, z, ) t(B”‘)’ 1 
(98) 

r(B”i)T A’Q ,,, z2) t(B’i’)7 ... A”‘(x,, z,) t(B(“j7 

Ayx,, z,.) t(B”‘) 7 
B”‘(w,, y,) B”‘(w~,J’,) ... B”‘(w,,y,) 

= Ayx,, z,.) t 
B(‘)(wz, y,) ... 

I: 
. 

B’“( M ,,Y”,) “. B”‘(w,, y,) 

A”‘( .Y ,, z,) tB”‘( w,, I’,), A’i’(.~s, zl.) tB”‘( w2, y,) ... 
= . 

i: 1 

7 
A(“(x,, z ,) tB”‘(w,, y,), Aci’(x,, zc) tB”‘(w,, y,) ... 

s = 1, 2,..., n, c = 1, 2 ,..., Y. 

(99) 

X and Y are fuzzy sets resulting from vector representation of fuzzy 
relations X and Y. 

x = [X(z,, w,) X(z,, w2) ... X(z,, wp) X(z,, w,) ... X(z,, w,)] -.- / 
rp-elements 

Y=CY(-~,,Yl) Y(xlvY2)-. W,,Y,) Y(--%,Y,)-. Y(-LYm)l. / 
nm-elements 

10) 

101) 
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The fuzzy relational equation (96) can be solved using the formulas derived 
in Section 3. 

5. APPLICATIONAL ASPECTS OF FUZZY 
RELATIONAL EQUATIONS 

In this section we shall present applications of the fuzzy relational 
equations with triangular norms as a useful tool for handling various 
problems of fuzzy set theory in a unique and compact manner, pointing 
out several ways leading to their resolutions. 

One of the well-known areas of applications of fuzzy relational equations 
can be shown in systems analysis. Applying the concept of the state 
approach, any ill-defined, complex system with the fuzzy input, state, and 
output can be represented by means of a set of equations 

i 
Xk+l= U,ClX,ilR (102) 

I;+,= x;.+,ElG (103) 

where X,, X,, , E F(X), Uk E F( It), Yk E F( *I) ) are fuzzy states, input, and 
output for discrete-time moments; R E F (U x X x X), GE F (3E x $0) are 
time-invariant fuzzy relations of the state and output. System equations 
( 102 t( 103) form a generalization of any deterministic system described by 
the use of the difference equation widely used in control theory. Iden- 
tification and control problems can be formulated, for instance, in the 
following manner. 

-Given a collection of fuzzy data-fuzzy sets of input and output, 
determine the structure and relations of the system. 

-Given the desired state (output) of the system, determine a control 
policy (sequence of input fuzzy sets) which makes it possible to achieve the 
goal. 

These problems are treated, e.g., in [ 3, 10. 111. Analogously, as in non- 
fuzzy system analysis, we can consider the notion of the fuzzy system of 
higher order; the fuzzy system of the rth order is represented as 

i 

x k+r=L/kOXk[7Xk+,0...0Xk+r~,0R 
Yk+,= X,+.ClG 

x,, x, + , ...., Xk+.eF(X), Yk+,.~F(\l)), 

REF(UXXX~X... xX), 

(r + 1 )-times 

GEF(XX'~)). 

(104) 
(105) 
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Now, we formulate a decision-making process in terms of a fuzzy 
relational equation. Usually in such a situation we deal with a collection of 
goals and constraints expressed as fuzzy sets defined on respective spaces of 
goals (5, and constraints K,, viz., Gie F(@,), Cje F(cj), i = 1, 2 ,..., n, 
j = 1, 2,..., m. A fuzzy decision D defined on the decision space I! 
(DE F(I))) depends on Gi and C, and results from their aggregation; we 
can say there exists a relationship between Gi, C’, and D, which yields the 
equation 

D=C,0C20 ... q C,,,OG,OG2n ... ElG,ClR (106) 

where R is a fuzzy relation defined on the Cartesian product of the spaces 
)(;=, 6, x )(J’= r (Ij x 3. Assuming that Bi = (Ii = ‘0 for all i, j, and specify- 
ing “0” as supmin composition, we put R as the diagonal relation with 
the membership function 

R(x,,x~,...,x,+,,,+~)= 1, if x, =sl= ... =-Y~+~+[ 
(107) 

= 0, otherwise. 

Equation (106) is read as 

D(x) = min(C,(x), C,(x) ,..., C,(x), G,(x), G,(X) ,..., G,(x)) (108) 

so we obtain the well-known result given by Bellman and Zadeh [2]. 
The fuzzy relational equations discussed here can be also helpful in solv- 

ing various problems in fuzzy arithmetic [5,6]. Consider an equation for 
two fuzzy numbers 

B=A+X (109) 

where A, B are known fuzzy numbers and the fuzzy number X has to be 
calculated. The formulation of the problem (108) in the form of a fuzzy 
relational equation leads immediately to the needed result. We have 

B(b) = sup (X(x) tA(a)) = sup(X(r(.u) rA(b -x)), (110) 
u.r:h = I + u r 

a, h, XE ‘93 ( = ( - CI;, + #x8)), and treating A(b -x) as the fuzzy relation 
R(x 6) 

R(.u, 6) = A(a - x) (111) 

for all I, b f ‘93, it yields 

B=XOR (112) 

so finally the unknown fuzzy number is equal to 

~=R@B. (113) 
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