
Stochastic Processes and their Applications 119 (2009) 835–863
www.elsevier.com/locate/spa

Existence of mild solutions for stochastic differential
equations and semilinear equations with

non-Gaussian Lévy noise
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Abstract

Existence and uniqueness of the mild solutions for stochastic differential equations for Hilbert valued
stochastic processes are discussed, with the multiplicative noise term given by an integral with respect
to a general compensated Poisson random measure. Parts of the results allow for coefficients which can
depend on the entire past path of the solution process. In the Markov case Yosida approximations are also
discussed, as well as continuous dependence on initial data, and coefficients. The case of coefficients that
besides the dependence on the solution process have also an additional random dependence is also included
in our treatment. All results are proven for processes with values in separable Hilbert spaces. Differentiable
dependence on the initial condition is proven by adapting a method of S. Cerrai.
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1. Introduction

Let A be a (generally unbounded) linear operator on a domain D(A) ⊂ H .

A : D(A) ⊂ H → H.

Moreover, let A be the infinitesimal generator of a pseudo-contraction semigroup (St )t≥0 (see
Definition 2.1 in Section 2 or e.g. Appendix A of [15], or [21], for the definition and the
description of properties of pseudo-contraction semigroups).

In this article we shall study existence and uniqueness of the mild solutions of the stochastic
differential equation (SDE)

dZ = A Zdt + A(t, Z)dt +
∫

H\{0}
F(s, u, Z)q(dsdu) (1)

on each time interval [0, T ], T > 0. Z := (Z t (ω))t∈[0,T ] is a process with values in a separable
Hilbert space H with norm ‖ · ‖H . q(dsdu) := N (dsdu)(ω)−dsβ(du) is a compensated Poisson
random measure (cPrm) on a filtered probability space (Ω ,F , (Ft )0≤t≤+∞, P), satisfying the
“usual hypothesis” (see Section 2). β is a Lévy measure (in the sense of e.g. [5,35,1]) on
B(H\{0}), or, more generally, on B(E\{0}), where E is a separable Banach space. (B(Y ) denotes
the Borel σ -field on a topological space Y .) ds denotes as usual the Lebesgue measure on B(R+),
and N (dsdu)(ω) is a Poisson distributed σ -finite measure on the σ -algebra B(R+ × E \ {0}),
generated by the product semiring B(R+) × B(E \ {0}) of the Borel σ -algebra B(R+) and the
trace σ -algebra B(E \ {0}). It is well known that a cPrm with compensator given by dsβ(du)
is associated to a Lévy process (X t )t≥0. (See e.g. [6] (or [37] Section 2), for the definition of
trace σ -algebra, and e.g. [25,35,44,46,1,45,14] Section 2, [37] for the definition and properties
of compensated Poisson random measures).

From Section 4 to Section 9 we assume A(t, Z) = A(t, Z t ) and F(t, u, Z) = F(t, u, Z t ).
In Section 3 we consider the case where the coefficients A and F , still being non-anticipating,

depend on the path of the solution Z . For this case we assume that the cPrm is associated
to a canonical Lévy process (X t )t≥0, defined on the associated filtered probability space
(Ω ,F ,Ft , P) (see Section 2); i.e. for this case Ω = D(R+, H) is the space of càd-làg functions
defined on R+ and with values in H, with the sup norm ‖ · ‖∞ := supt∈[0,T ] ‖ · ‖H . (When no
misunderstanding is possible we write for a norm simply ‖ · ‖). F = F∞ and (for this case)

Ft := σ {Z := (Zs)s∈[0,T ] ∈ D([0, T ]; H) : ‖Zs‖ ≤ c, s ≤ t, c ∈ R}. (2)

Let T > 0 be fixed (and arbitrary). The stochastic process Z := (Z t (ω))t∈[0,T ] is a mild solution
of (1) with initial condition Z0 := Z0(ω), if it is a solution of the following convolution equation:

Z t = St Z0 +

∫ t

0
St−s A(s, Z)ds

+

∫ t

0

∫
E\{0}

St−s F(s, u, Z)q(dsdu) P-a.s. ∀t ∈ [0, T ]. (3)

Let Λ ∈ B(E \ {0}) and t ∈ [0, T ]. Let g(s, u, ω) have values in a separable Hilbert space H .
The stochastic integral

Mt :=

∫ t

0

∫
Λ

gq(dudx) (4)
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is defined as the Ito integral w.r.t. the cPrm q(dsdu) := N (dsdu)(ω)−dsβ(du) (see Theorem 2.3
in Section 2). The Ito integral (4) exists if g(s, u, ω) is measurable in all the variables, satisfies
adaptedness conditions with respect to the filtration and∫ T

0

∫
Λ

E[‖g(t, u)‖2]dtβ(du) <∞. (5)

In [37] we proved that the Ito integrals (4) are càd-làg martingales. In the Appendix we show that
the corresponding Meyer process is given by 〈M〉t :=

∫ T
0

∫
Λ ‖g(t, u, ·)‖2dtβ(du). We shall see

in Section 2 that, as St is a pseudo-contraction semigroup, the Ito integrals
∫ t

0

∫
Λ St−s gq(dsdx)

exist under the same assumptions. Moreover we shall prove in Section 2 that the integrals on the
r.h.s of (3) are càd-làg.

In Section 3 we shall prove existence and uniqueness of the solution of (3) for the case
where the coefficients A(s, Z) and F(s, u, Z), as functions of Z := (Z t )t∈R+ ∈ D(R+, H),
satisfy, for s, and resp. u fixed, a Lipschitz condition. The coefficients A(s, Z) and F(s, u, Z) are
measurable and non-anticipating (see Section 3). Let us stress that the consideration of SDEs with
coefficients depending on the entire past path of a process (“non-Markov case”) is particularly
important in certain applications, including the modelling of the dynamics of polymers moving
in a random medium, see, e.g. [8,13,19].

In Section 4 we analyze the case A(s, Z) = a(s, Zs) and F(s, u, Z) = f (s, u, Zs) and
assume however more general cPrms, which are not necessarily associated to canonical Lévy
processes on the Skorohod space D(R+, H). For this case, where the coefficients depend only
on the process at time s, we can also analyze more properties of the solution (Z t )t∈[0,T ]: in
Section 5 we prove that a Yosida approximation theorem holds, in Section 6 we analyze Markov
properties [20], in Section 8 we analyze the continuous dependence of the solution on initial data,
drift and noise coefficients, in Section 9 we prove the differentiable dependence of the solution on
the initial data. The results in Section 8 also hold for the case where the coefficients are random
and of the form a(s, Zs, ω) and f (s, u, Zs, ω). For this case an existence result of a mild solution
of (3) is proven in Section 7, but uniqueness holds only up to a version. The results obtained for
the case of random coefficients in Section 7 are not only interesting on their own but they are
also needed in Sections 8 and 9, where dependence on initial data is discussed.

We refer e.g. also to [15,17,23,24,26,27,30–33] and references therein for other interesting
existence results on mild solutions of infinite-dimensional SDEs with Gaussian or Poisson noise.
In particular we mention results by Knoche [31–33] which concern SDEs of the type (1) on
Sobolev spaces, where properties of the differential dependence of the resolvent on the initial data
are discussed. Work by Filipović and Tappe [22], by Marinelli [39], and Peszat, Zabczyk [42]
concern applications of SDEs of the type (1) to financial models. In these work an analysis of
a Lévy driven Heath–Jarrow–Morton term structure equation is given. We also refer to [36] for
applications to filtering, where Zakai’s equation is derived in a general setting. References [9–
11,26] treat SPDEs with state space including M-type-p separable Banach spaces. In particular
in [26] Hausenblas considers on such spaces SDEs of the type (1), assuming however that
the operator A is the generator of a compact analytic semigroup. Existence and uniqueness
of solutions are analyzed in [26] on the domain of the fractional powers of the operator A, in
terms of which Lipschitz conditions for the drift and noise coefficients (depending only on the
solution process) are assumed. The method uses interpolation inequalities for fractional powers
generating analytic semigroups of contractions. We refer also to a recent book by Peszat, Zabczyk
[43], which contains a description of several results obtained (also recently) by the scientific
community on SDEs with non-Gaussian noise on infinite-dimensional spaces.
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2. Properties of stochastic integrals w.r.t. cPrms

We assume that a filtered probability space (Ω ,F , (Ft )0≤t≤+∞, P), satisfying the “usual
hypothesis”, is given:

(i) Ft contains all null sets of F , for all t such that 0 ≤ t < +∞.
(ii) Ft = F+t , where F+t = ∩u>t Fu , for all t such that 0 ≤ t < +∞, i.e. the filtration is right

continuous.
Moreover, we assume

(iii) the filtration F0 is independent of (Ft )0<t≤+∞.

In this Section we assume that q(dsdx) := N (dsdx)(ω) − dsβ(dx) is a compensated Poisson
random measure (cPrm) on (E,B(E)), where E is a separable Banach space, and is defined on
the filtered space (Ω ,F , (Ft )0≤t≤+∞, P) (see e.g. [46] for the definition of cPrm). We then
analyze the properties of stochastic integrals obtained by convolution of pseudo-contraction
semigroups (St )t≥0 on a separable Hilbert space H w.r.t N (dsdx)(ω)− dsβ(dx). I.e. we analyze
the integrals∫ t

0

∫
E\{0}

St−s f (s, u)q(dsdu) (6)

where (St )t≥0 is a pseudo-contraction semigroup on a separable Hilbert space H .

Definition 2.1. A continuous semigroup (St )t≥0 on H , which has the property

|||St ||| ≤ exp(αt) ∀t ≥ 0. (7)

for some constant α > 0, and with ||| · ||| denoting the operator norm on H , is called a pseudo-
contraction semigroup on H .

Let us first consider the stochastic integrals (4). These are defined like Ito integrals w.r.t.
cPrms. The latter have been introduced and analyzed e.g. in [3,7,47], for the case of Rd -valued
functions, and in [37,45] for the case of Banach spaces valued functions. Let us recall here the
definition.

Let T > 0 and

MT (E/H) := {g : R+ × E \ {0} × Ω → H, such that g is jointly measurable and

Ft -adapted ∀u ∈ E \ {0}, t ∈ (0, T ]} (8)

MT,2
β (E/H) :=

{
g ∈ MT (E/H) :

∫ T

0

∫
E[‖g(t, u)‖2]dtβ(du) <∞

}
(9)

where E[·] denotes the expectation w.r.t. the probability P .
The following “simple functions” are dense in the Banach space MT,2

β (E/H) with norm

‖g‖2 :=
√∫ T

0

∫
E[‖g(t, u)‖2], see [45] Theorem 4.2 (In [47] Chapter 2, Section 4 a bigger

set of simple functions is considered).

Definition 2.2. A function g belongs to the set Σ (E/H) of simple functions, if g ∈ MT (E/H),
T > 0 and there exist n ∈ N, m ∈ N, such that

g(t, x, ω) =
n−1∑
k=1

m∑
l=1

1Ak,l (x)1Fk,l (ω)1(tk ,tk+1](t)ak,l (10)
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where 0 6∈ Ak,l , tk ∈ (0, T ], tk < tk+1, Fk,l ∈ Ftk , ak,l ∈ H . For all k ∈ 1, . . . , n − 1 fixed,
Ak,l1 × Fk,l1 ∩ Ak,l2 × Fk,l2 = ∅ if l1 6= l2.

A stochastic integral of simple functions is defined in a very natural way (see Chapter 3
in [45]): let g ∈ Σ (E/H), the “natural stochastic integral” of g is∫ T

0

∫
A

g(t, x, ω)q(dtdx)(ω)

=

n−1∑
k=1

m∑
l=1

ak,l1Fk,l (ω)q((tk, tk+1] ∩ (0, T ] × Ak,l ∩ A)(ω). (11)

The “Ito integral” (4) is well defined by approximation through “simple functions”, for all
g ∈ MT,2

β (E/H). In fact the following property holds (see e.g. [47] Chapter 2, Section 4
[7,41,3], or Theorem 4.14 in [45]):

Theorem 2.3. Given a sequence gn of simple functions approximating g in MT,2
β (E/H), the

sequences
∫ t

0

∫
Λ gnq(dsdx) converge in L2(Ω ,F , P) and the limit does not depend on the

sequence.
The limit

∫ t
0

∫
Λ gq(dsdx) is the “Ito integral of g on (0, t] × Λ w.r.t. q(dsdx)”

(The “Ito integral w.r.t. q(dsdx)” is called “strong-2-integral” in [45,37], to distinguish it from
the “strong-1-integral obtained by convergence in L1.)

Theorem 2.3 is proven by verifying for the simple functions g ∈ Σ (E/H) that the following
equality holds:

E

[∥∥∥∥∫ t

0

∫
E\{0}

g(s, u)q(dsdu)

∥∥∥∥2
]
=

∫ t

0

∫
E\{0}

E[‖g(s, u)‖2]dsβ(du) t ∈ [0, T ]. (12)

By density of the simple functions in MT,2
β (E/H) it follows the validity of the isometry (12) for

all integrands g ∈ MT,2
β (E/H) (see e.g. [47] Chapter 2, Section 4, or [7,41,3], or Theorem 4.14

in [45]):
Here we prove the following inequality.

Lemma 2.4. Let f (s, u, ω) ∈ MT,2
β (E/H). Then for any t ∈ [0, T ], 0 ≤ s ≤ t ,

St−s f (s, u, ω) ∈ MT,2
β (E/H) and

E

[∥∥∥∥∫ t

0

∫
E\{0}

St−s f (s, u)q(dsdu)

∥∥∥∥2
]
≤ e2αt

∫ t

0

∫
E\{0}

E[‖ f (s, u)‖2]dsβ(du) (13)

(with α as in (7)).

Proof of Lemma. From the assumption on St and (12) it follows that St−s f (s, u, ω) ∈
MT,2
β (E/H) for all t ∈ [0, T ], 0 ≤ s ≤ t and

E

[∥∥∥∥∫ r

0

∫
E\{0}

St−s f (s, u)q(dsdu)

∥∥∥∥2
]
≤ e2αt

∫ r

0

∫
E\{0}

E[‖ f (s, u)‖2]dsβ(du) (14)

∀r ∈ [0, T ]. The result is then obtained by putting r = t . �
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Proposition 2.5. Let f (s, u, ω) ∈ MT,2
β (E/H), then

∫ t
0

∫
E\{0} St−s f q(dsdu) is càd-làg.

Proof. In [37] it is proven that

Mt :=

∫ t

0

∫
E\{0}

f q(dsdu) (15)

is an Ft -square integrable martingale and is càd-làg. In Theorem A.1 in the Appendix we shall
prove that the corresponding Meyer process is given by

〈M〉t :=
∫ t

0

∫
E\{0}
‖ f ‖2dsβ(du). (16)

From Lemma 2.4 it follows that St−s f (s, u, ω) ∈ MT,2
β (E/H) and that (6) is well defined as

the Ito integral. As, moreover, St−s are linear bounded operators acting on H , it follows from
Proposition 3.3 of [38] that the Ito integral

∫ t
0 St−sdMs(ω), with (Mt )0≤t≤T given through (15),

is also well defined, and the following equality holds

Yt :=

∫ t

0
St−sdMs =

∫ t

0

∫
E\{0}

St−s f q(dsdu). (17)

From Lemma 5 in [28] we have

P

(
sup

0≤t≤T
‖Yt‖ > ε

)
≤ 4

e2αT

ε2 E[〈M〉T ]. (18)

From [45] it follows that there is a sequence of simple functions { fn}n∈N, which is L2-
approximating f , i.e. such that

lim
n→∞

∫ T

0

∫
E\{0}

E[‖ fn(t, u)− f (t, u)‖2]dtβ(du) = 0. (19)

Let

Y n
t :=

∫ t

0

∫
E\{0}

St−s fnq(dsdu)

=

∫ t

0
St−sdMn

s (20)

Mn
s :=

∫ t

0

∫
E\{0}

fnq(dsdu). (21)

As St−s fn(s, u, ω) is of the form (10), Y n
t is a martingale and is càd-làg [37].

From Lemma 5 in [28] we have

P

(
sup

0≤t≤T
‖Y n

t − Y m
t ‖ > ε

)
≤ 4

e2αT

ε2 E[〈Mn − Mm〉T ]

≤ 4
e2αT

ε2

∫ T

0

∫
E\{0}

E[‖ fn(t, u)− fm(t, u)‖2]dtβ(du), (22)

where the second inequality follows from [45]. By the Borel–Cantelli Lemma and fn → f in
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MT,2
β (E/F) there is a subsequence {Y nk

t (ω)}k∈N such that

lim
k→∞

sup
0≤t≤T

‖Y nk
t (ω)− Y nk+1

t (ω)‖ = 0 P-a.s. (23)

It follows

Yt (ω) = lim
k→∞

Y nk
t (ω) uniformly in [0, T ], P-a.s. (24)

We get that Yt is càd-làg, since Y nk
t is càd-làg. �

Remark 2.6. The result in Proposition 2.5 allows us to set up a contraction in the set of càd-
làg processes, thus giving the solution of (1) to be càd-làg. In [26] the càd-làg property of the
solution has been proven using Aldous criteria for compactness in the Skorohod space. We used
instead Ichikawa’s inequality in Lemma 5 of [28], for the stochastic integrals (6), which is more
straightforward. Reference [26] considers the case where the state space is an M-type-p Banach
space. In an article of Kotelenez [34] it was proven that the stochastic integrals

∫ t
0 St−sdMs(ω)

have a càd-làg version, in the general case of (Mt )t∈[0,T ] being càd-làg martingales. A precise
statement and proof can also be found in Chapter 9.4.2 of the book by Peszat, Zabczyk [43].

3. Existence and uniqueness of solutions under non-Markovian Lipschitz conditions

In this Section we assume that q(dsdx) := N (dsdx)(ω)−β(dsdx) is the cPrm associated to a
canonical Lévy process (X t )t∈R+ . See e.g. [2] Section 2, or [46], for the definition of “canonical
Lévy process” and [1] Definition 2.10 for the definition of “cPrm associated to a Lévy process”
(or e.g. [5,4,25,29,35,44,46]). The canonical Lévy process is defined on the filtered probability
space (Ω ,F ,Ft , P) introduced in Section 1. I.e. Ω := D(R+, H) and the filtration is given
in (2).

In this Section we solve (3) for the case where the coefficients are mappings

A : R+ × D(R+, H)→ H, (25)

F : R+ × H \ {0} × D(R+, H)→ H. (26)

The coefficients A and F are in general nonlinear (see the conditions (a), (b), (29) and (38)
below).

In the whole Section we assume:
(a) F(t, u, Z) is jointly measurable, and for all u ∈ H and t ∈ R+ fixed, F(t, u, ·) is Ft -adapted.
(b) A(t, Z) is jointly measurable, and for all t ∈ R+ fixed, A(t, ·) is Ft -adapted.

Moreover, for each t ∈ R+, we consider the function

θt : D(R+; H)→ D(R+; H)

Z → θt (Z) (27)

defined by the following formula

θt (Z)(s) := Zs, if 0 ≤ s < t

:= Z t , if t ≤ s. (28)

Let us assume that F(t, u, Z) = F(t, u, θt (Z)) and A(t, Z) = A(t, θt (Z)).
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We assume that
(c) there is l > 0, so that for any t1, t2 ∈ R+∫ t2

t1
‖F(t, u, Z)‖2Hβ(du)dt +

∫ t2

t1
‖A(t, Z)‖2H dt ≤ l

∫ t2

t1
(1+ ‖θt (Z)‖

2
∞)dt. (29)

Let, for Z ∈ D(R+; H),

I (t, Z) :=
∫ t

0
St−s A(s, Z)ds +

∫ t

0

∫
H\{0}

St−s F(s, u, Z)q(dsdu), t ∈ [0, T ]. (30)

Theorem 3.1. There exists a constant Cl,T,α such that for any (Ft )-stopping time τ

E[ sup
0≤s≤t∧τ

‖I (s, Z)‖2H ] ≤ Cl,T,α

(
t +

∫ t

0
E[ sup

0≤v≤s∧τ
‖Zv‖

2
]ds

)
, t ∈ [0, T ]. (31)

Proof.

sup
0≤s≤t∧τ

‖I (s, Z)‖2H ≤ 2 sup
0≤s≤t∧τ

∥∥∥∥∫ s

0
Ss−vA(v, Z)dv

∥∥∥∥2

H

+ 2 sup
0≤s≤t∧τ

∥∥∥∥∫ s

0

∫
H\{0}

St−vF(v, u, Z)q(dvdu)

∥∥∥∥2

H

, (32)

(where we used the inequality ‖x + y‖2 ≤ 2‖x‖2 + 2‖y‖2, valid for any x, y ∈ H ). Using (7)
and (29) we obtain

E

[
sup

0≤s≤t∧τ

∥∥∥∥∫ s

0
Ss−vA(v, Z)dv

∥∥∥∥2

H

]
≤ E

[
sup

0≤s≤t

(
leαt

∫ s

0
(1+ ‖θv(Z)‖∞)dv

)2
]

≤ 2e2αT l2
{

t2
+ tE

[∫ s∧τ

0
‖θv(Z)‖

2
∞dv

]}
. (33)

Moreover using also Theorem 3 of [28], as well as (16), (17) and (29) we get

E

[
sup

0≤s≤t∧τ

∥∥∥∥∫ s

0

∫
H\{0}

St−vF(v, u, Z)q(dvdu)

∥∥∥∥2

H

]

≤ 2e2αT l2(3+
√

10)2
{

t2
+ tE

[∫ s∧τ

0
‖θv(Z)‖

2
∞dv

]}
(34)

E[ sup
0≤s≤t∧τ

‖I (s, Z)‖2H ] ≤ 4e2αT l2(1+ (3+
√

10)2)
{

t2
+ tE

[∫ s∧τ

0
‖θv(Z)‖

2
∞dv

]}
≤ Cl,T,α

(
t +

∫ t

0
E[ sup

0≤v≤s∧τ
‖Zv‖

2
]ds

)
(35)

with Cl,T,α := 4T e2αT l2(1+ (3+
√

10)2). �
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Let T > 0 and

HT
2 := {ξ := (ξs)s∈[0,T ] : ξs(ω)is jointly measurable,Ft -adapted;

E[ sup
0≤s≤T

‖ξs‖
2
H ] <∞}. (36)

Let us observe that it follows from Theorem 3.1 that the map

I : HT
2 → HT

2 (37)

ξ → I (·, ξ).

is well defined.
Starting from here, we assume in this Section that the following additional condition holds:

(d) there is a constant K > 0 such that for any t1, t2 ∈ R fixed and Z , Y ∈ D(R+; H) fixed∫ t2

t1
‖F(t, u, Z)− F(t, u, Y )‖2Hβ(du)dt +

∫ t2

t1
‖A(t, Z)− A(t, Y )‖2H dt

≤ K
∫ t2

t1
‖θv(Z)− θv(Y )‖

2
∞dt P-a.s. (38)

Lemma 3.2. The map I : HT
2 → HT

2 is continuous. There is a constant Cα,K ,T , depending on
α, K and T , such that

E[ sup
0≤s≤T

‖I (s, Z1)− I (s, Z2)‖2H ] ≤ Cα,K ,T

∫ T

0
E[ sup

0≤s≤T
‖Z2

s − Z1
s ‖

2
H ]ds. (39)

The proof of Lemma 3.2 is omitted, as the arguments used are similar to the proof of
Theorem 3.1.

Theorem 3.3. Let T > 0, x ∈ H. There is a unique solution Z := (Zs)s∈[0,T ] in HT
2 which

satisfies

Z t = St x +
∫ t

0
St−s A(s, Z)ds +

∫ t

0

∫
H\{0}

St−s F(s, u, Z)q(dsdu). (40)

Proof. We shall prove that the solution can be approximated in HT
2 by Zn

:= (Zn
s )s∈[0,T ], for

n→∞, n ∈ N, where

Z0
s (ω) := Ss x P-a.s. (41)

Zn+1
s (ω) := I (s, Zn(ω)). (42)

Remark that (Zn
t )t∈[0,T ] is Ft -adapted. Let

vn
t := E[ sup

0≤s≤t
‖Zn+1

s − Zn
s ‖

2
H ]. (43)

Then from Theorem 3.1 it follows that there is a constant Vα,l,T (x), depending on α, l and T and
the initial data x , such that

v0
t ≤ E[ sup

0≤s≤T
‖Z1

s − Z0
s ‖

2
H ] ≤ Vα,l,T (x). (44)
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Similarly as in the proof of Theorem 3.1, it can be proven that there is a constant Cα,K ,T
depending on α, K and T , such that

v1
t ≤ Cα,K ,T

∫ t

0
E[ sup

0≤s≤t
‖Z1

s − Z0
s ‖

2
H ]ds ≤

T 2(Cα,K ,T )2

2
Vα,l,T (x). (45)

In a similar way we get by induction

vn
t ≤ Cα,K ,T

∫ t

0
vn−1

s ds ≤
(T Cα,K ,T )n+1

(n + 1)!
Vα,l,T (x). (46)

Let εn :=

(
(T Cα,K ,T )n+1

(n+1)!

) 1
3
. Then:

P( sup
0≤t≤T

‖Zn+1
t − Zn

t ‖
2
≥ εn) ≤

(T Cα,K ,T )n+1

(n+1)! Vα,l,T (x)

(
(T Cα,K ,T )n+1

(n+1)! )
1
3

= ε2
n Vα,l,T (x). (47)

As
∑

n ε
2
n is convergent, we get that

∑
∞

n=1 sup0≤t≤T ‖Z
n+1
t − Zn

t ‖
2 converges P-a.s. It follows

that there is a process Z := (Z t )t∈[0,T ], Z ∈ D([0, T ]; H), such that Zn converges, when n goes
to infinity, to Z in the space D([0, T ]; H) (with the supremum norm), P-a.s. Moreover

E[ sup
0≤t≤T

‖Z t − Zn
t ‖

2
] = E

 lim
m→∞

sup
0≤t≤T

∥∥∥∥∥n+m−1∑
k=n

(Z k+1
t − Z k

t )

∥∥∥∥∥
2


≤ E

 lim
m→∞

(
n+m−1∑

k=n

sup
0≤t≤T

‖Z k+1
t − Z k

t ‖k
1
k

)2


≤

∞∑
k=n

E[ sup
0≤t≤T

‖Z k+1
t − Z k

t ‖
2k2
]

∞∑
k=n

1

k2

≤ Vα,l,T (x)

(
∞∑

k=n

(T Cα,K ,T )k+1k2

(k + 1)!

)(
∞∑

k=n

1

k2

)
→ 0 when n→∞, (48)

where we used the Schwarz inequality. It follows that Zn converges, when n goes to infinity, to
Z in the space HT

2 , too. From Lemma 3.2 it follows that (Z t )0≤t≤T solves (40). We shall prove
that the solution is unique. Suppose that (Z t )0≤t≤T and (Yt )0≤t≤T are two solutions of (40). Let

Vt := E[ sup
0≤s≤t

‖Zs − Ys‖
2
H ]. (49)

Then similarly as for (46) we get

Vt ≤ Cα,K ,T

∫ t

0
Vs (50)

and by induction

Vt ≤
(Cα,K ,T t)n

n!
E[ sup

0≤s≤T
‖Zs − Ys‖

2
H ] → 0 when n→∞ (51)

i.e. Vt = 0∀t ∈ [0, T ]. �
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4. Existence and uniqueness of solutions under Markovian Lipschitz conditions

Let us assume that we are given

a : R+ × H → H, (52)

f : R+ × H \ {0} × H → H. (53)

Assume
(A) f (t, u, z) is jointly measurable,
(B) a(t, z) is jointly measurable,
and for T > 0 fixed
(C) there is a constant L > 0, s.th.

T ‖a(t, z)− a(t, z′)‖2 +
∫
‖ f (t, u, z)− f (t, u, z′)‖2β(du) ≤ L‖z − z′‖2

for all t ∈ [0, T ], z, z′ ∈ F. (54)

(D) There is a constant K > 0 such that

T ‖a(t, z)‖2 +
∫
‖ f (t, u, z)‖2β(du) ≤ K (‖z‖2 + 1) for all t ∈ [0, T ], z ∈ F. (55)

Let A(t, Z) := a(t, Z t ) and F(t, u, Z) := f (t, u, Z t ). Then A(t, Z) and F(t, u, Z) satisfy the
conditions in Theorem 3.3 so that there is a unique solution Z := (Z t )t∈[0,T ] in HT

2 of

Z t = St Z0 +

∫ t

0
St−sa(s, Zs)ds +

∫ t

0

∫
St−s f (s, u, Zs)q(dsdu) P-a.s. ∀t ∈ [0, T ].

(56)

Starting from here we assume, like in Section 2, that in the rest of the present article the cPrm
q(dsdx) := N (dsdx)(ω)− dsβ(dx) is a random measure on (E,B(E)), where E is a separable
Banach space, and is defined on a filtered probability space (Ω ,F , (Ft )0≤t≤+∞, P), satisfying
the “usual hypothesis” (i)–(iv), given in Section 2.

We shall for this case prove the following result: let the coefficient a be like in (52) and

f : R+ × E \ {0} × H → H. (57)

Theorem 4.1. Let 0 < T <∞ and suppose that (A), (B), (C), (D) are satisfied. Suppose also
that

E[‖Z0‖
2
] <∞. (58)

Then there exists a unique càd-làg process (Z t )t∈[0,T ] s.th. P-a.s. Z t (ω) solves (56) and such
that
(i) Z t is Ft -measurable,
(ii)

∫ T
0 E[‖Zs‖

2
]ds <∞.

Remark 4.2. From Theorem 15 in Chapter 89-IV [18] it follows that (Z t )t∈[0,T ] is progressively
measurable.

Proof of Theorem 4.1. Proof of the Uniqueness:
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Let (Z1
t )t∈[0,T ] and (Z2

t )t∈[0,T ] be two solutions with initial conditions Z1
0(ω) and Z2

0(ω)

respectively which satisfy the hypothesis in Theorem 4.1. Let us define

C(s, u, ω) := f (s, u, Z1
s (ω))− f (s, u, Z2

s (ω))

g(s, ω) := a(s, Z1
s (ω))− a(s, Z2

s (ω))

v(t) := E[‖Z1
t − Z2

t ‖
2
]. (59)

Then

v(t) ≤ 4e2αt
{

E[‖Z1
0 − Z2

0‖
2
] + t

∫ t

0
E[‖g(s)‖2]ds

+

∫ t

0

∫
E\{0}

E[‖C(s, u)‖2]dsβ(du)

}
, (60)

where we used the contraction property of St and Lemma 2.4. Using property (C) we get

v(t) ≤ 4e2αt
{

E[‖Z1
0 − Z2

0‖
2
] + L

∫ t

0
E[‖Z1

s − Z2
s ‖

2
]ds

}
. (61)

By Gronwall’s inequality we then obtain

v(t) ≤ 4e2αt E[‖Z1
0 − Z2

0‖
2
]eLρt t (62)

where ρt := 4e2αt . This implies that if

Z1
0(ω) = Z2

0(ω) P-a.s., (63)

then (denoting as usual by Q the field of rational numbers)

P(Z1
t = Z2

t for t ∈ [0, T ] ∩Q) = 1, (64)

which implies by the càd-làg property

P(Z1
t = Z2

t for t ∈ [0, T ]) = 1. (65)

Proof of the Existence:
Define, for t ∈ [0, T ]:

Z0
t (ω) := St Z0(ω) (66)

Z k
t := St Z0 +

∫ t

0
St−sa(s, Z k−1

s )ds +
∫ t

0

∫
E\{0}

St−s f (s, u, Z k−1
s )q(dsdu). (67)

Then by similar arguments as in the proof of the uniqueness we get

E[‖Z k+1
t − Z k

t ‖
2
] ≤ 2Le2αT

∫ t

0
E[‖Z k

s − Z k−1
s ‖

2
]ds (68)

E[‖Z1
t − Z0

t ‖
2
] ≤ 2e2αT K (1+ E[‖Z0‖

2
]). (69)

Defining
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CK ,T,α := 2Le2αT (70)

we obtain from (68) and (69)

E[‖Z k+1
t − Z k

t ‖
2
] ≤ (CK ,T,α)

k+1 tk+1

(k + 1)!
2e2αT K (1+ E[‖Z0‖

2
]). (71)

Moreover, for k ≥ 1.

P( sup
0≤t≤T

‖Z k+1
t − Z k

t ‖ > 2−k) ≤ P

(∫ T

0
‖St−sa(s, Z k

s )− St−sa(s, Z k−1
s )‖ds > 2−k−1

)

+ P

(
sup

0≤t≤T

∥∥∥∥∫ t

0

∫
E\{0}
[St−s f (s, u, Z k

s )− St−s f (s, u, Z k−1
s )]q(dsdu)

∥∥∥∥ > 2−k−1

)
.

Using Chebychev’s inequality, (18), the Lipschitz condition (C) and the growth condition (D) we
obtain

P( sup
0≤t≤T

‖Zk+1
t − Zk

t ‖ > 2−k) ≤ 22k+2T E

[∫ T

0
‖St−sa(s, Zk

s )− St−sa(s, Zk−1
s )‖2ds

]

+ 422k+2e2αT

∣∣∣∣∣
∫ T

0

∫
E\{0}

E[‖ f (s, u, Zk
s )− f (s, u, Zk−1

s )‖]dsβ(du)

∣∣∣∣∣
≤ 422k+2e2αT LE

[∫ T

0
‖Zk

s − Zk−1
s ‖

2ds

]

≤ 422k+2e2αT L2e2αT K (1+ E[‖Z0‖
2
])

∫ T

0
(CK ,T,α)

k tk

(k)!
dt

≤ (CK ,T,α)
k (4T )k+1

(k + 1)!
e2αT L8e2αT K (1+ E[‖Z0‖

2
]). (72)

From the Borel–Cantelli Lemma it follows that P-a.s. there is k0(ω) ∈ N s.th. for all k ≥ k0(ω),
k ∈ N,

sup
0≤t≤T

‖Z k+1
t − Z k

t ‖ ≤ 2−k . (73)

We have

Zn
t (ω) = Z0

t (ω)+

n−1∑
k=0

[Z k+1
t (ω)− Z k

t (ω)]. (74)

It follows that Zn
t (ω) converges uniformly on [0, T ]P-a.s. We define

Z t (ω) := lim
n→∞

Zn
t (ω) P-a.s. (75)

(Z t (ω))t∈[0,T ] is càd-làg and adapted, as each (Zn
t (ω))t∈[0,T ] is càd-làg and adapted by induction.

We now prove that for all t ∈ [0, T ] convergence of Zn
t (ω) to Z t (ω) as n→∞ holds also in

the L2-norm, i.e. limn→∞(E[‖Zn
t − Z t‖

2
])1/2 = 0

and that∫ T

0
E[‖Zs‖

2
]ds <∞. (76)
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Let n ≥ m, n,m ∈ N, then from (71) it follows

E[‖Zn
t − Zm

t ‖
2
] ≤

n−1∑
m

E[‖Z k+1
t − Z k

t ‖
2
]

≤ 2e2αT K (1+ E[‖Z0‖
2
])

∞∑
m
(CK ,T,α)

k+1 tk+1

(k + 1)!
∀t ∈ [0, T ]. (77)

We get

E[‖Zn
t − Zm

t ‖
2
] → 0 as n,m →∞. (78)

Hence the limit in L2 of Zn
t for n→∞ exists, we call it

ξt := lim
n→∞

Zn
t . (79)

Then

ξt (ω) = Z t (ω) P-a.s. (80)

From (66), (67), (73), (74) and (75) we have

sup
t∈[0,T ]

E[‖Z t‖
2
] <∞ (81)

hence ∫ T

0
E[‖Z t‖

2
]dt <∞. (82)

Moreover

lim
n→∞

∫ T

0
E[‖Zn

t − Z t‖
2
]dt = 0. (83)

We now prove that (Z t )t∈[0,T ] solves Eq. (3) P-a.s..

Zn+1
t := St Z0 +

∫ t

0
St−sa(s, Zn

s )ds +
∫ t

0

∫
E\{0}

St−s f (s, u, Zn
s )q(dsdu). (84)

We define

Cn(s, u, ω) := f (s, u, Zs(ω))− f (s, u, Zn
s (ω))

gn(s, ω) := a(s, Zs(ω))− a(s, Zn
s (ω)).

Similarly as for (60) and (61) we obtain∥∥∥∥∫ t

0
E[gn(s)]ds

∥∥∥∥2

≤ t
∫ t

0
E[‖gn(s)‖

2
]ds ≤ e2αt L

∫ t

0
E[‖Zs − Zn

s ‖
2
]ds (85)∥∥∥∥∫ t

0

∫
E\{0}
{E[Cn(s, u)]dsβ(du)}

∥∥∥∥2

≤ e2αt L
∫ t

0
E[‖Zs − Zn

s ‖
2
]ds. (86)

From (83), (85), (86) it follows that (Z t )t∈[0,T ] solves Eq. (3) P-a.s. �
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Corollary 4.3. Let 0 < T < ∞ and suppose that (A), (B), (C), (D) are satisfied. Let
(Z ξt )t∈[0,T ], resp. (Zηt )t∈[0,T ] be the solution of (3) with initial condition ξ , resp. η, then

E[‖Z ξt − Zηt ‖
2
] ≤ 4e2αt

‖ξ − η‖2eLρt t . (87)

Proof. This follows from (59) and (62). �

5. Yosida approximation

In this Section we assume again the hypothesis of the previous Section: A is the infinitesimal
generator of a pseudo-contraction semigroup (St )t∈[0,T ] and conditions (A), (B), (C), (D) hold.

Let

Z0(ω) = ξ P-a.s. (88)

and let (Z t )t∈[0,T ] be the unique càd-làg process solving P-a. s. (3) for every t ∈ [0, T ] such that
(i), (ii) in Theorem 4.1 are satisfied.

Let {An}n∈N be the Yosida approximation to A (see Appendix A.2 in [15] or [21]). For every
T > 0 fixed, there exists a unique càd-làg process (Zn

t )t∈[0,T ], such that
∫ T

0 E[‖Zn
s ‖

2
]ds < ∞

and such that (Zn
t )t∈[0,T ] is a strong solution of

dZn
t = An Zn

t dt + a(t, Zn
t )dt +

∫
E\{0}

f (s, u, Zn
s )q(dsdu) (89)

with initial condition (88) [37]. Moreover (Zn
t )t∈[0,T ] is also a mild solution, i.e. P-a.s.

Zn
t = Sn

t ξ +

∫ t

0
Sn

t−sa(s, Zn
s )ds +

∫ t

0

∫
E\{0}

Sn
t−s f (s, u, Zn

s )q(dsdu) (90)

for every t ∈ [0, T ] and such that (i), (ii) in Theorem 4.1 are satisfied. We shall prove the
following result:

Theorem 5.1.

lim
n→∞

E[‖Z t − Zn
t ‖

2
] = 0 (91)

uniformly in [0, T ].

Proof. We have

E[‖Z t − Zn
t ‖

2
] ≤ 23

‖Sn
t ξ − Stξ‖

2
+ 23E

[∥∥∥∥∫ t

0
St−sa(s, Zs)− Sn

t−sa(s, Zn
s )ds

∥∥∥∥2
]

+ 23E

[∥∥∥∥∫ t

0

∫
E\{0}

St−s f (s, u, Zs)− Sn
t−s f (s, u, Zn

s )q(dsdu)

∥∥∥∥2
]
. (92)

We shall analyze separately the three terms on the right-hand side of inequality (92). As for the
first term, we remark that

lim
n→∞
‖Sn

t ξ − Stξ‖ = 0. (93)
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Moreover, from equation (A.13) in [15] it follows that for all ξ ∈ E there is a constant CT and
n0 ∈ N, such that for any n ≥ n0

‖Sn
t ξ − Stξ‖ ≤ CT ‖ξ‖ (94)

so that the convergence in (93) is uniform in [0, T ].
Let us consider the second term on the right-hand side of (92). We have:

E

[∥∥∥∥∫ t

0
St−sa(s, Zs)− Sn

t−sa(s, Zn
s )ds

∥∥∥∥2
]

≤ 2T
∫ t

0
E[‖St−sa(s, Zs)− Sn

t−sa(s, Zs)‖
2
]ds

+ 2T
∫ t

0
E[‖Sn

t−sa(s, Zs)− Sn
t−sa(s, Zn

s )‖
2
]ds (95)

lim
n→∞
‖St−sa(s, Zs(ω))− Sn

t−sa(s, Zs(ω))‖ = 0 P-a.s. (96)

and

‖St−sa(s, Zs(ω))− Sn
t−sa(s, Zs(ω))‖

2
≤ CT ‖a(s, Zs(ω))‖

2
≤ CT K (‖Zs(ω)‖

2
+ 1),

(97)

where (97) is a consequence of (94) and condition (D). By the Lebesgue dominated convergence
theorem it follows that the first term on the r.h.s. of (95) converges to zero.

Let us consider the second term on the r.h.s. of (95). We observe that from (94) and the
Lipschitz condition (C) it follows that

T ‖Sn
t−sa(s, Zs(ω))− Sn

t−sa(s, Zn
s (ω))‖

2
≤ CT L‖Zs(ω)− Zn

s (ω)‖
2 (98)

so that

2T
∫ t

0
E[‖Sn

t−sa(s, Zs)− Sn
t−sa(s, Zn

s )‖]
2ds ≤ 2CT L

∫ t

0
E[‖Zs − Zn

s ‖
2
]ds. (99)

It follows that for all ε > 0 there is n0 ∈ N such that for all n ≥ n0

E

[∥∥∥∥∫ t

0
St−sa(s, Zs)− Sn

t−sa(s, Zn
s )ds

∥∥∥∥2
]
≤ ε + 2CT L

∫ t

0
E[‖Zs − Zn

s ‖
2
]ds. (100)

Let us consider the third term in (92). By similar arguments as in (100), it can be proved that

E

[∥∥∥∥∫ t

0

∫
E\{0}

St−s f (s, u, Zs)− Sn
t−s f (s, u, Zn

s )q(dsdu)

∥∥∥∥2
]

≤ ε + 2CT L
∫ t

0
E[‖Zs − Zn

s ‖
2
]ds. (101)

It follows

E[‖Z t − Zn
t ‖

2
] ≤ 23

‖Sn
t ξ − Stξ‖

2
+ 24ε24CT L

∫ t

0
E[‖Zs − Zn

s ‖
2
]ds. (102)
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Using Gronwall’s Lemma we get

E[‖Z t − Zn
t ‖

2
] ≤ (23

‖Sn
t ξ − Stξ‖

2
+ 24ε) exp(24T LCT ) (103)

so that (92) gives the result. �

6. Markov property

Let Bb(H) denote the set of bounded real valued functions on H . We first prove that the
Markov property holds for the semigroup associated to the mild solutions of (1):

Let 0 < v < T and ξ ∈ H . Let (Z(t, v, ξ))t∈[v,T ] denote the solution of the following integral
equation

Z t = St−vξ +

∫ t

v

St−sa(s, Zs)ds +
∫ t

v

∫
E\{0}

St−s f (s, u, Zs)q(dsdu) (104)

(in the sense of Theorem 4.1). Let F Z
t denote the σ -algebra generated by Z(τ, v, ξ), with τ ≤ t ,

τ ≥ v. Let v ≤ s ≤ t ≤ T and Ps,t be the linear operator on Bb(H), such that

(Ps,t )(φ)(x) = E[φ(Z(t, s; x))] for φ ∈ Bb(H) x ∈ H. (105)

Then the Markov property holds, that is:

Theorem 6.1. Let 0 ≤ v ≤ s ≤ t ≤ T .

E[φ(Z(t, v; ξ))/F Z
s ] = (Ps,t )(φ)(Z(s, v; ξ)) for any φ ∈ Bb(H). (106)

Proof. As F Z
s ⊂ Fs , it is sufficient to prove that

E[φ(Z(t, v; ξ))/Fs] = (Ps,t )(φ)(Z(s, v; ξ)). (107)

From the uniqueness (Theorem 4.1) we get

Z(t, v; ξ)(ω) = Z(t, s; Z(s, v; ξ)(ω))(ω) P-a.s. (108)

Let

η(ω) := Z(s, v; ξ)(ω). (109)

Then from (108) it follows that (107) can be written as

E[φ(Z(t, s; η))/Fs] = (Ps,t )(φ)(Z(s, v; η)). (110)

It is enough to show that (110) holds for every φ ∈ Cb(H), with Cb(H) denoting the set of
continuous real valued bounded functions on H . We first assume that φ is linear and bounded.

Moreover, let us first consider the case where

η(ω) = x ∈ H P-a.s. (111)

(instead of (109)). As x is constant and because of the independent increment property of the
cPrm, Z(t, s; η(ω)) is independent of Fs . In fact Fs is the σ -algebra generated by the pure jump
Lévy process with compensator dsβ(dx), (see e.g. [1], Section 2).

E[φ(Z(t, s; η))/Fs] = E[φ(Z(t, s, x))] = Ps,t (φ(x)) (112)

so that (110) holds for this particular case.
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Now we prove (110) for the case where

η(ω) :=

n∑
1

a j 1A j (Z(s, v; ξ)) (113)

with {A j , j = 1, . . . , n} a partition of H and a1, . . . , an ∈ H . In this case

Z(t, s; η(ω))(ω) =
n∑
1

Z(t, s; a j )1A j (Z(s, v; ξ)) P-a.s., (114)

φ(Z(t, s; η(ω))(ω)) =
n∑
1

φ(Z(t, s; a j ))1A j (Z(s, v; ξ)) P-a.s., (115)

and

E[φ(Z(t, s; η)/Fs)] = E

[
n∑
1

φ(Z(t, s; a j ))1A j (Z(s, v; ξ))/Fs

]

=

n∑
1

Ps,t (φ)(a j )1A j (Z(s, v, ξ)) = Ps,t (φ)(η), (116)

where in (116) we used that φ(Z(t, s; a j )) are independent of Fs and 1A j (Z(s, v; ξ)) are Fs-
measurable.

Now we prove (110) for the case where η(ω) is given according to (109). (From the proof it
follows in particular that the r.h.s of (107) is F Z

s -measurable.) There is a sequence of simple
functions ηn(ω) of the form (113) such that, if for a given natural number M we denote
ηM

n := ηn ∧ M , then

lim
M→∞

lim
n→∞

E[‖ηM
n − η‖

2
] = 0. (117)

Similarly to the proof of Corollary 4.3 it follows that

lim
M→∞

lim
n→∞

E[‖Z(t, s; ηM
n )− Z(t, s; η)‖2] = 0. (118)

There is a subsequence (by abuse of notation we denote it like the original sequence), for which

lim
M→∞

lim
n→∞

Z(t, s; ηM
n )(ω) = Z(t, s; η)(ω) P-a.s. (119)

As φ is continuous and bounded, it follows from (116) that

E[φ(Z(t, s; η)/Fs)] = lim
M→∞

lim
n→∞

E[φ(Z(t, s, ηM
n )/Fs)]

= lim
M→∞

lim
n→∞

Ps,t (φ)(η
M
n ) = Ps,t (φ)(η). (120)

Given φ ∈ Cb(H) there exists a sequence of linear bounded functions φn converging up to a
set of Borel measure zero to φ (see e.g. [48] Chapter V.5). It follows that φn(Z(t, s; η)) →
φ(Z(t, s; η)) P-a.s., when n →∞. φn can be chosen so as to be uniformly bounded, so that by
Theorem 54.14 Chapter X [9]

lim
n→∞

E[φn(Z(t, s; η)/Fs)] = E[φ(Z(t, s; η)/Fs)]. �



S. Albeverio et al. / Stochastic Processes and their Applications 119 (2009) 835–863 853

Theorem 6.2. Let T > 0, f (s, u, z) = f (z), a(s, z) = a(z) and x ∈ H, then
(Z(t, 0; x)(ω))t∈[0,T ] is an homogeneous Markov process.

Proof. It is sufficient to prove that

Ps,t = P0,t−s for all 0 ≤ s ≤ t ≤ T . (121)

(121) together with the Markov property (106) in Theorem 6.1 implies that the
Chapman–Kolmogorov equation holds for the transition probabilities associated to Ps,t ,0 ≤ s ≤
t ≤ T and (Z(t, 0; x)(ω))t∈[0,T ] is a Markov process.

Let us remark that the compensated Lévy random measure q(dsdu)(ω) is translation invariant
in time. I.e. if t > 0 and q̃(dsdu)(ω) denotes the unique σ -finite measure on B(R+ × E \ {0})
which extends the pre-measure q̃(dsdu)(ω) on S(R+) × B(E \ {0}), such that q̃((s, τ ],Λ) :=
q((s + t, τ + t],Λ), for (s, τ ] × Λ ∈ S(R+) × B(E \ {0}), then q̃(B) and q(B) are equally
distributed for all B ∈ B(R+ × E \ {0}).

It follows that

Z(t + h, t; x)

= Sh x +
∫ t+h

t
St+h−sa(Z(s, t; x))ds +

∫ t+h

t

∫
E\{0}

St+h−s f (Z(s, t; x))q(dsdu)

= Sh x +
∫ h

0
Sh−sa(Z(t + s, t; x))ds +

∫ h

0

∫
E\{0}

Sh−s f (Z(t + s, t; x))q̃(dsdu)

= Sh x +
∫ h

0
Sh−sa(Z(t + s, t; x))ds +

∫ h

0

∫
E\{0}

Sh−s f (Z(t + s, t; x))q(dsdu).

(122)

By uniqueness (Theorem 4.1) it follows that Z(t + h, t; x)(ω) and Z(h, 0; x)(ω) have the same
distribution, so that (121) holds. �

7. Existence of solutions for random coefficients

Let LT
2 := LT

2 ([0, T ] × Ω , (Ft )t∈[0,T ]) be the space of processes (Z t (ω))t∈[0,T ] which are
jointly measurable and satisfy (i) and (ii) in Theorem 4.1.

Definition 7.1. We say that two processes Z i
t (ω) ∈ LT

2 , i = 1, 2, are dt ⊗ P-equivalent if they
coincide for all (t, ω) ∈ Γ , with Γ ∈ B([0, T ]) ⊗ FT , and dt ⊗ P(Γ c) = 0. We denote by LT

2
the set of dt ⊗ P-equivalence classes.

Remark 7.2. LT
2 , with norm

‖Z t‖LT
2
:=

(∫ T

0
E[‖Zs‖

2
]ds

)1/2

, (123)

is a Hilbert space.

In this section we assume that the coefficients are random and adapted to the filtration and
prove the existence of a solution in LT

2 . We assume here the growth and Lipschitz conditions of
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the coefficients independent of ω, but depending on the points in H. We assume in fact that we
are given

a : R+ × H × Ω → H, (124)

f : R+ × E \ {0} × H × Ω → H, (125)

such that
(A′) f (t, u, z, ω) is jointly measurable, s.th. for all t ∈ [0, T ], u ∈ E and z ∈ H fixed,
f (t, u, z, ·) is Ft -adapted,
(B′) a(t, z, ω) is jointly measurable, s.th. for all t ∈ [0, T ], and z ∈ H fixed, a(t, z, ·) is Ft -
adapted,
and for T > 0 fixed;
(C′) there is a constant L > 0, s.th.

T ‖a(t, z, ω)− a(t, z′, ω)‖2 +
∫

E\{0}
‖ f (t, u, z, ω)− f (t, u, z′, ω)‖2β(du)

≤ L‖z − z′‖2 for all t ∈ [0, T ], z, z′ ∈ H, and P-a.e. ω ∈ Ω , (126)

(D′) there is a constant K > 0 such that

T ‖a(t, z, ω)‖2 +
∫

E\{0}
‖ f (t, u, z, ω)‖2β(du) ≤ K (‖z‖2 + 1)

for all t ∈ [0, T ], z ∈ H, and P-a.e. ω ∈ Ω . (127)

Theorem 7.3. Let 0 < T < ∞ and suppose that (A′), (B′), (C′), (D′) are satisfied. Let x ∈ H.
Then there is a unique process (Z t )0≤t≤T ∈ LT

2 which satisfies

Z t (ω) = St x +
∫ t

0
St−sa(s, Zs(ω), ω)ds

+

∫ t

0

∫
E\{0}

St−s f (s, u, Zs(ω), ω)q(dsdu) ∀t ∈ [0, T ]. (128)

As a consequence of Theorem 7.3:

Corollary 7.4. Let 0 < T <∞ and suppose that (A′), (B′), (C′), (D′) are satisfied. Then there
is up to stochastic equivalence a unique process (Z t )0≤t≤T ∈ LT

2 which satisfies (3).

Remark 7.5. As a consequence of Proposition 2.5 we have that (Z t )0≤t≤T is càd-làg.

Before proving Theorem 7.3 we show some property of the following function

Kt (x, ξ)(ω) := St x +
∫ t

0
St−sa(s, ξs(ω), ω)ds

+

∫ t

0

∫
E\{0}

St−s f (s, u, ξs(ω), ω)q(dsdu) (129)

with x ∈ H and ξ := (ξs)s∈[0,T ] ∈ LT
2 .
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Lemma 7.6. For any T > 0 there is a constant C1
T such that∫ T

0
E[‖Kt (x, ξ)− Kt (x, η)‖

2
]dt ≤ C1

T

∫ T

0
E[‖ξt − ηt‖

2
]dt. (130)

Proof.∫ T

0
E[‖Kt (x, ξ)− Kt (x, ξ)‖

2
]dt

≤ 2e2αT T
∫ T

0
E

[∥∥∥∥∫ t

0
a(s, ξs)− a(s, ηs)ds

∥∥∥∥2
]

dt

+ 2e2αT
∫ T

0

∫ t

0

∫
E\{0}

E
[
‖ f (s, u, ξs)− f (s, u, ηs)‖

2dsβ(du)
]

dt

≤ 2LT e2αT
∫ T

0
E[‖ξs − ηs‖

2
]dt <∞, (131)

where we applied Lemma 2.4. This proves (130). �

Let

K (x, ξ) : H × LT
2 → LT

2 (132)

be such that its projection at time t ∈ [0, T ] is given by Kt (x, ξ).

Lemma 7.7. There exists a constant αT , depending on T , such that αT ∈ (0, 1) and

‖K (x, ξ)(ω)− K (x, η)(ω)‖LT
2
≤ αT ‖ξ − η‖LT

2
. (133)

Proof. Let Sξ := Kt (x, ξ). We shall prove that Sn is a contraction operator on LT
2 , for

sufficiently large values of n ∈ N. From (130) it follows by induction∫ T

0
E[‖Snξt − Snηt‖

2
]dt (134)

≤ C1
T

n
∫ T

0
dt
∫ T

0
ds1

∫ T

0
ds2 · · ·

∫ T

0
E[‖ξsn − ηsn‖

2
]dsn (135)

≤ C1
T

n T n

n!

∫ T

0
E[‖ξs − ηs‖

2
]ds. (136)

From this we get that, for sufficiently large values of n ∈ N, the operator Sn is a contraction
operator on LT

2 and has therefore a unique fixed point. Suppose that Sn0 is a contraction operator
on LT

2 . We get∫ T

0
dtE[‖Sξt − Sηt‖

2
] =

∫ T

0
dtE[‖Skn0+1ξt − Skn0+1ηt‖

2
]

≤
C1

T
kn0 T kn0

kn0!

∫ T

0
dtE[‖Sξt − Sηt‖

2
]

≤
C1

T
kn0+1

T kn0

kn0 + 1!

∫ T

0
dtE[‖ξt − ηt‖

2
] → 0 when k →∞. � (137)
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Proof of Theorem 7.3. From (133) it follows that K (x, ξ) is a contraction on LT
2 for every

x ∈ H fixed. We get by the contraction principle that there exists φ ∈ C(H,LT
2 ) such that

K (x, φ(x)) = φ(x) (138)

for every x ∈ H fixed. φ(x) := (Z x
t (ω))t∈[0,T ] is the solution of (128). �

8. Continuous dependence on initial data, drift and noise coefficients

Let T > 0. Let us assume that (A), (B), (C), (D) or (A′), (B′), (C′), (D′) are satisfied for
f0(t, u, z, ω) := f (t, u, z, ω) and a0(t, z, ω) := a(t, z, ω). Moreover, we assume that this holds
also for fn(t, u, z, ω), and an(t, z, ω), for any n ∈ N. Let (Z t )t∈[0,T ] be the solution of (128) (in
the sense of Theorem 3.3, or Theorem 4.1 or Theorem 7.3, depending on the hypothesis). We
denote by (Zn

t (ω))[0,T ] the unique solution of

Zn
t (ω) = St Zn

0 (ω)+

∫ t

0
St−san(s, Zn

s (ω), ω)ds

+

∫ t

0

∫
E\{0}

St−s fn(s, u, Zn
s (ω), ω)q(dsdu) (139)

(in the sense of Theorem 3.3, resp. Theorem 4.1, resp. Theorem 7.3). We prove the following
result.

Theorem 8.1. Assume that there is a constant K > 0 such that for all n ∈ N0, t ∈ [0, T ] and
z ∈ H

‖an(t, z, ω)‖2 +
∫

E\{0}
‖ fn(t, u, z, ω)‖2β(du) ≤ K (‖z‖2 + 1) P-a.s. (140)

Assume that there is a constant L such that for all n ∈ N0, t ∈ [0, T ] and z, z′ ∈ H:

T ‖an(t, z, ω)− an(t, z′, ω)‖2 +
∫

E\{0}
‖ fn(t, u, z, ω)− fn(t, u, z′, ω)‖2β(du)

≤ L‖z − z′‖2 P-a.s. (141)

Moreover, assume that

sup
n∈N0

E[‖(Zn
0 )‖

2
] <∞. (142)

lim
n→∞

E[‖Zn
0 − Z0‖

2
] = 0, (143)

(where Z0
0(ω) := Z0(ω)) and assume that for every t ∈ [0, T ] and z ∈ H fixed

lim
n→∞

{
T ‖an(t, z, ω)− a(t, z, ω)‖2 +

∫
E\{0}
‖ fn(t, u, z, ω)− f (t, u, z, ω)‖2β(du)

}
= 0 P-a.s. (144)

Then

lim
n→∞

sup
t∈[0,T ]

E[‖Zn
t − Z t‖

2
] = 0. (145)
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Proof. Let t ≤ T , then:

E[‖Zn
t − Z t‖

2
] ≤ 25e2αT

{
E[‖Zn

0 − Z0‖
2
]

+ 2L
∫ t

0
E[‖Zn

t − Z t‖
2
]ds + 2T

∫ t

0
E[‖an(s, Zs)− a(s, Zs)‖

2
]ds

}
+ 25e2αT

{
2
∫ t

0

∫
E\{0}

E[‖ fn(s, u, Zs)− f (s, u, Zs)‖
2
]β(du)ds

}
, (146)

where the latter inequality is proven by using Lemma 2.4 and inequality (141).
Let

γ n
t := T

∫ t

0
E[‖an(s, Zs)− a(s, Zs)‖

2
]ds (147)

δn
t :=

∫ t

0

∫
E\{0}

E[‖ fn(s, u, Zs)− f (s, u, Zs)‖
2
]β(du)ds. (148)

As

lim
n→∞
‖an(s, Zs, ω)− a(s, Zs, ω)‖

2

+

∫
E\{0}
‖ fn(s, u, Zs, ω)− f (s, u, Zs, ω)‖

2β(du) = 0, P-a.s. (149)

and (140) implies

‖an(t, Zs(ω), ω)‖
2
+

∫
E\{0}
‖ fn(t, u, Zs(ω), ω)‖

2β(du) ≤ K (‖Zs(ω)‖
2
+ 1) P-a.s.,

(150)

it follows

lim
n→∞

sup
t∈[0,T ]

δn
t + lim

n→∞
sup

t∈[0,T ]
γ n

t = 0. (151)

(145) follows then by using Gronwall’s inequality. �

9. Differential dependence of the solutions on the initial data

In this section we still assume that the coefficients a and f in (52) and resp. (57) satisfy the
conditions (A), (B), (C) and (D). We shall prove the differential dependence of the solution of
(56) with respect to the initial data.

Let

Kt (x, ξ) := St x +
∫ t

0
St−sa(s, ξs)ds +

∫ t

0

∫
E\{0}

St−s f (s, u, ξs)q(dsdu) (152)

with x ∈ H and ξ := (ξs)s∈[0,T ] ∈ LT
2 .

Lemma 9.1. For any T > 0 there is a constant C1
T , resp. C2

T , such that∫ T

0
E[‖Kt (x, ξ)− Kt (x, η)‖

2
]dt ≤ C1

T

∫ T

0
E[‖ξt − ηt‖

2
]dt (153)
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0
E[‖Kt (x, ξ)− Kt (y, ξ)‖

2
]dt ≤ C2

T ‖x − y‖2. (154)

Proof. Eq. (153) is a special case of (130). (154) is proven similarly to Corollary 4.3. �

Let

K (x, ξ) : H × LT
2 → LT

2 (155)

be such that its projection at time t ∈ [0, T ] is given by Kt (x, ξ).

Remark 9.2. From Theorem 4.1 we know that there is a unique solution (Z x
t (ω))t∈[0,T ] of (56).

From Theorem 7.3 we know that for every x ∈ H fixed

K (x, Z x
t (ω)) = Z x

t (ω) P-a.s. (156)

We shall now prove some facts about the map K .

Theorem 9.3. Let ξ ∈ LT
2 be fixed. The map

K (·, ξ) : H → LT
2 (157)

is Fréchét differentiable and its derivative ∂K
∂x along the direction h ∈ H is such that

∂Kt (x, ξ)

∂x
(h) = St h. (158)

The proof of Theorem 9.3 is easy and follows from the Frechét differentiability of St .

Remark 9.4. It follows in particular that ∂K
∂x is in L(H ;LT

2 ).

Let us denote by ∂
∂z the Fréchét derivative in H . Starting from here we assume that the

coefficients a and f in (52) and resp. (57) satisfy also the following conditions
(E) ∂

∂z f (t, u, z) exists for all t ∈ (0, T ] and u ∈ E \ {0} fixed,

(F) ∂
∂z a(t, z) exists for all t ∈ (0, T ] fixed.

Moreover we assume that∥∥∥∥∣∣∣∣ ∂∂z
a(s, z)

∣∣∣∣∥∥∥∥2

+

∫
E\{0}

∥∥∥∥∣∣∣∣ ∂∂z
f (s, z, u)

∣∣∣∣∥∥∥∥2β(du) <∞ uniformly in z ∈ H,

and s ∈ [0, T ], (159)

where with ||| · ||| we denote the operator norm of the Fréchét derivative in H .

Theorem 9.5. Let x ∈ H be fixed.

K (x, ·) : LT
2 → LT

2 (160)

is Gateaux differentiable and its derivative ∂K
∂ξ

along the direction ξ ∈ LT
2 satisfies

∂Kt (x, ξ)

∂ξ
(ηt ) =

∫ t

0
St−s

∂

∂z
a(s, ξs)(ηs)ds +

∫ t

0

∫
E\{0}

St−s
∂

∂z
f (s, u, ξs)(ηs)q(dsdu)

(161)
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(with the notation ∂
∂z a(s, ξs(ω)) (resp. ∂

∂z f (s, u, ξs(ω))) for ∂
∂z a(s, z) (resp. ∂

∂z f (s, u, z)), at
z = ξs(ω)).

Proof. For any fixed x ∈ H , and ξ , η ∈ LT
2 we consider the map r → K (x, ξ + rη) from R to

LT
2 . We have

Kt (x, ξ + rη) = St x +
∫ t

0
St−sa(s, ξs + rηs)ds

+

∫ t

0

∫
E\{0}

St−s f (s, u, ξs + rηs)q(dsdu). (162)

It follows

1
r

Kt (x, ξ + rη)− K (x, ξ) =
∫ t

0
St−s

(a(s, ξs + rηs)− a(s, ξs))

r
ds

+

∫ t

0

∫
E\{0}

St−s
( f (s, u, ξs + rηs)− f (s, u, ξs))

r
q(dsdu). (163)

Let us fix z ∈ H and define for any r 6= 0:

ar (t, z, y) :=
a(t, z + r y)− a(t, z)

r
(164)

fr (t, u, z, y) :=
f (t, u, z + r y)− f (t, u, z)

r
, (165)

where t ∈ [0, T ], y ∈ H . ar (t, y, ξs(ω)) and fr (t, u, y, ξs(ω)) satisfy the conditions (140), (141)
with r instead of n (and y instead of z). Moreover, ∂

∂z a(s, ξs(ω))y and ∂
∂z f (s, u, ξs(ω))y satisfy

also (140) and (141), due to condition (159).
Analogous to (144), we have (by using also the Lipschitz conditions) that

lim
r→0

{
T

∥∥∥∥ar (t, y, ξt (ω))−
∂

∂z
a(t, ξt (ω))y

∥∥∥∥2

+

∫
E\{0}

∥∥∥∥ fr (t, u, y, ξt (ω))−
∂

∂z
f (t, u, ξt (ω))y

∥∥∥∥2

β(du)

}
= 0 P-a.s. (166)

Defining similarly as for (147) and (148)

γ r
t := T

∫ t

0
E

[∥∥∥∥ar (s, ηs, ξs, )−
∂

∂z
a(s, ξs)ηs

∥∥∥∥2
]

ds (167)

δr
t :=

∫ t

0

∫
E\{0}

E

[∥∥∥∥ fr (s, u, ηs, ξs)−
∂

∂z
f (s, u, ξs)ηs

∥∥∥∥2
]
β(du)ds, (168)

and operating in a similar way as in the proof of Theorem 8.1 we obtain the desired result. �

We assume also:
(G) ∂

∂z a(s, z) is continuous in zds-a.s.

(H) ∂
∂z f (s, u, z) is continuous ds-a.s. in the norm ‖ · ‖L2(dβ) of L2(dβ).
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Theorem 9.6. For any fixed η ∈ LT
2 the function

δ

δξ
K (x, ξ)η : H × LT

2 → LT
2 (169)

is continuous.

Proof of Theorem 9.6. Let (xn, ξn) converge to (x, ξ) in H × LT
2 . For any n ∈ N we have that

∂

∂ξ
K (xn, ξn)ηt −

∂

∂ξ
K (x, ξ)ηt =

∫ t

0
St−s

(
∂

∂z
a(s, ξn

s )ηs −
∂

∂z
a(s, ξs)ηs

)
+

∫ t

0

∫
E\{0}

St−s

(
∂

∂z
f (s, u, ξn

s )ηs −
∂

∂z
f (s, u, ξs)ηs

)
q(dsdx). (170)

From Lemma 2.4 it follows that∫ T

0
E

[∥∥∥∥ ∂∂ξ K (xn, ξn)ηt −
∂

∂ξ
K (x, ξ)ηt

∥∥∥∥2
]

dt

≤ 2T e2αT
∫ T

0
E

[∥∥∥∥ ∂∂z
a(s, ξn

s )ηs −
∂

∂z
a(s, ξs)ηs

∥∥∥∥2
]

ds

+ 2T e2αT
∫ T

0

∫
E\{0}

E

[∥∥∥∥ ∂∂z
f (s, u, ξn

s )ηs −
∂

∂z
f (s, u, ξs)ηs

∥∥∥∥2
]

dsβ(du). (171)

ξn
→ ξ in LT

2 when n → ∞ implies that there is a subsequence {nk}k∈N such that ξnk
s →

ξsds ⊗ dP-a.s. in [0, T ] × Ω , when k →∞. Hence we get∥∥∥∥∣∣∣∣ ∂∂z
a(s, ξnk

s (ω))ηs −
∂

∂z
a(s, ξs(ω))ηs

∣∣∣∣∥∥∥∥→ 0 ds ⊗ dP-a.e.

in [0, T ] × Ω when k →∞ (172)

and ∫
E\{0}

∥∥∥∥∣∣∣∣ ∂∂z
f (s, u, ξn

s (ω))ηs −
∂

∂z
f (s, u, ξs(ω))ηs

∣∣∣∣∥∥∥∥2

β(du)→ 0 a.e. ds ⊗ dP

in [0, T ] × Ω . (173)

We get by the Lebesgue dominated convergence theorem that ∂
∂ξ

K (x, ξ)η is continuous. �

Corollary 9.7. Let us assume that all the hypotheses of Theorem 9.6 hold. Let (Z x
t )t∈[0,T ] denote

the solution of (3) with initial condition

Z0(ω) = x P-a.s.

Then ( ∂
∂x Z x

t )t∈[0,T ] is a solution of

∂

∂x
Z x

t =

∫ t

0

(
St−s

∂

∂z
a(s, Z x

s )
∂

∂x
Z x

s

)
ds

+

∫ t

0

∫
E\{0}

(
St−s

∂

∂z
f (s, u, Z x

s )
∂

∂x
Z x

s

)
q(dsdx). (174)
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Proof. The statement of Corollary 9.7 is a consequence of the Theorems 9.3, 9.5 and 9.6,
Remark 9.4 and Proposition C.0.3. in Appendix C of [12] (cf. also Appendix C of [16], where
the Gaussian case is considered). �
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Appendix

Let g(s, u, ω) ∈ MT,2
β (E/H). From Theorem 3.13 and Proposition 3.15 in [37] it follows that

(Mt )0≤t≤T defined in (4) is an Ft -square integrable martingale and is càd-làg.

Theorem A.1. Let the state space H be a separable Hilbert space. The corresponding Meyer
process to (Mt )0≤t≤T is the process (〈M〉t )0≤t≤T , with

〈M〉t :=
∫ t

0

∫
E\{0}
‖g‖2dsβ(du). (175)

(See e.g. [40], or [41] page 121, for the definition of Meyer process.)

Proof. (〈M〉t )0≤t≤T is an increasing and continuous process and hence also a process with
paths of bounded variation. Moreover 〈M〉0 = 0P-a.s.. Hence it is sufficient to show that
(‖Mt‖

2
− 〈M〉t )0≤t≤T is a martingale.

This follows by proving that for all 0 < s < t ≤ T the following holds:

E[(‖Mt‖
2
− 〈M〉t )1As ] = E[(‖Ms‖

2
− 〈M〉s)1As ] ∀As ∈ Fs . (176)

Proof of (176):

E[‖Mt‖
21As ] = E[‖Mt − Ms + Ms‖

21As ] = E[‖Ms‖
21As ] + E[‖Mt − Ms‖

21As ]

= E[‖Ms‖
21As ] + E

[∥∥∥∥∫ t

s

∫
E\{0}

g1As q(ds′du)

∥∥∥∥2
]
, (177)

where the second equality follows from the fact that (Mt )t∈[0,T ] is a martingale, while the last
equality follows from Proposition 3.3 of [38]. Due to the isometry (12) we get

E[‖Mt‖
21As ] = E[‖Ms‖

21As ] +

∫ t

s

∫
E\{0}

E[‖g‖21As ds′]β(du)

= E[‖Ms‖
21As ] + E[(〈M〉t − 〈M〉s)1As ], (178)

which implies (176). �
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[9] Z. Brzeźniak, Stochastic partial differential equations in M-type 2 Banach spaces, Potential Anal. 4 (1) (1995)
1–45.
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[38] V. Mandrekar, B. Rüdiger, Lévy noises and stochastic integrals on banach spaces, in: Stochastic Partial Differential
Equations and Applications—VII, in: Lect. Notes Pure Appl. Math., vol. 245, Chapman and Hall/CRC, Boca Raton,
FL, 2006, pp. 193–213.

[39] C. Marinelli, Local well-posedness of Musiela’s SPDE with Lévy noise. 2007. arxiv:0704.2380v1 [math.PR.].
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