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Abstract

We investigate the relation between the set-theoretical description of coinduction
based on Tarski Fixpoint Theorem, and the categorical description of coinduction
based on coalgebras. In particular, we introduce set-theoretic generalizations of the
coinduction proof principle, in the spirit of Milner’s bisimulation “up-to”, and we
discuss categorical counterparts for these. Moreover, we investigate the connection
between these and the equivalences induced by T -coiterative functions. These are
morphisms into final coalgebras, satisfying the T -coiteration scheme, which is a
generalization of the corecursion scheme. We show how to describe coalgebraic F -
bisimulations as set-theoretical ones. A list of examples of set-theoretic coinductions
which appear not to be easily amenable to coalgebraic terms are discussed.

Introduction

Coinductive definitions and coinduction proof principles are a natural tool for
defining and reasoning on infinite and circular objects, such as streams, exact
reals, processes. See e.g. [Mil83,Coq94,HL95,BM96,Fio96,Len96,Pit96,Rut96]
[HJ98,HLMP98,Len98] for various approaches to infinite objects based on
coinduction. Many of such objects and concepts arise in connection with
a maximal fixed point construction of some kind. One of the advantages of-
fered by the coinductive approach with respect to others based on domain
theory or metric semantics, is that it allows for a simple, operationally-based,
implementation-independent treatment of infinite objects, without requiring
any heavy mathematical overhead. A purely set-theoretical approach, how-
ever, often appears quite ad-hoc, just think of how one would prove set-
theoretically the existence of a coiterative function into streams.
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In recent years, a categorical explanation of coinduction has appeared,
based on the notion of coalgebra, which we will call coalgebraic coinduction
([Acz88,AM89,Acz93,RT93,RT94,Tur96,TP97,Len98]). Coalgebraic coinduc-
tion has proved to be extremely fertile ([HL95,Jac96,Len96,Rut96,Jac97,RV97]
[HLMP98,Mos?,Len99]). It has spurred the development of Final Semantics, a
methodology for understanding the correspondence between syntax and oper-
ational semantics of programming languages. Whenever coalgebraic coinduc-
tion has been successful, it has overcome many of the defects of set-theoretic
coinduction. It explains coinductive proof techniques uniformly and sugges-
tively, it allows to treat simultaneously definitions by corecursion and to phrase
proofs by coinduction in a more principled and uniform way.

We feel, however, that there is still a wide range of contexts where set-
theoretic coinductive tools have not yet been explained coalgebraically (see
Section 4.2 below). Moreover, very few attempts have been made to formulate
precisely the correspondence between set-theoretic and coalgebraic coinduc-
tion, and the scope of the latter.

In this paper, which expands ideas in [Len98], we offer some contributions
along these directions of research, so far little explored. First (possibly new),
we introduce various generalizations of the classical set-theoretical coinduc-
tion principle based on Tarski Fixpoint Theorem, which go in the direction of
Milner’s bisimulation “up-to” principle ([Mil83]). We call these proof princi-
ples coinduction principles “up-to”. Then we try to develop categorical coun-
terparts of these set-theoretic coinduction principles “up-to”. In particular,
we present a categorical version of the set-theoretic principle “up-to-T”, for
T suitable operator on relations. We call the categorical version Coalgebraic
Coinduction “up-to-T”, for T suitable monad. This is based on the new notion
of F -bisimulation “up-to-T . The Coalgebraic Coinduction “up-to-T” is put to
use in order to get a proof principle for reasoning on equivalences induced by
T -coiterative morphisms. I.e. morphisms into final coalgebras defined by the
T -coiteration scheme. This generalizes the corecursion scheme (see [Geu92]),
which is dual to the (primitive) recursion scheme. The T -coiteration scheme al-
lows to capture many interesting functions into final coalgebras, which escape
the pure coiteration scheme (see Section 3 for an example). This illustrates
the advantages that a coalgebraic description offers w.r.t. a set-theoretical
one, as far as uniformity and generality.

The correspondence between Tarski’s coinduction principle and the cate-
gorical principle based on F -bisimulations can be formalized precisely. Namely,
for all functors which preserve weak pullbacks, one can derive set-theoretic
coinduction principles from categorical coinduction principles ([Rut98]). We
show, moreover, that the translation from coalgebraic to set-theoretic coinduc-
tion is compositional. Going the other way round, i.e. providing categorical
principles from set-theoretic ones, seems to be vey problematic. We provide
some critical situations which seem to indicate limitations of the coalgebraic
approach.
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The paper is organized as follows. In Section 1, we recall the classical
coinduction principle deriving from Tarski’s characterization of greatest fixed
points of monotone operators, and we introduce a number of (possibly new)
set-theoretic coinduction principles “up-to”. In Section 2, we present the cat-
egorical framework based on coalgebras for describing coinduction and coit-
eration. In Section 3, we introduce the T -coiteration scheme, and we present
a categorical counterpart for the set-theoretic coinduction principle “up-to-
T” introduced in Section 1. Moreover, we derive a sound proof principle for
establishing equivalences induced by T -coiterative morphisms. In Section 4,
we study the relations between the set-theoretic coinduction principles of Sec-
tion 1, and the categorical coinduction principles based on F -bisimulations of
Sections 2 and 3.

The author is grateful to Peter Aczel, Furio Honsell, Jan Rutten, and
Daniele Turi for useful discussions on some of the issues in this paper.

1 Set-theoretic Coinduction

In this section, we list a number of set-theoretic coinduction principles, ranging
from the basic coinduction principle, originally used by Milner in [Mil83] for
reasoning on CCS processes, to the principles “up-to” ([San95,Len98]), which
generalize the idea behind the notion of Milner’s bisimulation “up-to”. All
these coinduction principles arise naturally from suitable characterizations of
maximal fixed points of monotone operators. For simplicitly, we discuss oper-
ators on binary relations, but many results apply more generally to operators
on complete lattices.

Throughout this section, Φ : P(X × Y ) → P(X × Y ) will denote a mono-
tone operator over the complete lattice of set-theoretic binary relations on the
cartesian product of two sets X and Y , and ≈Φ will denote the greatest fixed
point of Φ.

Theorem 1.1 (Coinduction Principle (Tarski)) The following principle
is sound:

x R y R⊆ Φ(R)
x ≈Φ y .

The Coinduction Principle is also complete in the sense that

x ≈Φ y =⇒ ∃ R . (x R y ∧ R⊆ Φ(R)) .

As usual, we call Φ-bisimulation a relation R which satisfies the second
premise of the principle of Coinduction.

Coinduction principles are the more useful, the easier is to show the in-
clusion in the premise. It is therefore natural to look for alternative charac-
terizations of maximal fixed points, possibly exploiting special properties of
the operator Φ, which allow to relax the condition R⊆ Φ(R). A simple and
natural example is given by the following theorem:
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Theorem 1.2 (Coinduction “up-to-∪”) Let R ∈ P(X × Y ) be such that
R ⊆≈Φ. Then
i)

≈Φ=
⋃

{R|R⊆ Φ(R ∪R)} .
ii) The following principle is sound and complete:

x R y R⊆ Φ(R ∪R)
x ≈Φ y .

Interesting instances of the above principle arise when R is taken to be
≈Φ, or the identity relation, if ≈Φ is reflexive.

Now we give two possible generalizations of the coinduction principle, in
the spirit of Milner’s bisimulation “up-to”, which we call principle of Coin-
duction “up-to-T” and principle of Coinduction “up-to-(≈, •)”. The first gen-
eralizes also the principle of Coinduction “up-to-∪”.
Theorem 1.3 (Coinduction “up-to-T”) Let T : P(X × Y ) → P(X × Y ).
If T satisfies the following properties

1) T is a monotone operator on the complete lattice (P(X × Y ),⊆),

2) for all R∈ P(X × Y ), R⊆ T (R),

3) for all R∈ P(X × Y ), (T ◦ Φ)(R) ⊆ (Φ ◦ T )(R),

then
i)

≈Φ=
⋃

{R|R⊆ (Φ ◦ T )(R)} .
ii) The following principle is sound and complete:

x R y R⊆ (Φ ◦ T )(R)
x ≈Φ y

.

Proof. i) If R⊆ Φ(R), then, since T is a closure operator, R⊆ T (R). Using
the monotonicity of Φ, R⊆ Φ(R) ⊆ Φ(T (R)).
Vice versa, if R⊆ Φ◦T (R), we have to show that ∃ S such that R⊆S ∧ S⊆
Φ(S). Consider the following inductively defined sequence {Rn}n≥0:

R0=R
Rn+1= T (Rn) .

We prove by induction on n that Rn⊆ Φ(Rn+1):
For n = 0 the thesis is immediate, since R⊆ Φ ◦ T (R) by hypothesis.
Let n > 0:
Rn= T (Rn−1)
⊆ T ◦ Φ(Rn) , by induction hypothesis and monotonicity of T ,
= Φ ◦ T (Rn) , by hypothesis 3,
= Φ(Rn+1) , by definition of the sequence.
Hence, taking S= ⋃

n Rn, we have R⊆S and S⊆ Φ(S).
ii) Immediate consequence of item i) of this theorem. ✷
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If we take both X, Y in the above principle to be the domain of CCS
processes, Φ to be the operator corresponding to strong bisimulation, and we
take T to be defined by T (R) =≈Φ ◦ R ◦ ≈Φ, we have that a relation R such
that R⊆ (Φ ◦ T )(R) is a bisimulation “up-to” in the sense of Milner.

If we drop hypothesis 2 in Theorem 1.3, then we can prove only sound-
ness, but not completeness of the Coinduction Principle “up-to-T”. A sim-
ple counterexample is the following. If the operator T is the constant op-
erator equal to the least fixed point of Φ, ∼Φ, and moreover ∼Φ �=≈Φ, then
≈Φ �=

⋃{R | R ⊆ (Φ ◦ T )(R)}.
The Coinduction Principle “up-to-T” can be viewed as a variant of the

principle introduced by Sangiorgi in [San95] for labelled transition systems.
In particular, the principle of [San95] is obtained by replacing hypotheses 1,2,3
in Theorem 1.3 above by the hypothesis of respectfulness of T 2 . Sangiorgi’s
principle is complete when considered over all respectful operators, but, for
each fixed T , it is only sound. In particular, the respectfulness condition is
already implied by the sole hypotheses 1 and 3 of Theorem 1.3.

The second generalization of the of the Coinduction Principle is based on
the following theorem.

Theorem 1.4 (Coinduction “up-to-(≈, •)”) Let Φ : P(X×X) → P(X×
X) be a monotone operator, and let • : P(X ×X)×P(X ×X) → P(X ×X)
be an associative operation. If

1) for all R,R′,R1,R′
1,

R⊆ Φ(R1) ∧ R′⊆ Φ(R′
1) =⇒ R • R′⊆ Φ(R1 • R′

1),

2) ≈Φ⊆≈Φ • ≈Φ,

then
i)

≈Φ=
⋃

{R|R⊆ Φ(≈Φ • R • ≈Φ)} .
ii) The following principle is sound and complete:

x R y R⊆ Φ(≈Φ • R • ≈Φ)
x ≈Φ y .

Proof. i) It is sufficient to prove that

a) R⊆ Φ(≈Φ • R • ≈Φ) =⇒ ∃ S . R⊆S⊆ Φ(S).
b) R⊆ Φ(R) =⇒ ∃ S . R⊆S⊆ Φ(≈Φ • R • ≈Φ).

Proof of item a): We prove that Φ(≈Φ • R • ≈Φ) ⊆ Φ(Φ(≈Φ • R • ≈Φ)).
Then we can take S= Φ(≈Φ • R • ≈Φ). ¿From R⊆ Φ(≈Φ • R • ≈Φ) and
≈Φ⊆ Φ(≈Φ), by item 1, ≈Φ • R • ≈Φ⊆ Φ(≈Φ • ≈Φ • R • ≈Φ • ≈Φ). From
≈Φ⊆ Φ(≈Φ), using item 1, ≈Φ • ≈Φ⊆≈Φ. Hence, by item 2, ≈Φ • ≈Φ=≈Φ

2 T : X → X is respectful if, for all x, y ∈ X , (x ≤ y ∧ x ≤ Φ(y)) ⇒ (T (x) ≤
T (y) ∧ T (x) ≤ Φ(T (y))).
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and ≈Φ • R • ≈Φ⊆ Φ(≈Φ • R • ≈Φ). Finally, by monotonicity of Φ,
Φ(≈Φ • R • ≈Φ) ⊆ Φ(Φ(≈Φ • R • ≈Φ)).
Proof of item b): Since, by the proof of item a), ≈Φ • ≈Φ=≈Φ, then ≈Φ⊆
Φ(≈Φ) =⇒ ≈Φ⊆ Φ(≈Φ • ≈Φ • ≈Φ). Hence take S=≈Φ.
ii) Immediate consequence of item i of this theorem.

✷

Milner’s bisimulation “up-to” principle is recovered by simply taking as
X the domain of CCS processes, as Φ the operator corresponding to strong
bisimulation, and as • relational composition.

Hypothesis 1 in Theorem 1.4 can be viewed as a generalized transitivity.
In fact, if • is relational composition, then hypothesis 1 implies transitivity of
the relation ≈Φ.

If • is relational composition, and ≈Φ is reflexive, then hypothesis 2 of
Theorem 1.4 is satisfied.

Dropping hypothesis 2 in Theorem 1.4, and assuming the monotonicity of
• w.r.t. ⊆, i.e., for all R,R1,R′,R′

1, R⊆R1 ∧ R′⊆R′
1 =⇒ R • R′⊆R1 • R′

1,
we get soundness of the principle of Coinduction “up-to-(≈, •)”, but we loose
completeness.

1.1 Coiterative and Corecursive Functions

We could give a purely set-theoretic treatment of coiterative and corecursive
functions ([Geu92,Gim94]). But we feel that in this respect the coalgebraic
setting is the most natural. We only point out that indeed it would be possible
to justify definitions by coiteration and corecursion solely by means of maxiaml
fixed points. In fact, the graphs of coiterative functions can be naturally
defined as maximal fixed points, since they are bisimulations after all. This
approach would also highlight the connections between corecursive morphisms
and the Coinduction “up-to-∪ ≈” (see Section 4.2 for more details).

2 Coalgebraic Description of Coinduction and Coitera-
tive Morphisms

In this section, we present the categorical description of coinduction based on
the notion of coalgebra ([Acz88,AM89,RT93,RT94,Rut96,Tur96,TP97,Len98]).
In this setting, the categorical counterparts of set-theoretic bisimulations are
F -bisimulations, i.e. spans of coalgebra morphisms ([TP97]). One of the ad-
vantages of a categorical description is that we can deal uniformly with coin-
ductively defined objects and coiterative morphisms. In fact, the latter arise
naturally in a categorical context.

As we will see formally in Section 4, the coinduction principle based on
F -bisimulations presented in this section is the categorical counterpart of the
Coinduction Principle 1.1.
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We start by introducing the category of F -coalgebras, for F endofunctor
on a category C. F -coalgebras, i.e. pairs (X,αX), where αX : X → FX is an
arrow in C, can be endowed with the structure of a category by introducing
the notion of F -coalgebra morphism as follows:

Definition 2.1 Let F : C → C. Then f : (X,αX) → (Y, αY ) is an F -coalgebra
morphism if f : X → Y is an arrow of the category C such that the following
diagram commutes

X
f ��

αX

��

Y

αY

��
F (X)

F (f)
��F (Y )

Notice that, in set-theoretic categories, graphs of F -coalgebra morphisms
are F -bisimulations.

Unique morphisms into final coalgebras are called coiterative morphisms:

Definition 2.2 [Coiteration Scheme] Let F : C → C, let (X,αX) be an F -
coalgebra, and let (νF, ανF ) be a final F -coalgebra. The coiterative morphism
is the unique F -coalgebra morphism f : (X,αX) → (νF, ανF ).

Before introducing the notion of F -bisimulation, we need to introduce the
notion of span.

Definition 2.3 Let F be an endofunctor on a category C. A span (R, r1, r2)
on objects X, Y consists of an object R in C, and two ordered arrows, r1 :
R → X and r2 : R → Y .

Spans on objects X and Y can be ordered as follows:

(R, r1, r2) ≤ (R′, r′1, r
′
2) ⇐⇒ ∃f : R → R′. ∀i = 1, 2. ri = r

′
i ◦ f .

The notion of binary relation is expressed, in a general categorical setting,
as an equivalence class of monic spans (see [FS90] for more details). As pointed
out in [TP97], F -bisimulations on F -coalgebras can be simply taken to be
spans with a suitable structure of F -coalgebra:

Definition 2.4 [F -bisimulation, [TP97]] Let F be an endofunctor on the cat-
egory C. A span (R, r1, r2) on objects X, Y is an F -bisimulation on the F -
coalgebras (X,αX) and (Y, αY ), if there exists an arrow of C, γ : R → F (R),
such that ((R, γ), r1, r2) is a coalgebra span, i.e.

X

αX

��

Rr1�� r2 ��

γ

��

Y

αY

��
F (X) F (R)

F (r1)
��

F (r2)
��F (Y )

When the two F -coalgebras (X,αX) and (Y, αY ) in the definition above
coincide, we will simply say that the span is an F -bisimulation on the F -
coalgebra (X,αX).
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The following theorem generalizes the fact that, in set-theoretic categories,
equivalences induced by coiterative morphisms can be characterized coinduc-
tively as the greatest F -bisimulation.

Theorem 2.5 ([TP97]) Suppose that F : C → C has a final F -coalgebra
(νF, ανF ). Let (X,αX) be an F -coalgebra, and let M : (X,αX) → (νF, ανF )
be the coiterative morphism. If F preserves weak pullbacks, then
i) for all F -bisimulations (R, r1, r2) on (X,αX), M; r1 = M; r2;
ii) the kernel pair of M is an F -bisimulation on (X,αX).

2.1 Coalgebraic Coinduction in Set-theoretic Categories

Since in this paper we are interested in giving explicit coinduction principles,
and in formalizing the connections between set-theoretic and coalgebraic coin-
duction, we will focus in particular on the “concrete” setting of set-theoretic
categories. These are categories whose objects are sets or classes of a possibly
non-wellfounded universe of sets. In particular, the set-theoretic categories
which we will consider are the following:

Definition 2.6 • Let Set(U) (Set∗(U)) be the category whose objects are
the (non-)wellfounded sets belonging to a Universe of ZF−

0 (FCU).

• Let Class(U) (Class∗(U)) be the category whose objects are the classes of
(non-)wellfounded sets belonging to a Universe of ZF−

0 (FCU).

• Let HCκ(U) ((HCκ)
∗(U)) be the category whose objects are the well-

founded (non wellfounded) sets whose hereditary cardinal is less than κ.

• Let Card (CARD) be the category whose objects are the cardinals (includ-
ing Ord).

In all the categories above arrows between objects A and B are functions with
domain A and codomain B, tagged with A and B.

Throughout this paper, we will denote with CS one of the set-theoretic
categories defined above.

One can easily check that, in set-theoretic categories, the general notion of
F -bisimulation of Definition 2.4 above reduces to the classical Definition 2.7
below. These two definitions are equivalent, in set-theoretic categories, in the
sense that they characterize the same equivalence (see Theorem 2.8 below),
although in effect they give rise to different coinduction principles.

Definition 2.7 [AM89] Let F : CS → CS . An F -bisimulation on the F -
coalgebras (X,αX) and (Y, αY ) is a set-theoretic relation R ⊆ X × Y such
that there exists an arrow of C, γ :R→ F (R), making the following diagram
commute:

X

αX

��

Rπ1�� π2 ��

γ

��

Y

αY

��
F (X) F (R)

F (π1)
��

F (π2)
��F (Y )
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Notice that the following theorem, which specializes Theorem 2.5 to set-
theoretic categories, holds for both notions of F -bisimulation (either that of
Definition 2.4 or that of Definition 2.7). The notation “xRy”, for a bisim-
ulation (R, r1, r2) on (X,αX) and (Y, αY ) as in Definition 2.4, stands for
∃u ∈ R. < r1, r2 > (u) = (x, y).

Theorem 2.8 (Coalgebraic Coinduction) Suppose that F : CS → CS has
final F -coalgebra (νF, ανF ). Let (X,αX) be an F -coalgebra. If F preserves
weak pullbacks, then the following principle is sound and complete

x R y R is an F -bisimulation on (X,αX)
x ∼F

(X,αX ) y
,

where ∼F
(X,αX ) is the equivalence induced by the coiterative morphism M :

(X,αX) → (νF, ανF ).

3 Corecursion and T -coiteration

The coiteration scheme introduced in Definition 2 is not powerful enough to
capture many interesting functions into final coalgebras. E.g., let h0 : SN →
SN be the function which, given a stream of natural numbers s, yields the
stream obtained by replacing the first element of s by the constant 0. One can
easily check that the function h0 cannot be defined using the pure coiteration
scheme. More general forms of coiteration schemes are therefore required to
overcome this limitation. A typical example is the corecursion scheme (see
[Geu92]).

In this section, we study, from a categorical standpoint, a significant class
of coiteration schemes. In particular, we introduce a suitable categorical gen-
eralization of the coiteration scheme, which we call T -coiteration scheme. In
Section 3.1, we introduce the principle of Coalgebraic Coinduction “up-to-T”.
In Section 3.2, we will use it to derive a sound proof principle for establishing
equivalences induced by T -coiterative morphisms. As we will see in Section 4,
the principle of Coalgebraic Coinduction “up-to-T” can be viewed as the cat-
egorical counterpart of the set-theoretic Coinduction “up-to-T” of Section 1.

Definition 3.1 [T -coiteration Scheme] Let F : C → C be such that F has final
coalgebra (νF, ανF ), and let < T, η, µ > be a monad over C. Then, for any
F -coalgebra (TX, α), we can define the T -coiterative morphism h : X → νF
as f ◦ ηX , where f is the unique F -coalgebra morphism from (TX, α) to the
final coalgebra (νF, ανF ), i.e.

X
ηX ��TX

f ��

α

��

νF
ανF

��
FTX Ff

��F (νF )

The T -coiteration scheme subsumes the important case of the corecursion
scheme ([Geu92]). This can be recovered in categories with coproducts, by
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considering the following functor (which induces a monad in a standard way):

Definition 3.2 [Corecursion Monad] Let C be a category with coproducts,
and let F : C → C have final coalgebra (νF, ανF ). Let T+

F : C → C be the
functor defined by

T+
F X = X + νF .

The definition of T+
F on arrow is canonical.

Then, by taking T in Definition 3.1 to be the monad induced by T+
F , and

by considering F -coalgebras of the shape (X + νF, [α1, F (in2)]), where in2 is
the canonical sum injection, we recover exactly the corecursion scheme. The
essence of the corecursion scheme is that we can make a choice between the two
possibilities offered by the two branches of the disjoint sum in the F -coalgebra.
For instance, the function h0 : SN → SN mentioned at the beginning of this
section is corecursive.

3.1 Coalgebraic Coinduction “up-to-T”

We present now the categorical version of the set-theoretical principle of Coin-
duction “up-to-T”. We call this principle Coalgebraic Coinduction “up-to-T”.
We will show that the Coalgebraic Coinduction “up-to-T” is related to the
T -coiteration scheme introduced above, in the sense that it can be used to
derive a proof principle for establishing equivalences induced by T -coiterative
morphisms.

We start by introducing the notion of F -bisimulation “up-to-T”:

Definition 3.3 [F -bisimulation “up-to-T”] Let F : C → C, let < T, η, µ >
be a monad on C, and let (TX, α) and (TY, β) be F -coalgebras. An F -
bisimulation “up-to-T” on the the F -coalgebras (TX, α) and (TY, β) is a span
(R, r1, r2) on TX and TY , such that there exists an arrow of C, γ :R→ FT (R),
making the following diagram commute:

TX

α

��

Rr1�� r2 ��

γ

��

TY

β

��
FTX FT (R)

Fr�
1

��
Fr�

2

��FTY

where r�
1, r

�
2 are the unique extensions of r1, r2 given by the universality prop-

erty of η in the adjunction between the Eilenberg-Moore category of T -algebras
and the category C, i.e. ηR; r�

i = ri.

The following definition will be useful in Theorem 3.5 below.

Definition 3.4 Let F : C → C be a functor, and let < T, η, µ > be a monad
over C. We say that T distributes over F w.r.t. η if there exists a natural
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transformation λ : TF
·→ FT for which the following diagram commutes

F
ηF

����
��

��
�� Fη

���
��

��
��

�

TF λ
��FT

The relation between F -bisimulations “up-to-T” and F -bisimulations is
illustrated by the following theorem:

Theorem 3.5 Let C be a category closed under ω-colimits, let F : C → C, let
< T, η, µ > be a monad over C. If
1) F, T preserve ω-colimits,

2) T distributes over F w.r.t. η,

3) for all ((R, γ), r1, r2) F -bisimulation “up-to-T” on F -coalgebras (TX, α)
and (TY, β), also ((T (R), Tγ;λ), r�

1, r
�
2) is an F -bisimulation “up-to-T” on

F -coalgebras (TX, α) and (TY, β),

Then
i) If ((R, γ), r1, r2) is an F -bisimulation on (TX, α) and (TY, β), then ((R
, γ;F (ηR)), r1, r2) is an F -bisimulation “up-to-T” on (TX, α) and (TY, β).
ii) For all (R, r1, r2) F -bisimulation “up-to-T” on (TX, α) and (TY, β), there

exists (R̃, r̃1, r̃2) F -bisimulation on (TX, α) and (TY, β) such that R≤ R̃.

Proof. The proof of item i) is immediate. In order to prove item ii), let

R̂ be the ω-colimit of the ω-diagram {T n(R)
T nηR→ T n+1(R)}n≥0, then we

take as R̃ the ω-colimit T (R̂) of the diagram {T n(R)
T nηR→ T n+1(R)}n≥1.

Let r�n
1 , for n ≥ 1 be defined by r�1

1 = r�
1, r

�n+1
1 = (r�n

1 )�. Notice that TX
with {r�n

1 : T n(R) → TX}n≥1 is a cocone for the latter diagram, hence we

take as r̃1 the unique morphism from the colimit T (R̂) to the cocone TX.

Moreover, since F preserves colimits, FT (R̂) is the colimit of the diagram

{FT n(R)
T nηR→ FT n+1(R)}n≥1, FTX with {Fr�n

1 : FT n(R) → FTX}n≥1 is

a cocone for the same diagram, and F r̃1 : FT (R̂) → FTX is the morphism

given by the universal property of FT (R̂). Using the naturality of η and the

distributivity law, one can check that FTX with {
n︷ ︸︸ ︷

T (. . . (T (T γ);

n︷ ︸︸ ︷
λ);λ . . .);λ

;Fr�n
1 : T n(R) → FTX}n≥1 is a cocone for {T n(R)

T nηR→ T n+1(R)}n≥1. In a

similar way, also FT (R̂) can be endowed with a structure of cocone for the

same diagram. Let γ̃ : T (R̂) → FT (R̂) be the unique morphism given by

the universal property of T (R̂). Finally, in order to prove that the following

11
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diagram commutes

TX

α

��

T (R̂)
�r1��

�γ
��

FTX FT (R̂)
F �r1

�
��

we use the fact that, by hypothesis 3, for all n ≥ 0, the following diagram
commutes

TX

α

��

T n(R)
r�n
1��

n︷ ︸︸ ︷
T (. . . (T (T γ);

n︷ ︸︸ ︷
λ);λ . . .);λ��

FTX FT n+1(R)
Fr�n+1

1

��

This implies that the cocone FTX, {
n︷ ︸︸ ︷

T (. . . (T (T γ);

n︷ ︸︸ ︷
λ);λ . . .);λ;Fr�n

1 : T n(R) →
FTX}n≥1 coincides with the cocone FTX with {r�n

1 ;α : T n(R) → FTX}n≥1,

and the thesis follows exploiting the universality of T (R̂) with respect to this
cocone.

✷

Specializing Theorem 3.5 to endofunctors on a category CS , we obtain
an alternative characterization of the greatest F -bisimulation ∼F

(TX,α) on the

F -coalgebra (TX, α), which yields the following

Theorem 3.6 (Coalgebraic Coinduction “up-to-T”) Let F : CS → CS

and let T be a monad over CS satisfying the hypothesis 1,2,3 of Theorem 3.5
above. If moreover F preserves weak pullbacks and has final coalgebra, then
the following principle is sound and complete

x R y R F -bisimulation “up-to-T” on (TX, α)
x ∼F

(TX,α) y
.

This principle can be specialized to the corecursion monad T+
F SN

: CS → CS ,
where F SN : CS → CS is the functor defined by F SN (X) = N × X (with
canonical definition on arrows), and N denotes the set of natural numbers.
The principle above provides a generalization of the set-theoretic Coinduction
“up-to-T” of Theorem 1.3, in the sense made precise by Proposition 4.4 of
Section 4.

3.2 Reasoning on Equivalences of T -coiterative Morphisms

In this section, the principle of Coalgebraic Coinduction “up-to-T” is put to
use for reasoning on equivalences induced by T -coiterative morphisms.

First, we need to recall the notions of image and inverse image of spans.
These are to be intended as the (inverse) image of the subobject of X1 ×X2

12
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determined by the relation underlying a span on X1, X2. See [FS90] for more
details.

Definition 3.7 [(Inverse) Image of Spans] Let C be a category with products
and pullpacks.

• The image of a span (R, r1, r2) on X1, X2 by (f1 : X1 → Y1, f2 : X2 → Y2),
denoted by (f1, f2)

+(R, r1, r2), is the span (R, r1; f1, r2; f2) on Y1, Y2.

• The inverse image of a span (R, r1, r2) on X1, X2 by (f1 : X1 → Y1, f2 :
X2 → Y2), denoted by (f1, f2)

−1(R, r1, r2), is the span (P, p2; π1, p2; π2) on
Y1, Y2, where (P, p1, p2) is the pullback of < r1, r2 >: R → X1 × X2 and
< π1; f1, π2; f2 >: Y1 × Y2 → X1 ×X2.

If (R, r1, r2) is a span on X and f : X → Y , g : Y → X, we simply
denote by f+(R, r1, r2) the image of (R, r1, r2) by (f, f), and we denote by
g−1(R, r1, r2) the inverse image of (R, r1, r2) by (g, g).

Using the principle of Coalgebraic Coinduction “up-to-T”, we now prove
the following theorem

Theorem 3.8 (Coalgebraic Coinduction for T -coiterative Functions)
Let F : CS → CS and let < T, η, µ > be a monad on CS satisfying all the hy-
potheses of Theorem 3.6. Let h be the T -coiterative morphism induced by the
F -coalgebra (TX, α), i.e. h = f ◦ ηX, where f : TX → νF is the coiterative
morphism. Then the following principle is sound

x R y η+
X(R, r1, r2) F -bisimulation “up-to-T” on (TX, α)

x ∼h y
,

where ∼h denotes the equivalence induced by the T -coiterative morphism h.

Proof. One can easily check, using Theorem 3.6, that

η+
X(R, r1, r2) F -bisimulation “up-to-T” on (TX, α) =⇒ R ≤ η−1

X (∼F
(TX,α), π1, π2) .

✷

The completeness of the categorical coinduction principle for T -coiterative
functions deserves further study.

4 From Coalgebras to Sets and back

In this section we study and discuss the relations between set-theoretic and
coalgebraic accounts of coinduction. As we pointed out in the Introduction,
this area is quite unexplored and problematic. Here we present some results
and raise some problems.

As far as the direction “From Coalgebras to Sets”, in the case of functors
which preserve weak pullbacks, one can show how to generate, from the coal-
gebraic coinduction principle based on F -bisimulations of Theorem 2.8, the
corresponding set-theoretic Coinduction Principle 1.1. For a special class of
covariant functors, we show that this translation is compositional, in a sense
to be made precise.

13
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We work in set-theoretic categories. It would be interesting to extend
these results to other possibly more general categorical settings, where also
contravariant and mixed functors could be used. A similar result can be given
also for the Coalgebraic Coinduction “up-to-T” 3.6, exploiting the correspon-
dence between it and the set-theoretic Coinduction “up-to-T” 1.3.

It would be extremely interesting to be able to provide coalgebraic coin-
duction principles in all contexts where set-theoretic coinduction principles
of some kind are at work, but it appears very difficult. On one hand F -
bisimulations convey more information than set-theoretic bisimulations. On
the other hand it might not be always the case that one can give categorical
descriptions at all of set-theoretic coinduction, see the examples in Section 4.2.

4.1 From Coalgebras to Sets

We start by introducing some notation. Let (R, r1, r2) be a span on X and
Y , for X, Y objects of a set-theoretic category CS . Let denote by RS

r1r2
the

set-theoretic relation induced by (R, r1, r2), i.e.
RS

r1r2
= {(x, y) ∈ X × Y | ∃u ∈R . < r1, r2 > (u) = (x, y)} .

Rutten, in [Rut98], using the theory of relators, showed that, when F : Set→
Set preserves weak pullbacks, R is an F -bisimulation if and only if R is an
F -coalgebra morphism, where F : Rel → Rel is the relator extending F . In
purely set-theoretical terms, Corollary 3.1 of [Rut98] can be spelled out as
follows:

Proposition 4.1 Let F : CS → CS , let (R, r1, r2) be a span on X, Y , and let
(X,α), (Y, β) be F -coalgebras. Then
i) (R, r1, r2) is an F -bisimulation on (X,α) and (Y, β) ⇐⇒

RS
r1r2

⊆ ΦF
(X,α),(Y,β)(RS

r1r2
) ,

where ΦF
(X,α),(Y,β) : P(X × Y ) → P(X × Y ) is defined by

ΦF
(X,α),(Y,β)(R) = {(x, y) | ∃u ∈ F (R). (F (πR1 )(z) = α(x) ∧ F (πR2 )(z) = β(y))} .
ii) Moreover, if F preserves weak pullbacks, then ΦF

(X,α),(Y,β) is monotone.

Now we show that, for a special class Fun of functors, the translation
from the categorical coinduction to the set-theoretical coinduction of Propo-
sition 4.1 is compositional on the structure of F ∈ Fun. I.e., given F ∈ Fun
and F -coalgebras (X,α), (Y, β), there is a natural way of inducing coalgebras
of the “component” functors of F , in such a way that the operator ΦF

(X,α),(Y,β)

is obtained by “composing” the operators induced by the component functors.

We start by specifying a class Fun of covariant functors. The functors
which we consider involve the constructors which are normally used for defin-
ing final semantics, i.e. identity, constants, cartesian and infinite cartesian
products, disjoint sum, powerset constructors.

14
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Definition 4.2 Let Fun be the class of functors F : CS → CS defined as
follows:

F (·) ::= Id(·) | FC(·) | F (·)× F (·) | F (·) + F (·) | P(F (·)) | FC(·) → F (·) ,
where

• Id(·) is the identity functor, defined by

Id(A) = A for A object in CS

Id(f) = f for f arrow in CS ,

• FC(·), for C object in CS , is the constant functor, defined by

FC(A) = C for A object in CS

FC(f) = idC for f arrow in CS ,

Compositionality of the translation given in Proposition 4.1 can be ex-
pressed as follows:

Theorem 4.3 Let F : CS → CS be a functor in Fun, and let (X,α), (Y, β)
be F -coalgebras.

(×) If F (·) = F1(·)× F2(·), then, for all R,
ΦF

(X,α),(Y,β)(R) = ΦF1

(X,π1◦α),(Y,π1◦β)(R) ∩ ΦF2

(X,π2◦α),(Y,π2◦β)(R) .

(+) If F (·) = F1(·) + F2(·), then, for all R,
ΦF

(X,α),(Y,β)(R) = ΦF1

(X1,α1),(Y1,β1)
(R∩ (X1 × Y1)) ∪ ΦF2

(X2,α2),(Y2,β2)
(R∩ (X2 × Y2)) ,

where the Fi-coalgebras (Xi, αi), (Yi, βi) are defined as follows. First of all,
notice that the F -coalgebras (X,α) and (Y, β) are of the shape: α = [α′

1, α
′
2] :

X1 + X2 → F1(X) + F2(X), with α′
i : Xi → Fi(X), and β = [β ′

1, β
′
2] :

Y1 + Y2 → F1(Y ) + F2(Y ), with β
′
i : Yi → Fi(Y ). Then αi : X → Fi(X)

is any Fi-coalgebra such that (αi)|Xi
= α′

i, and βi : Y → Fi(Y ) is any
Fi-coalgebra such that (βi)|Yi

= β ′
i.

(P) If F (·) = P(F1(·)), then, for all R,
ΦF

(X,α),(Y,β)(R) =
⋂
i

⋃
j

ΦF1

(X,αi),(Y,βj)
(R) ∩

⋂
j

⋃
i

ΦF1

(X,αi),(Y,βj)
(R) ,

where the F1-coalgebras (X,αi), (Y, βj) are induced by the F -coalgebras
(X,α) and (Y, β) as follows. αi : X → F1(X) is such that ∀x ∈ X. αi(x) ∈
α(x), and βj : Y → F1(Y ) is such that ∀y ∈ Y. βj(y) ∈ β(y).

(→) If F (·) = C → F1(·), then, for all R,
ΦF

(X,α),(Y,β)(R) =
⋂
c∈C

ΦF1

(X,αc),(Y,βc)
(R) ,

where αc : X → F1(X), is λx.α(x)(c), and βc : Y → F1(Y ), is λy.β(y)(c).

We address now the problem of formalizing the correspondence between
Coalgebraic Coinduction “up-to-T” and set-theoretic Coinduction “up-to-T”.
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Proposition 4.4 Let F : CS → CS be a functor, let < T, η, µ > be a monad
on CS , let (R, r1, r2) be a span on objects TX, TY , and let (TX, α), (TY, β)
be F -coalgebras. Then
i) (R, r1, r2) is an F -bisimulation on (TX, α) and (TY, β) ⇐⇒

RS
r1r2

⊆ ΦF
(TX,α),(TY,β)(Φ

T
X,Y (RS

r1r2
)) ,

where ΦT
X,Y : P(TX × TY ) → P(TX × TY ) is defined by

ΦT
X,Y (R) = (TR)S

r�
1r�

2

,

and ΦF
(TX,α),(TY,β) is the operator defined in Proposition 4.1.

ii) Moreover, if F preserves weak pullbacks, T is monotone over relations 3 ,
and T distributes over F w.r.t. η via a natural transformation λ which ex-
tends to a distributivity law on relations 4 , then the set-theoretic coinduction
principle “up-to-ΦT” is sound and complete.

It would be interesting to find suitable counterparts to Theorem 4.3 for
Coinduction “up-to-T”.

Proposition 4.4 above applies immediately to the following example. Con-
sider the monad for corecursion T+

F SN
, where F SN is the functor defined at

the end of Subsection 3.1. Recall that a final F SN -coalgebra is the set SN

of all infinite streams on natural numbers. Let (T+
F SN

(SN), [α1, F
SN (in2)])

be an F SN -coalgebra. Then, by Proposition 4.4, using strong extensional-
ity of final coalgebras, one can easily check that a relation (R, r1, r2) is an
F SN -bisimulation “up-to-T+

F SN
” on (T+

F SN
(SN), [α1, F

SN (in2)]) if and only if

RS
r1r2

is a Φ+-bisimulation “up-to-∪≈” for the operator Φ+ : P(T+
F SN

(SN) ×
T+

F SN
(SN)) → P(T+

F SN
(SN)× T+

F SN
(SN)) defined by

Φ+(R) = {(in1(s), in1(s
′)) | π1(α1(s)) = π1(α1(s

′)) ∧ π2(α1(s)) R π2(α1(s
′))} ∪

{(in2(s), in2(s
′)) | s = s′}.

The correspondence between Coalgebraic Coinduction “up-to-T+
F ” and set-

theoretic Coinduction “up-to-∪≈” is quite intrinsic. Categorically, applying
Theorem 3.8 to the corecursion monad T+

F , we get a proof principle for reason-
ing on equivalences of corecursive morphisms. While, in a purely set-theoretic
framework, one can give a coinductive characterization of the equivalence in-
duced by corecursive functions, using the Coinduction “up-to-∪≈”. For sim-
plicitly, we work out only the special case of the functor F SN introduced in
Subsection 3.1.

Notice that in the set-theoretic case we derive a complete characterization.
This immediately implies, by Proposition 4.4, also the completeness of the
Coalgebraic Coinduction “up-to-T+

F SN ”.

Theorem 4.5 (Set-theoretic Coinduction for Corecursive Functions)
Let h : X → SN be the corecursive morphisms induced by the F SN -coalgebra

3 I.e.: (R, r1, r2) ≤ (R′, r′1, r
′
2) =⇒ (T (R), r�

1, r
�
2) ≤ (T (R′), r′�1 , r′�2 ).

4 I.e.: for all (R, r1, r2), for all i, λ;Fr�
i = (Fri)�.
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(T+
F SN

X, [α1, F (in2)]), i.e. h = f ◦ in1, where f : T+
F SN

X → SN is the coitera-
tive morphism. Then the following principle is sound and complete:

x R y in+
1 (R) ⊆ Φ+(in+

1 (R)∪ ≈Φf
)

x ∼h y ,

where in+
1 (R) denotes the set-theoretic image of R by in1, and Φf is the mono-

tone operator ΦF SN

(T+

F SN
X,[α1,F (in2)]),(T

+

F SN
X,[α1,F (in2)])

given in Proposition 4.1.

Proof. First of all notice that, using Theorem 2.8 of Section 2,
∼h= in

−1
1 (∼f ) =

⋃{in−1
1 (R) | R ⊆ (X + SN )2 ∧ R ⊆ Φf (R)} .

We prove that⋃{in−1
1 (R) | R ⊆ (X + SN)2 ∧ R ⊆ Φf (R)} =⋃{R | R ⊆ X ×X ∧ in+

1 (R) ⊆ Φf (in
+
1 (R)∪ ≈Φf

)} .
(⊆) Let R ⊆ Φf (R). Then in+

1 (in
−1
1 (R)) ⊆ R ⊆ Φf (R) ⊆ Φf (≈Φf

) ⊆
Φf(in

+
1 (in

−1
1 (R))∪ ≈Φf

).
(⊇) Let R ⊆ X ×X be such that in+

1 (R) ⊆ Φf (in
+
1 (R)∪ ≈Φf

). Then, by the

Principle “up-to-∪ ≈Φf
”, in+

1 (R) ⊆≈Φf
. Hence R ⊆ in−1

1 (≈Φf
).

✷

Corollary 4.6 The Coalgebraic Coinduction “up-to-T+
F SN

” is complete.

4.2 From Sets to Coalgebras?

In this subsection we list some critical situations where set-theoretic coin-
duction does not seem to be directly amenable to categorical terms. These
examples possibly indicate some limitations of the coalgebraic approach.

4.2.1 Non-uniform Bisimulations.

Consider, for the sake of example, the following notion of bisimulation on
CCS-like processes, obtained by sligthly modifying the definition of strong
bisimulation:
p R q =⇒ ∃a (∀p1(p

a→ p1 ⇒ ∃q1. q a→ q1 ∧ p1 R q1) ∧
∀q1(q a→ q1 ⇒ ∃p1. p

a→ p1 ∧ p1 R q1)).
It is not at all clear how to describe this notion of bisimulation coalgebraically.
The problem is due to the presence of an ∃ quantifier, in place of a ∀. In-
tuitively, ∀ quantifiers guarantee a uniform property to hold over all objects.
With ∃ quantifiers we loose this uniformity. But this uniformity seems nec-
essary in providing a coalgebraic description. More in general, the problem
with ∃ quantifiers can be rephrased as follows.

Let Φ1, . . . ,Φn : P(X ×X) → P(X ×X) be monotone operators. Each of
these operators generates a coinduction principle in the line of the Coinduction
Principle 1.1. If we define Φ : P(X ×X) → P(X ×X) by

Φ(R) =
⋃

1≤i≤n

Φi(R) ,

we get a monotone operator which gives rise to a corresponding coinduction

17



Lenisa

principle. Assuming we have coalgebraic descriptions of the set-theoretic coin-
duction principles induced by the operators Φi, it is not at all clear how to
derive a coalgebraic description of the coinduction principle induced by Φ.
A similar example occurs in [HL98] for the case of a generalized applicative
coinduction principle for λ-calculus.

Other examples of bisimulations which have a problematic coalgebraic de-
scription are those where “side-conditions” depending on the structure of the
objects to be related appear. Both early and late bisimulations in Milner’s
π-calculus ([MPW92]), are of this form. Also in this case, like in the previ-
ous example with quantifiers, we lack a uniform description. Luckily, in the
π-calculus case, it is still possible to get rid of the local side-conditions in
the definitions of bisimulations (see [HLMP98]), thereby making possible a
coalgebraic description. This latter situation seems related to the difficulty of
obtaining a “generalized minimal automata”.

4.2.2 Coinduction “up-to”.

In this paper, we have discussed at length coalgebraic counterparts to set-
theoretic Coinduction “up-to-T”. Not all operators T , however, seem to be
easily treated coalgebraically. For example, consider the set-theoretic opera-
tor T defined by ≈ ◦ ◦ ◦ ≈, which captures Milner’s bisimulation “up-to”
principle. The theory of functors and relators could shed some light on this
problem.

4.2.3 Binary Operators.

Let Φ : P(X × Y ) × P(X × Y ) → P(X × Y ) × P(X × Y ) be a monotone
operator over the complete lattice of relations ordered by (≤1,≤2), where ≤i∈
{⊆,⊇}. A special case is that of the mixed induction-coinduction operators.
These are monotone operators on the complete lattice P(X ×Y )×P(X ×Y )
ordered by (⊆,⊇), which have a unique fixed point (≈,≈). These kind of
operators induce an induction-coinduction principle of the following form (see
e.g. [HL95,Pit96]):

R− ⊆ π1(Φ(R−,R+)) R+ ⊇ π2(Φ(R−,R+))
R− ⊆≈⊆ R+ .

It is not at all clear how to describe coalgebraically coinduction principles in-
duced by these binary operators. In particular, induction-coinduction princi-
ples seem to require an extension of the coalgebraic approach to contravariant
(mixed) functors. This could lead us to Freyd’s algebraically compact cate-
gories. However, also the “purely covariant” case, in which both components
of the binary operator are ordered by ⊆, seems to be problematic to deal with
coalgebraically in full generality. Similar problems, of course, arise for n-ary
operators.
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