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Abstract

In the previous paper we studied the transport coefficients of quark–gluon plasma in finite temperature
and finite density in vector and tensor modes. In this paper, we extend it to the scalar modes. We work out
the decoupling problem and hydrodynamic analysis for the sound mode in charged AdS black hole and
calculate the sound velocity, the charge susceptibility and the electrical conductivity. We find that Einstein
relation among the conductivity, the diffusion constant and the susceptibility holds exactly.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The discovery of low viscosity in the theory with gravity dual [1] and its possible relation to
the RHIC (Relativistic Heavy Ion Collider) experiment induced a great deal of efforts to establish
the relevant calculational scheme that may be provided by AdS/CFT correspondence [2–4]. An
attempt has been made to map the entire process of RHIC experiment in terms of the gravity
dual [5]. The way to include a chemical potential in the theory was figured out in the context of
probe brane embedding [6–13]. Phases of these theories were discussed and new phases were
reported where instability due to the strong attraction is a feature [8–10].
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In spite of the difference between QCD and N = 4 SYM, it is expected that some of the
properties are shared by the two theories based on the universality of low energy physics. In this
respect, the hydrodynamic limit is particularly interesting since such limit can be shared by many
theories. The calculation scheme for transport coefficients is to use Kubo formula, which gives a
relation to the low energy limit of Wightman Green functions. In AdS/CFT correspondence, one
calculate the retarded Green function which is related to the Wightman function by fluctuation–
dissipation theorem. Such scheme has been developed in a series of papers [14–18].

For the hydrodynamic analysis, one may need to have master equations for the decoupled
modes in vector and scalar at hands. Although the analysis for the decoupling problem were an-
alyzed in [19], it was based on SO(3) decomposition while more useful work for hydrodynamics
should be based on SO(2) decomposition, where longitudinal direction of the spatial direction
is distinguished. For this purpose, Kovtun and Starinets worked out the decoupling problem
based on SO(2) for the AdS black hole case [18] before doing the hydrodynamic analysis. For
the charged cases, there are extra difficulties: vector modes of gravity and those of the gauge
fields couple. Furthermore there are extra couplings in scalar modes which are not present in the
chargeless cases.

In the previous paper [20], some of us extended this work to charged case using the Reissner–
Nordström–Anti-de Sitter (RN–AdS) black hole, which corresponds to the diagonal (1,1,1)

R-charged STU black hole.1 However, analysis for the scalar mode of charged case was not done
due to difficulties caused by extra mixing between various scalar modes in charged AdS black
hole. In this paper, we work out the decoupling problem and hydrodynamics for the sound (scalar)
mode in such case. Green functions are explicitly obtained. Our results show that the behavior of
the transport coefficients in RN-black hole are very different from those in the (1,0,0) charged
black hole: the formers are much more smoother than the latters. We find that Einstein relation
among the conductivity, the diffusion constant and the susceptibility holds exactly.

This paper is organized as follows: In Section 2, we introduce RN–AdS black hole and review
correlation function calculation at finite temperature in AdS/CFT correspondence. In Section 3,
a formulation on the metric and the gauge perturbations in RN–AdS background is considered.
We then solve linearized perturbative equations of motion in hydrodynamic regime and obtain
retarded Green functions in Section 4. We also observe the transport coefficients including the
speed of sound, the diffusion constant for U(1) charge and the electrical conductivity in this
section. Conclusions and discussions are given in the final section. Three appendices are pro-
vided. In Appendix A, we summarize the results in the vector and the tensor type perturbations
in our previous work [20]. The details of calculations to solve equations of motion are given in
Appendices B and C.

2. Basic setup

2.1. Minkowskian correlators in AdS/CFT correspondence

Before introducing RN–AdS black hole, we briefly summarize to obtain Minkowskian corre-
lators in AdS/CFT correspondence. We follow the prescription proposed in [14]. We work on the

1 In fact much works had been done for charged case by various groups [21–25]. In [21,22], thermodynamics for STU
black hole [26,27] and the hydrodynamic calculations for the (1,0,0) charge were performed. In [23,24], charged AdS5
and AdS4 black hole backgrounds were considered, respectively, and it was shown numerically that the ratio (η/s) was
1/(4π) with very good accuracy. Later, it was also proven that the ratio might be universal in more general setup [25].
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five-dimensional background,

(2.1)ds2 = gμν dxμ dxν + guu(du)2,

where xμ and u are the four-dimensional and the radial coordinates, respectively. We refer the
boundary as u = 0 and the horizon as u = 1. A solution of the equation of motion may be given,

(2.2)φ(u, x) =
∫

d4k

(2π)4
eikxfk(u)φ0(k),

where fk(u) is normalized such that fk(0) = 1 at the boundary. An on-shell action might be
reduced to surface terms by using the equation of motion,

(2.3)S
[
φ0] =

∫
d4k

(2π)4
φ0(−k)G(k, u)φ0(k)

∣∣∣∣
u=1

u=0
.

Here, the function G(k, u) can be written in terms of f±k(u) and ∂uf±k(u). Accommodating
Gubser–Klebanov–Polyakov/Witten relation [3,4] to Minkowski spacetime, Son and Starinets
proposed the formula to get retarded Green functions,

(2.4)GR(k) = 2G(k, u)|u=0,

where the incoming boundary condition at the horizon is imposed. In general, there are several
fields in the model. We write the Green function as Gij (k), where indices i and j distinguish
corresponding fields.

In this paper, we work in RN–AdS background and consider its perturbations so that essential
ingredients are perturbed metric field and U(1) gauge field. Here we define the precise form of
the retarded Green functions which we discuss later:

Gμν ρσ (k) = −i

∫
d4x e−ikxθ(t)

〈[
Tμν(x), Tρσ (0)

]〉
,

Gμν ρ(k) = −i

∫
d4x e−ikxθ(t)

〈[
Tμν(x), Jρ(0)

]〉
,

(2.5)Gμν(k) = −i

∫
d4x e−ikxθ(t)

〈[
Jμ(x), Jν(0)

]〉
,

where the operators Tμν(x) and Jμ(x) are energy–momentum tensor and U(1) current which
couple to the metric and the gauge field, respectively.

2.2. Reissner–Nordström–AdS background

The charge in RN–AdS black hole is usually regarded as R-charge of SUSY [28]. We here
consider an another interpretation in the following way: One can introduce quarks and mesons
by considering the bulk-filling branes in AdS5 space. The overall U(1) of the flavor branes is
identified as the baryon charge. The U(1) charge in this model [29] minimally couples to the
bulk gravity since the bulk and the world volume of brane are identified. Then, the baryon charge
and the R-charge have the same description in terms of the U(1) gauge field living in the AdS5
space. A charged black hole (RN–AdS black hole) is then induced by its back reaction. Therefore
the U(1) charge in RN–AdS can be identical to the baryon charge. As a result, we can interpret
our result as a calculation of the transport coefficients in the presence of the baryon density.
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The effective action of this gauge field is given the quadratic piece of Dirac–Born–Infeld
action2

(2.6)SDBI = − 1

4e2

∫
d5x

√−g Tr
(

FmnF mn
)
,

where the gauge coupling constant e is given by [29]

(2.7)
l

e2
= NcNf

4π2
,

with l the radius of the AdS space. We pick up an overall U(1) part of this gauge field in order to
consider the baryon current at the boundary. Together with the gravitation part, we arrive at the
following action which is our starting point:

(2.8)S0 = 1

2κ2

∫
d5x

√−g(R − 2Λ) − 1

4e2

∫
d5x

√−gFmnF mn,

where we denote the gravitation constant and the cosmological constant as κ2 = 8πG5 and Λ,
respectively. The U(1) gauge field strength is given by Fmn(x) = ∂mAn(x) − ∂nAm(x). The
gravitation constant is related to the gauge theory quantities by

(2.9)
l3

κ2
= N2

c

4π2
.

Suppose we have baryon charge Q. This should be identified to the source of U(1) charge on
the brane hence on the bulk. Then we can relate it to the parameter in RN black hole solution by
considering the full solution to the equation of motion,

(2.10)Rmn − 1

2
gmnR + gmnΛ = κ2Tmn,

where energy–momentum tensor Tmn(x) is given by

(2.11)Tmn = 1

e2

(
Fmk Fnlg

kl − 1

4
gmnFkl F kl

)
.

An equation of motion for the gauge field Am(x) gives Maxwell equation,

(2.12)∇mF mn = 1√−g
∂m

(√−ggmkgnl(∂k Al − ∂l Ak)
) = 0.

Here we assumed that there is no electromagnetic source outside the black hole. One can confirm
that the following metric and gauge potential satisfy the equations of motion (2.10) and (2.12),

(2.13a)ds2 = r2

l2

(
−f (r)(dt)2 +

3∑
i=1

(
dxi

)2

)
+ l2

r2f (r)
(dr)2,

(2.13b)At = −Q

r2
+ μ,

with

f (r) = 1 − ml2

r4
+ q2l2

r6
, Λ = − 6

l2
,

2 The indices m and n run through five-dimensional spacetime while μ and ν would be reserved for four-dimensional
Minkowski spacetime. Their spatial coordinates are labeled by i and j .
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if and only if q is related to the Q by

(2.14)e2 = 2Q2

3q2
κ2.

It should be noted that a ratio of the gauge coupling constant e2 to the gravitation constant κ2 is

(2.15)
e2

κ2
= Nc

Nf

l−2.

Since the gauge potential At (x) must vanish at the horizon, the charge Q and the chemical poten-
tial μ are related.3 The parameters m and q are the mass and charge of AdS space, respectively.
This is nothing but Reissner–Nordström–Anti-de Sitter (RN–AdS) background in which we are
interested throughout this paper.

The horizons of RN–AdS black hole are located at the zero for f (r),4

(2.16)f (r) = 1 − ml2

r4
+ q2l2

r6
= 1

r6

(
r2 − r2+

)(
r2 − r2−

)(
r2 − r2

0

)
,

where their explicit forms of the horizon radiuses are given by

(2.17a)r2+ =
(

m

3q2

(
1 + 2 cos

(
θ

3
+ 4

3
π

)))−1

,

(2.17b)r2− =
(

m

3q2

(
1 + 2 cos

(
θ

3

)))−1

,

(2.17c)r2
0 =

(
m

3q2

(
1 + 2 cos

(
θ

3
+ 2

3
π

)))−1

,

with

θ = arctan

(
3
√

3q2
√

4m3l2 − 27q4

2m3l2 − 27q4

)
,

and satisfy a relation r2+ + r2− = −r2
0 . The positions expressed by r+ and r− correspond to the

outer and the inner horizon, respectively. It is useful to notice that the charge q can be expressed
in terms of θ and m by

q4 = 4m3l2

27
sin2

(
θ

2

)
.

3 The chemical potential μ can be expressed by using gauge invariant quantity as

μ =
∞∫

r+
dr Frt = At (∞),

where r+ and ∞ represent the horizon and the boundary, respectively. This definition gives thermodynamic relations
consistently.

4 In order to define the horizon, the charge q must satisfy a relation q4 � 4m3l2/27.
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The outer horizon takes a value in√
m

3
l � r2+ �

√
ml,

where the upper bound and the lower bound correspond to the case for q = 0 and the extremal
case, respectively.

We shall give various thermodynamic quantities of RN–AdS black hole [28,29]. The temper-
ature is defined from the conical singularity free condition around the horizon r+,

(2.18)T = r2+f ′(r+)

4πl2
= r+

πl2

(
1 − 1

2

q2l2

r6+

)
≡ 1

2πb

(
1 − a

2

)
(> 0),

where we defined the parameters a and b by

(2.19)a ≡ q2l2

r6+
, b ≡ l2

2r+
.

In the limit q → 0, these parameters go to

a → 0, b → l3/2

2m1/4
,

and the temperature becomes

T → T0 = m1/4

πl3/2
.

The entropy density s, the energy density ε, the pressure p, the chemical potential μ and the
density of physical charge ρ can be also computed as

(2.20)s = 2πr3+
κ2l3

= πl3

4b3κ2
,

(2.21)ε = 3m

2κ2l3
= 3l3

32b4κ2
(1 + a),

(2.22)p = ε

3
,

(2.23)μ = Q

r2+
= 4b2Q

l4
,

(2.24)ρ = 2Q

e2l3
= l

e2

μ

2b2
.

In order to obtain a well-defined boundary term from the gravitational part, we have to add
the Gibbons–Hawking term into the action, which is given by

(2.25)SGH = 1

κ2

∫
d4x

√
−g(4)K,

where integration is taken on the boundary of the AdS space. The four-dimensional metric g
(4)
μν (x)

is the induced metric on the boundary and K(x) is the extrinsic curvature. We also need to add
counter terms to regularize the action [30],

(2.26)Sct = 1

κ2

∫
d4x

√
−g(4)

(
3

l
− l

4
R(4)

)
.
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3. Perturbations in RN–AdS background

In RN–AdS background, we study small perturbations of the metric gmn(x) and the gauge
field Am(x),

gmn ≡ g(0)
mn + hmn,

(3.1)Am ≡ A(0)
m + Am,

where the background metric g
(0)
mn(x) and the background gauge field A

(0)
m (x) are given in (2.13a)

and (2.13b), respectively. In the metric perturbation, one can define an inverse metric as

gmn = g(0)mn − hmn + hmlhl
n + O

(
h3),

and raise and lower indices by using the background metric g
(0)
mn(x) and g(0)mn(x).

Let us now consider a linearized theory of the symmetric tensor field hmn(x) and the vec-
tor field Am(x) propagating in RN–AdS background. We shall work in the hrm(x) = 0 and
Ar(x) = 0 gauges and use the Fourier decomposition

hμν(t, z, r) =
∫

d4k

(2π)4
e−iωt+ikzhμν(k, r),

Aμ(t, z, r) =
∫

d4k

(2π)4
e−iωt+ikzAμ(k, r),

where we choose the momenta which are along the z-direction. In this case, one can categorize
the metric perturbations to the following three types by using the spin under the SO(2) rotation
in (x, y)-plane [15]:

• vector type: htx 	= 0, hzx 	= 0, (others) = 0 (equivalently, hty 	= 0, hzy 	= 0, (others) = 0);
• tensor type: hxy 	= 0, (others) = 0 (equivalently, hxx = −hyy 	= 0, (others) = 0);
• scalar type: htt 	= 0, htz 	= 0, hxx = hyy 	= 0, and hzz 	= 0, (others) = 0.

First two types of the perturbations were studied in [20]. We list the result in Appendix A. In this
paper we consider the scalar type perturbation.

3.1. Linearized equations of motion

From explicit calculation, one can show that t and z-components of the gauge field Aμ(x)

could participate in the linearized perturbative equations of motion. Thus independent variables
are

htt (x), htz(x), hxx(x) = hyy(x), hzz(x),

At (x), Az(x).

In the hydrodynamic regime, it is standard to introduce new dimensionless coordinate u =
r2+/r2 which is normalized by the outer horizon. In this coordinate system, the horizon and the
boundary are located at u = 1 and u = 0, respectively. We also define new field variables

ht
t = g(0)tt htt = − l2u

2
htt ,
r+f
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hz
t = g(0)zzhzt = l2u

r2+
hzt ,

hx
x = g(0)xxhxx = l2u

r2+
hxx,

hz
z = g(0)zzhzz = l2u

r2+
hzz,

Bμ ≡ Aμ

μ
= l4

4Qb2
Aμ,

where μ is the chemical potential given by (2.23). Nontrivial equations in the Einstein equa-
tion (2.8) appear from (t, t), (t, u), (t, z), (u,u), (u, z), (x, x) and (z, z) components, respec-
tively:

0 = ht ′′
t + (u−1f )′

u−1f

(
3

2
ht ′

t + hx ′
x + 1

2
hz ′

z

)
− b2k2

uf
ht

t

(3.2a)+ 2b2

uf 2

(
ω2hx

x + 1

2
ω2hz

z + ωkhz
t

)
+ 2a

u

f
ht

t + 4a
u

f
B ′

t ,

(3.2b)0 = ω

(
2hx ′

x + hz ′
z − f ′

f

(
hx

x + 1

2
hz

z

))
+ k

(
hz ′

t − f ′

f
hz

t

)
,

(3.2c)0 = hz ′′
t − 1

u
hz ′

t + 2b2ωk

uf
hx

x − 3auB ′
z,

(3.2d)0 = ht ′′
t + 2hx ′′

x + hz ′′
z + f ′

f

(
3

2
ht ′

t + hx ′
x + 1

2
hz ′

z

)
+ 2a

u

f
ht

t + 4a
u

f
B ′

t ,

(3.2e)0 = kht ′
t + 2khx ′

x − ω

f
hz ′

t + kf ′

2f
ht

t + 3a
u

f
(kBt + ωBz),

0 = hx ′′
x + (u−2f )′

u−2f
hx ′

x − 1

2u

(
ht ′

t + hz ′
z

) + b2

uf 2

(
ω2 − k2f

)
hx

x

(3.2f)− a
u

f
ht

t − 2a
u

f
B ′

t ,

0 = hz ′′
z + (u− 3

2 f )′

u− 3
2 f

hz ′
z − 1

u

(
1

2
ht ′

t + hx ′
x

)
+ b2

uf 2

(
ω2hz

z + 2ωkhz
t − k2f ht

t − 2k2f hx
x

)
(3.2g)− a

u

f
ht

t − 2a
u

f
B ′

t ,

with

f (u) = (1 − u)
(
1 + u − au2),

where the prime implies the derivative with respect to u. On the other hand, in the Maxwell
equation (2.12), t , u and z-components give nontrivial contributions

(3.3a)0 = B ′′
t − b2

uf

(
k2Bt + kωBz

) + 1

2

(
ht ′

t − 2hx ′
x − hz ′

z

)
,

(3.3b)0 = ωB ′
t + kf B ′

z + ω (
ht

t − 2hx
x − hz

z

) − khz
t ,
2
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(3.3c)0 = B ′′
z + f ′

f
B ′

z + b2

uf 2

(
ω2Bz + ωkBt

) − 1

f
hz ′

t .

Eqs. (3.3a) and (3.3b) imply (3.3c). In the set of equations for the metric perturbation (3.2a)–
(3.2g), together with (3.3a) and (3.3b), the following four independent relations are obtained:

hx ′
x = 3(ω2 − k2f ) + k2uf ′

2k2(3f − uf ′)
ht ′

t + 2b2ω2

f (3f − uf ′)
hx

x − f ′(3f − uf ′) − 4b2ω2

4f (3f − uf ′)
ht

t

+ ω(f ′(3f − uf ′) − 4b2ω2)

2k2f 2(3f − uf ′)

(
ωhx

x + ω

2
hz

z + khz
t

)

(3.4a)+ 3aω2u2

2k2f (3f − uf ′)
(
ht

t + 2B ′
t

) − 3au

2kf
(kBt + ωBz),

hz ′
z = − 3ω2 + k2uf ′

k2(3f − uf ′)
ht ′

t − 2b2k2

3f − uf ′
(
ht

t + 2hx
x

)
+ 2b2

f (3f − uf ′)
(
ω2(2hx

x + hz
z

) + 2ωkhz
t

)
+ 1

2f (3f − uf ′)
((

f ′(3f − uf ′) − 4b2ω2)ht
t − 8b2ω2hx

x

)
− ω(f ′(3f − uf ′) − 4b2ω2)

k2f 2(3f − uf ′)

(
ωhx

x + ω

2
hz

z + khz
t

)

(3.4b)− 3au2(ω2 + k2f )

k2f (3f − uf ′)
(
ht

t + 2B ′
t

) + 3au

kf
(kBt + ωBz),

hz ′
t = 3ωf

k(3f − uf ′)
ht ′

t + 2b2ωk

3f − uf ′
(
ht

t + 2hx
x

)
(3.4c)+ f ′(3f − uf ′) − 4b2ω2

kf (3f − uf ′)

(
ωhx

x + ω

2
hz

z + khz
t

)
+ 3aωu2

k(3f − uf ′)
(
ht

t + 2B ′
t

)
,

0 = ht ′′
t + 1

2uf (3f − uf ′)

{
−3(f − uf ′)(2f − uf ′)ht ′

t

+ 4b2(−k2f ht
t + (

2ω2 + (f − uf ′)k2)hx
x + ω2hz

z + 2ωkhz
t

)
(3.4d)+ au2(15f − 7uf ′)

(
ht

t + 2B ′
t

)}
.

The equations of motion (3.2a)–(3.2g) can be derived by using the above relations. Taking the
limit q → 0, the relations (3.4a)–(3.4d) coincide with the result in [18].

3.2. Surface terms

Before solving the equations of motion, we shall give a surface action in oder to obtain Green
functions. By using the equations of motion, bilinear parts of on-shell action (2.8) reduce to
surface terms:

S0 = l3

32κ2b4

∫
d4k

(2π)4

{
+f

u
ht

th
t ′
t + f

u
hx

xh
x ′
x + f

u
hz

zh
z ′
z − 3

u
hz

t h
z ′
t

− f
hx

xh
t ′
t − f

hz
zh

t ′
t − f

ht
th

x ′
x − f

hz
zh

x ′
x − f

ht
th

z ′
z − f

hx
xh

z ′
z
u 2u u u 2u u
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+ uf ′ − f

4u2

(
ht

t

)2 − f

4u2

(
hz

z

)2 + uf ′ + f

u2f

(
hz

t

)2

− uf ′ − 2f

2u2
ht

th
x
x − uf ′ − 2f

4u2
ht

th
z
z + f

u2
hx

xh
z
z

(3.5)+ 3a

(
BtB

′
t − f BzB

′
z + 1

2
Bth

t
t + Bzh

z
t − Bth

x
x − 1

2
Bth

z
z

)}∣∣∣∣
u=0

.

Relevant terms of the Gibbons–Hawking term (2.25) are explicitly given by

SGH = l3

32κ2b4

∫
d4k

(2π)4

{
−f

u
ht

th
t ′
t − f

u
hz

zh
z ′
z + 4

u
hz

t h
z ′
t

+ 2f

u
hx

xh
t ′
t + f

u
hz

zh
t ′
t + 2f

u
ht

th
x ′
x + 2f

u
hz

zh
x ′
x + f

u
ht

th
z ′
z + 2f

u
hx

xh
z ′
z

− uf ′ − 4f

4u2

(
ht

t

)2 − uf ′ − 4f

4u2

(
hz

z

)2 − uf ′ + 4f

u2f

(
hz

t

)2

(3.6)+ uf ′ − 4f

u2
ht

th
x
x + uf ′ − 4f

2u2
ht

th
z
z + uf ′ − 4f

u2
hx

xh
z
z

}
.

The counter term (2.26) also can be evaluated as

Sct = 3l3

32κ2b4

∫
d4k

(2π)4

√
f

{
− 1

4u2

(
ht

t

)2 − 1

4u2

(
hz

z

)2 + 1

u2f

(
hz

t

)2

(3.7)+ 1

u2
ht

th
x
x + 1

2u2
ht

th
z
z + 1

u2
hx

xh
z
z

}
,

up to O(ω2, k2,ωk).

4. Pole structures and transport coefficients from hydrodynamics

We now look for solutions of our set of equations (3.4a)–(3.4d), and (3.3a) and (3.3b). We
will consider these equations of motion in low frequency limit so-called hydrodynamic regime.
In this regime we could obtain the sound velocity, the diffusion constant for U(1) charge and the
electrical conductivity from retarded Green functions.

4.1. Master variables

By using master variables derived by Kodama and Ishibashi in [19], the following field Φ(u)

is introduced:

(4.1)Φ ≡ 1

4u3/4(4b2k2 − 3f ′)
((

4b2k2 − 3f ′)hx
x + 2f

(
2hx ′

x + hz ′
z

))
.

For the gauge field, the corresponding variable is given by

(4.2)A ≡ 2a
(−ht

t + 3hx
x − 2Bt

′).
In terms of these new variables Φ(u) and A(u), Einstein equations (3.4a)–(3.4d) and Maxwell
equations (3.3a) and (3.3b) can be combined as follows:

0 = (
u1/2f Φ ′)′ − 1

3/2 2 2 ′ 2

{
−16b2ω2u

(
4b2k2 − 3f ′)2
16u f (4b k − 3f )
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+ f 2(16
(−b4k4 + 108ab2k2u2 + 162a2u4) + 27f ′(8b2k2 + 16au2 + 5f ′))

+ 4uf
(
4b2k2 − 3f ′)(16b2k2(b2k2 + 3au2) + f ′(8b2k2 + 36au2 + 9f ′))}Φ

(4.3a)

+ 1

8u1/4(4b2k2 − 3f ′)2

{
3f

(
4b2k2 + 3f ′ + 18au2) + u

(
16b4k4 − 9(f ′)2)}A,

0 = (uf A′)′

+ 1

f (4b2k2 − 3f ′)
{
b2(4b2k2 − 3f ′)(ω2 − k2f

) − 18auf 2}A − 48au3/4f Φ ′

(4.3b)

+ 4a

u1/4(4b2k2 − 3f ′)
{
32b4k4u + 12f

(
b2k2 + 9au2) + 3f ′(−8b2k2u + 9f

)}
Φ.

Next we would like to try to obtain decoupled equations from Eqs. (4.3a) and (4.3b). This will
be done by introducing the following linear combinations of the variables:

(4.4)Φ± ≡ α±Φ + βA,

where the coefficients α± and β are

α± = C± − 3au,

β = u1/4

8
,

with the constants

C± = (1 + a) ±
√

(1 + a)2 + 4ab2k2.

As a result, we can obtain second order ordinary differential equations in term of these new
variables,

(4.5)0 = Φ ′′± + (u1/2f )′

u1/2f
Φ ′± + V±Φ±,

where potentials V±(u) are given by

V± = 1

16u2f 2(4b2k2 − 3f ′)2

{
16b2ω2u

(
4b2k2 − 3f ′)2

− 4uf
(
4b2k2 − 3f ′)(16b2k2(b2k2 − C±u + 3au2)

− 4f ′(2b2k2 + 3C±u − 9au2) − 3(f ′)2)
+ f 2{16

(
b4k4 + 12C±b2k2u − 108ab2k2u2 + 54C±au3 − 162a2u4)

(4.6)− 24f ′(b2k2 − 6C±u − 18au2) + 9(f ′)2}}.

Considering the perturbative expansion with respect to small ω and k, it might be convenient
to introduce new variables Φ̃±(u),

(4.7)Φ± = H±Φ̃±,
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where the factors F±(u) are

H± =
{

u−3/4 (for Φ+),

u1/4

(1+a)− 3
2 au

(for Φ−),

so that the second order differential equations (4.5) are reduced to be much simpler forms to
solve,

(4.8)0 = Φ̃ ′′± + (H 2±u1/2f )′

H 2±u1/2f
Φ̃ ′ + Ṽ±Φ̃±,

where the potential Ṽ±(u,ω, k) is newly defined from the original potential V±(u,ω, k),

(4.9)Ṽ±(u,ω, k) ≡ V±(u,ω, k) − V±(u,0,0).

4.2. Perturbative solutions

Let us proceed to solve the differential equations. First we consider the equation for Φ̃+(u).
Following the usual way to solve differential equations, we impose a solution as Φ̃+(u) = (1 −
u)νF+(u), where F+(u) is a regular function at the horizon u = 1. Plugging this form into the
equation of motion, one can fix the parameter ν as ν = ±iω/(4πT ) where T is the temperature
defined by Eq. (2.18). We here choose

(4.10)ν = −i
ω

4πT

as the incoming wave condition. We are now in the position to solve the equation of motion in
the hydrodynamic regime. We start by introducing the following series expansion with respect to
small ω and k:

(4.11)F+(u) = F+0(u) + ωF+1(u) + k2G+1(u) + ω2F+2(u) + O
(
ω3, ωk2),

where F+0(u), F+1(u) and G+1(u) are determined by imposing suitable boundary conditions.
The solution can be obtained recursively.5 The result is as follows:

(4.12a)F+0(u) = C (const.),

(4.12b)F+1(u) = iCb

2(2 − a)

{
log

(
1 + u − au2) − 6K1(u)√

1 + 4a

}
,

(4.12c)G+1(u) = 2

3
Cb2

{
K1(u)√
1 + 4a

− 1

(1 + a)u

}
,

F+2(u) =
u∫

du
Cb2

(1 − u)(1 + u − au2)

×
{

1 − u + (1 − u)(1 + au) log(1 + u − au2)

2(2 − a)2
− 3(1 − u)(1 + au)K2(0)

2(2 − a)2
√

1 + 4a

(4.12d)− (1 + a)K2(1)u√
1 + 4a

+ (3 + (5 + 3a − 6a2 + 2a3)u − 3au2)K2(u)

2(2 − a)2
√

1 + 4a

}
,

5 The derivation of the solution is given in Appendix B.
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where

K1(u) = 1

2
log

(
1 + u − au2) − log

(
1 − 2au

1 + √
1 + 4a

)
,

K2(u) = log

(
1 + √

1 + 4a − 2au

−1 + √
1 + 4a + 2au

)
.

Next, we shall study the equation of motion for Φ̃−(u). Assuming again Φ̃−(u) = (1 −
u)νF−(u) where F−(u) is a regular function at u = 1, the singularity might be extracted. We
fix the constant as ν = −iω/(4πT ) to use the incoming wave condition. We now impose a per-
turbative solution as

(4.13)F−(u) = F−0(u) + ωF−1(u) + k2G−1(u) + ω2F−2(u) + O
(
ω3, ωk2),

and then we obtain the following result6:

(4.14a)F−0(u) = C̃ (const.),

F−1(u) = iC̃b

2(2 − a)2

{
8(1 + a)2 log(u) − (2 + a)(1 + 4a) log

(
1 + u − au2)

(4.14b)− 2
√

1 + 4a(2 + 5a)K1(u)
}
,

G−1(u) = C̃b2
{
− 3a2u

2(1 + a)2(1 + a − 3
2au)

− 2(1 + a)(2 + a) log(u)

(2 − a)2

(4.14c)+ (1 + a)(2 + a) log(1 + u − au2)

(2 − a)2
+ 2(2 + 5a + 6a2)K1(u)

(2 − a)2
√

1 + 4a

}
,

F−2(u) =
u∫

du
C̃b2

2(2 − a)4(1 + 4a)3/2(1 − u)u(1 + u − au2)

×
{

8(2 − a)(1 + a)2(1 + 4a)3/2u
(
1 + u − au2) log(u)

− (2 − a)(1 + 4a)3/2(4(1 + a)2 + (
2 − 3a − 8a2)u + (

2 + 9a + 13a2)u2

− a(2 + a)(1 + 4a)u3) log
(
1 + u − au2)

+ (1 + 4a)2(2 + 5a)K2(0)(1 − u)
(
4(1 + a)2 + (

2 − 3a − 8a2)u − (2 − a)au2)
− 2(1 + a)

(
2 − 2a + 41a2)K2(1)

(
2(1 + a) − 3au

)2

− (2 − a)
(
a(1 + 4a)2(2 + 5a)u3 − (2 − a)

(
1 + 11a + 46a2 + 18a3)u2

(4.14d)

− (
2 + 9a + 180a2 + 224a3 + 24a4)u − 4(1 + a)2(1 − 10a − 2a2))K2(u)

}
.

Using these, we can get behaviors for the solutions of Φ+(u) and Φ−(u) around the boundary
u = 0,

(4.15a)Φ+ = C

u3/4

{
1 − 2k2b2

3(1 + a)u
+ 1

3

(
k2 + 3ω2)b2u + · · ·

}
,

6 The detail is given in Appendix C.
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(4.15b)

Φ− = C̃u1/4
{

1

1 + a
+

(
4i(1 + a)bω

(2 − a)2
− 2(2 + a)b2k2

(2 − a)2
+ b2D−ω2

)
log(u) + · · ·

}
,

where the constant D− is

D− = 2

(2 − a)4(1 + 4a)3/2

{−27(2 − a)a2
√

1 + 4a + 4(1 + 4a)3/2(1 + a)3 log(2 − a)

+ 4
(
2 − 2a + 41a2)(1 + a)2K1(1)

}
.

Let us now consider the integration constants C and C̃. These could be estimated in terms of
boundary values of the fields

lim
u→0

ht
t (u) = (

ht
t

)0
, lim

u→0
Bt(u) = (Bt )

0, etc.

Using equations of motion, the integration constants C and C̃ are determined as

C = 1

2(k2 − 3ω2)

{
3ak2(Bt )

0 + 3akω(Bz)
0

(4.16a)+ (1 + a)
(−k2(ht

t

)0 + 2kω
(
hz

t

)0 + (
k2 − ω2)(hx

x

)0 + ω2(hz
z

)0)}
,

(4.16b)C̃ = (2 − a)2abk(k(Bt )
0 + ω(Bz)

0)

2Dp(ω, k)
,

where

Dp(ω, k) = 2(2 + a)bk2 − 4i(1 + a)ω − (2 − a)2bD−ω2.

In Eqs. (4.16a) and (4.16b), one can observe the existence of the sound and diffusion poles in the
complex ω-plane.

4.3. Retarded Green functions

Let us evaluate the Minkowskian correlators. The relevant action is given by the sum of three
parts (3.5), (3.6) and (3.7),

S = S0 + SGH + Sct

= l3

32κ2b4

∫
d4k

(2π)4

{
1

u
hz

t h
z ′
t + f

u
hx

xh
x ′
x + f

u
ht

th
x ′
x + f

2u
ht

th
z ′
z

+ f

u
hx

xh
t ′
t + f

u
hx

xh
z ′
z + f

2u
hz

zh
t ′
t + f

u
hz

zh
x ′
x

+ 3

4u2

(
f − √

f
)(

ht
t

)2 + 1

4u2

(
3f − uf ′ − 3

√
f

)(
hz

z

)2

− 3

u2f

(
f − √

f
)(

hz
t

)2 − 1

2u2

(
6f − uf ′ − 6

√
f

)
ht

th
x
x

− 1

4u2

(
6f − uf ′ − 6

√
f

)
ht

th
z
z − 1

u2

(
3f − uf ′ − 3

√
f

)
hx

xh
z
z

(4.17)+ 3a

(
BtB

′
t − f BzB

′
z + 1

2
Bth

t
t + Bzh

z
t − Bth

x
x − 1

2
Bth

z
z

)}∣∣∣∣
u=0

.



Y. Matsuo et al. / Nuclear Physics B 820 [FS] (2009) 593–619 607
Table 1

G∗∗∗∗/(
−(1+a)l3

128κ2b4(k2−3ω2)
).

t t xx zz tz

tt 3(5k2 − 3ω2) 6(k2 + ω2) 3(k2 + ω2) 24(k2 + ω2)

xx – 16ω2 2(k2 + ω2) 16kω

zz – – −k2 + 7ω2 8kω

tz – – – 4(k2 + 9ω2)

Using equations of motion and solutions of Φ+(u) and Φ−(u), derivatives of h’s and B’s can be
expressed in terms of their boundary values:

1

u
ht ′

t → 3

k2 − 3ω2

{
−3ak

(
k(Bt )

0 + ω(Bz)
0)

(4.18a)+ (1 + a)
(
k2(ht

t

)0 − 2ωk
(
hz

t

)0 − ω2(2
(
hx

x

)0 + (
hz

z

)0))}
,

1

u
hx ′

x → 1

k2 − 3ω2

{
3ak

(
k(Bt )

0 + ω(Bz)
0)

(4.18b)+ (1 + a)
(
−k2(ht

t

)0 + 2kω
(
hz

t

)0 + ω2(2
(
hx

x

)0 + (
hz

z

)0))}
,

1

u
hz ′

z → 1

k2 − 3ω2

{
3ak

(
k(Bt )

0 + ω(Bz)
0)

(4.18c)+ (1 + a)
(
−k2(ht

t

)0 + 2kω
(
hz

t

)0 + ω2(2
(
hx

x

)0 + (
hz

z

)0))}
,

1

u
hz ′

t → 1

k2 − 3ω2

{
−9aω

(
k(Bt )

0 + ω(Bz)
0)

(4.18d)− (1 + a)k
(

2k
(
hz

t

)0 + ω
(−3

(
ht

t

)0 + 2
(
hx

x

)0 + (
hz

z

)0))}
,

B ′
t → 1

2(1 + a)(k2 − 3ω2)

{
−9ak

(
k(Bt )

0 + ω(Bz)
0)

+ (1 + a)
((

2k2 + 3ω2)(ht
t

)0 − 6kω
(
hz

t

)0 − 3ω2(2
(
hx

x

)0 + (
hz

z

)0))}
(4.18e)− (2 − a)2bk(k(Bt )

0 + ω(Bz)
0)

(1 + a)Dp(ω, k)
,

B ′
z → 1

2(1 + a)(k2 − 3ω2)

{
9aω

(
k(Bt )

0 + ω(Bz)
0)

+ (1 + a)
(
−3kω

(
ht

t

)0 + 2k2(hz
t

)0 + kω
(
2
(
hx

x

)0 + (
hz

z

)0))}
(4.18f)+ (2 − a)2bω(k(Bt )

0 + ω(Bz)
0)

(1 + a)Dp(ω, k)
.

Substituting these expressions to the surface term (4.17), we can read off the Green functions
defined by (2.5). Through the counter terms, the singularities around the boundary vanish com-
pletely. The results are listed in Tables 1, 2 and 3.

In the final expression we rescaled the gauge field (Bμ)0 to the original one (Aμ)0 =
4Qb2

l4
(Bμ)0 and raised and lowered the indices by using the flat Minkowski metric ημν =

diag(−,+,+,+) in four-dimensional boundary theory. Taking the limit which the charge goes to



608 Y. Matsuo et al. / Nuclear Physics B 820 [FS] (2009) 593–619
Table 2
G∗∗ ∗/(

−lμ

4e2b2(k2−3ω2)
).

t t xx zz tz

t 3k2 2k2 k2 6kω

z 3kω 2kω kω 6ω2

Table 3

G∗∗/( −l

4e2(1+a)b2 ( 9a

k2−3ω2 + 2(2−a)2b
Dp(ω,k)

)).

t z

t k2 kω

z – ω2

zero, the correlators for energy–momentum tensors coincide with the known ones in [15]. In this
limit, the correlators for the energy–momentum tensor and the U(1) current vanish, while ones
for the U(1) currents have no sound poles, as we could see in the case of vector type perturbation
for (1,0,0) R-charged [22] and RN–AdS black holes [20].

Remember l3/κ2 = N2
c /(4π2) and it should be noticed that the factor l/e2 = N2

c /(16π2) for
the R-charge since e = 2κ/l in that case, while l/e2 = NcNf /(4π2) for the brane charge [29].

4.4. Transport coefficients

From the obtained Green functions, we can observe the value of the speed of sound without
the medium effect,

(4.19)vs = 1√
3
.

One should notice that there is no effect of the charge on the sound velocity.
We can also find the diffusion pole in the current–current correlators. The diffusion constant

can be read off

(4.20)DA = (2 + a)b

2(1 + a)
.

It should be compared with the diffusion constant for gravitation fields DH obtained in the pre-
vious work [20],

DH = b

2(1 + a)
,

so that the relation between them is

(4.21)DA = (2 + a)DH .

In the chargeless case, we can reproduce the result in [15].
The electrical conductivity σ of the medium could be also determined by the current–current

correlators via Kubo formula,

σ ≡ − lim
ω→0

e2
E

3ω
Im

(
δijGij (ω, k = 0)

)
,
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where eE is a four-dimensional gauge coupling. Together with the result for vector type pertur-
bation [20], we can obtain

(4.22)σ = le2
E(2 − a)2

24e2(1 + a)2b
× 3 =

(
l

e2

)
πeE

2(2 − a)

2(1 + a)2
T .

We can also access to the charge susceptibility Ξ defined by

(4.23)Ξ ≡ 1

T

〈Q2〉
(volume)

.

Using Green function Gt t (k) which might give an expectation value of Q2, one can obtain the
following relation in thermal equilibrium,

(4.24)
〈Q2〉

(volume)
=

∫
dω

2π

(− Im
(
Gt t (ω, k → 0)

))
nb(ω),

where nb(ω) = 1
eω/T −1

is Bose–Einstein distribution function [31]. From Table 3, we can see

− Im
(
Gt t (ω, k)

) = 4π2lT 2

e2(1 + a)(2 + a)

(
ωDAk2

ω2 + (DAk2)2

)
.

It should be noted that a quantity DAk2/(ω2 + (DAk2)2) approaches to 2πδ(ω) for k → 0 limit.
Taking the relation (4.23) into account, we can read off the charge susceptibility Ξ as

(4.25)Ξ =
(

l

e2

)
4π2

(1 + a)(2 + a)
T 2.

We can then observe that Einstein relation

(4.26)σ/
(
eE

2Ξ
) = DA

holds exactly. (See also [32].)7

In R-charge case, taking the charge-free limit, the electric conductivity and the charge suscep-
tibility coincide with the results in [31].

It is interesting to express physical constants in terms of the boundary variables: the tempera-
ture and the chemical potential. In fact, it is easy to verify that

(4.27)a = 2 − 4

1 + √
1 + 4(μ̃/T )2

, b =
(

1

πT

)
1

1 + √
1 + 4(μ̃/T )2

,

where μ̃ ≡ κ√
3πel

μ. Notice that for the R-charge, μ̃ = 1
2
√

3π
μ, while for the brane charge,

μ̃ =
√

Nf

3Ncπ2 μ. The behaviors of the diffusion constants DA and DH , the electrical conduc-

tivity σ and the charge susceptibility Ξ are drawn as functions of the μ̃/T in Figs. 1, 2, 3 and 4,
respectively. Notice that for the fixed temperature, all of them are decreasing functions of the
chemical potential. One should notice that there is no upper bound of μ/T for any of these
quantities unlike (1,0,0) charged black hole studied in [22].

It is particularly interesting to observe that the charge susceptibility modulo T 2 factor, which
is an indicator of the degree of freedom, shows rapid change between low and high temperature

7 It is interesting to notice that (∂ρ/∂μ)T gives a different value for Ξ given in Eq. (4.25). The authors thank J. Mas
and J. Shock for pointing this out.
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Fig. 1. T DA vs. μ̃/T .

Fig. 2. T DH vs. μ̃/T .

Fig. 3. σ/(T le2
E/e2) vs. μ̃/T .
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Fig. 4. Ξ/(T 2l/e2) vs. μ̃/T : Notice the rapid change between two finite values as T runs from 0 to ∞.

(density) indicating a mild phase transition. Such behavior does not exist for chargeless case. See
also [33].

5. Conclusions and discussions

In this paper, we worked out the decoupling of scalar modes of the charged AdS black hole
background in SO(2) basis for the mode classifications. We also perform the hydrodynamic anal-
ysis for the holographic quark–gluon plasma system. Master equations for the decoupled modes
are worked out explicitly. The sound velocity is not modified by the presence of the charge.
We calculated the diffusion constants, the charge susceptibility and the conductivity as a con-
sequence and observed that Einstein relation holds between them. These transport coefficients
are modified due to the charge effect. Interestingly, the susceptibility modulo T 2 factor, which
is an indicator of the degree of freedom, shows rapid change between low and high temperature
(density) indicating a mild phase transition. Such behavior does not exist for chargeless case.

One can give an explanation of hydrodynamic mode in meson physics. In our interpretation,
the Maxwell fields are the fluctuations of bulk-filling branes, therefore they should be interpreted
as master fields of the mesons. Then hydrodynamic modes are lowest lying massless meson
spectrum. In terms of brane embedding picture, this masslessness is due to the touching of the
brane on the black hole horizon. Near the horizon, the tension of the brane is zero due to the
metric factor and it can lead to the massless fluctuation. Then the massless spectrum cannot go
far from the horizon in radial direction. In this picture, hydrodynamic nature is closely related
to the near horizon behavior of the branes. We will discuss the spectrum of meson mode by
considering the quasinormal mode [34] of the vector modes in elsewhere.
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Table 4
G∗∗∗∗/( l3

16κ2b3(iω−DH k2)
).

tx zx

tx k2 −ωk

zx – ω2

Table 5
G∗∗ ∗/(

lμ

4e2b2(iω−DH k2)
).

tx zx

x −2iω b
(1+a)

ωk

Table 6

G∗∗/( l

4e2(1+a)b2 ( 3a

iω−DH k2 − (2−a)2b
2(1+a)

)).

x

x iω

Appendix A. Results for the vector and the tensor type perturbations

A.1. Vector type perturbation

In the vector type perturbation, independent variables are

htx(x), hzx(x), Ax(x).

One can observe the diffusion constant for the metric perturbation DH as

(A.1)DH = b

2(1 + a)
.

We list the retarded Green functions in Tables 4, 5 and 6. Notice that l3/κ2 = N2
c /(4π2) and

l/e2 = N2
c /(16π2) for the R-charge, l/e2 = NcNf /(4π2) for the brane charge. From the Green

function for U(1) currents Gx x(ω, k), one can read off the thermal conductivity κT via Kubo
formula,

(A.2)κT ≡ − (ε + p)2

ρ2T
lim
ω→0

1

ω
Im

(
Gx x(ω, k = 0)

) = 2π2 Nc

Nf

ηT

μ2
.

A.2. Tensor type perturbation

In the tensor type perturbation, an independent variable is just

hxy(x).

By using Kubo formula, one can obtain the shear viscosity η as

(A.3)η ≡ − lim
ω→0

1

ω
Im

(
Gxy xy(ω, k = 0)

) = l3

16κ2b3
,

where the retarded Green function is given by Table 7.
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Table 7
G∗∗∗∗/(− l3

16κ2b3 ).

xy

xy iω + bk2

One can confirm the universal (within Einstein gravity8) ratio that is the ratio of the shear
viscosity to the entropy density s,

(A.4)
η

s
= 1

4π
.

Appendix B. Perturbative solutions for Φ̃+

Substituting Eq. (4.11) into Eq. (4.8), one can read off one for F+0(u),

(B.1)0 = (
u−1(1 − u)

(
1 + u − au2)F ′+0

)′
.

A general solution is given by

(B.2)F+0(u) = C0 + D0

{
2 log(1 − u) − log

(
1 + u − au2) − 3K2(u)√

1 + 4a

}
.

Constants of integration C0 and D0 should be determined to be a regular function at the horizon.
So we here choose D0 = 0 and set

(B.3)F+0(u) = C0 = C (const.).

By using this solution, one can get an equation for F+1(u) from Eq. (4.8),

(B.4)0 = (
u−1(1 − u)

(
1 + u − au2)F ′+1

)′ − i
Cb(1 + au2)

(2 − a)u2
.

A general solution is

F+1(u) = C1 + i(C(1 − a)b − (2 − a)D1) log(1 − u)

(2 − a)2

(B.5)+ i(Cb + (2 − a)D1) log(1 + u − au2)

2(2 − a)2
+ 3i(Cb + (2 − a)D1)K2(u)

2(2 − a)2
√

1 + 4a
.

Removing the singularity at the horizon, the constant D1 should be

D1 = Cb
1 − a

2 − a
.

We also impose a boundary condition F+1(u = 0) = 0 so as to fix the constant C1. Therefore the
final form is

(B.6)F+1(u) = iCb

2(2 − a)

{
log

(
1 + u − au2) − 6K1(u)√

1 + 4a

}
.

8 If one consider higher derivative corrections to Einstein gravity, the viscosity bound could be modified [35–39].
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A differential equation for G+1(u) is

(B.7)0 = (
u−1(1 − u)

(
1 + u − au2)G′+1

)′ + Cb2(6 − (1 + a)u2)

3(1 + a)u4
.

A general solution is

G+1(u) = C̃1 + 1

6(2 − a)(1 + a)

{
−4C(2 − a)b2

u

+ (C(1 + 5a − 2a2)b2 − 9(1 + a)D̃1)K2(u)√
1 + 4a

(B.8)+ (
C(1 − a)b2 + 3(1 + a)D̃1

)(
2 log(1 − u) − log

(
1 + u − au2))},

and the constant D̃1 can be fixed as

D̃1 = −C(1 − a)b2

3(1 + a)
.

From the condition (uG+1)
′|u=0 = 0, we can fix the constant C̃1. The final form of the solution

becomes

(B.9)G+1(u) = 2

3
Cb2

{
K1(u)√
1 + 4a

− 1

(1 + a)u

}
.

A differential equation for F+2(u) is

0 =
[
u−1(1 − u)

(
1 + u − au2)

×
(

Cb2 log(1 − u)

(2 − a)2(1 − u)
+ ibF+1(u)

(2 − a)(1 − u)
− ib log(1 − u)F ′+1(u)

2 − a
+ F ′+2(u)

)]′

(B.10)− Cb2

u2(1 − u)(1 + u − au2)
.

Integrating over u, we have

F ′+2(u) = 1

2(2 − a)2
√

1 + 4a(1 − u)(1 + u − au2)

× {
2
√

1 + 4a(2 − a)2(Cb2 − D2u
) − 3Cb2K2(0)

(
1 + u − au2)

+ Cb2(3 + (
5 + 3a − 6a2 + 2a3)u − 3au2)K2(u)

(B.11)+ C
√

1 + 4ab2(1 − u)(1 + au) log
(
1 + u − au2)},

and the constant D2 can be fixed as

D2 = Cb2
{

1 − 3K2(0)

2(2 − a)
√

1 + 4a
+ (1 + a)K2(1)√

1 + 4a

}
,

so that ((1 − u)F ′+2(u))|u=1 = 0. Then, we find

(B.12)F ′+2(u) = Cb2 + O(u).
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Hence, we can write the solution of F+2(u) as

F+2(u) =
u∫

du
Cb2

(1 − u)(1 + u − au2)

×
{

1 − u + (1 − u)(1 + au) log(1 + u − au2)

2(2 − a)2

− 3K2(0)(1 − u)(1 + au)

2(2 − a)2
√

1 + 4a
− (1 + a)K2(1)u√

1 + 4a

(B.13)+ (3 + (5 + 3a − 6a2 + 2a3)u − 3au2)K2(u)

2(2 − a)2
√

1 + 4a

}
,

which satisfies a boundary condition F+2(0) = 0.

Appendix C. Perturbative solutions for Φ̃−

For F−0(u), one can get an equation

(C.1)0 =
(

u(1 − u)
(
1 + u − au2)(1 + a − 3

2
au

)−2

F ′−0

)′
.

A general solution is given by

F−0(u) = C0 + D0

{
(2 − a) log(1 − u) − 4(1 + a)2 log(u)

(C.2)+ 1

2
(2 + a)(1 + 4a) log

(
1 + u − au2) −

√
1 + 4a(2 + 5a)K2(u)

2

}
.

Since the function F−0(u) should be regular at the horizon, we choose D0 = 0 and get

(C.3)F−0(u) = C0 = C̃ (const.).

Substituting the solution to Eq. (4.8), we get an equation for F−1(u),

0 =
(

u(1 − u)
(
1 + u − au2)(1 + a − 3

2
au

)−2

F ′−1

)′

(C.4)+ iC̃b(2(1 + a) + (4 + 7a)u − 6a(1 + a)u2 + 3a2u3)

2(2 − a)(1 + a − 3
2au)3

.

A general solution is given as

F−1(u) = C1 − i

54(2 − a)a2

×
{

8(1 + a)2(C̃(1 + 4a)b − 27D1(2 − a)a2) log(u)

− 2
(
C̃

(
2 + 7a + 23a2)b − 27D1(2 − a)2a2) log(1 − u)

− (2 + a)(1 + 4a)
(
C̃(1 + 4a)b − 27D1(2 − a)a2) log

(
1 + u − au2)

(C.5)+ √
1 + 4a(2 + 5a)

(
C̃(1 + 4a)b − 27D1(2 − a)a2)K2(u)

}
.
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The constant of integration D1 should be

D1 = C̃b(2 + 7a + 23a2)

27(2 − a)2a2
,

so that the singularity at the horizon could be removed. In addition, we require the condition[
F−1(u) − log(u) lim

u→0

(
F−1(u)

log(u)

)]
u=0

= 0

to fix the constant C1. Then we get the final form of the solution

F−1(u) = iC̃b

2(2 − a)2

{
8(1 + a)2 log(u) − (2 + a)(1 + 4a) log

(
1 + u − au2)

(C.6)− 2
√

1 + 4a(2 + 5a)K1(u)
}
.

Similarly we have a differential equation for G−1(u),

0 =
(

u(1 − u)
(
1 + u − au2)(1 + a − 3

2
au

)−2

G′−1

)′

+ C̃b2

8(1 + a)(1 + a − 3
2au)5

{−4(1 + a)
(
2 + 6a + 3a2 + 2a3)

(C.7)+ 2a
(
10 + 30a + 57a2 + 10a3)u − 42a2(1 + a)2u2 + 21a3(1 + a)u3}.

A general solution of this equation can be obtained

G−1(u) = C̃1 − C̃a2b2

a(1 + a)(1 + a − 3
2ua)

+ 1

54a(1 + a)(2 − a)

×
{

4(1 + a)2(2 − a)
(
7C̃b2 + 54D̃1a(1 + a)

)
log(u)

− (
2C̃

(
14 + 13a + 17a2)b2 + 54D̃1(2 − a)2a(1 + a)

)
log(1 − u)

− (2 + a)
(
C̃

(
7 + 11a − 14a2)b2

+ 27D̃1a(2 − a)(1 + a)(1 + 4a)
)

log
(
1 + u − au2)

+ 1√
1 + 4a

(
C̃

(
14 + 57a + 81a2 − 16a3)b2

(C.8)+ 27D̃1a(2 − a)(1 + a)(1 + 4a)(2 + 5a)
)
K2(u)

}
.

The constant of integration D̃1 might be fixed to remove the singularity at u = 1,

D̃1 = − C̃b2(14 + 13a + 17a2)

27a(1 + a)(2 − a)2
.

Another constant of integration C̃1 is fixed to satisfy the condition[
G−1(u) − log(u) lim

u→0

(
G−1(u)

log(u)

)]
u=0

= 0.
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The final result of the solution is

G−1(u) = 1

3
C̃b2

{
− 9a2u

2(1 + a)2(1 + a − 3
2au)

− 6(1 + a)(2 + a)

(2 − a)2
log(u)

(C.9)+ 3(1 + a)(2 + a)

(2 − a)2
log

(
1 + u − au2) + 6(2 + 5a + 6a2)

(2 − a)2
√

1 + 4a
K1(u)

}
.

A differential equation for F−2(u) is

0 =
[

u(1 + u − au2)

(2 − a)2(1 + a − 3
2au)2

× (
(2 − a)2(1 − u)F ′−2(u) + i(2 − a)bF−1(u)

− i(2 − a)b(1 − u) log(1 − u)F ′−1(u) + C̃b2 log(1 − u)
)]′

(C.10)+ C̃b2

(1 + a − 3
2au)2(1 − u)(1 + u − au2)

.

Integrating over u, we have

F ′−2(u) = (1 + a − 3
2au)2

(1 − u)u(1 + u − au2)

×
{
D2 + 18C̃ab2

(2 − a)2(1 + 4a)(1 + a − 3
2au)

+ 4C̃(1 + a)2b2u(1 + u − au2) log(u)

(2 − a)3(1 + a − 3
2au)2

− 2C̃b2

(2 − a)3

(
1 + (2 + a)(1 + 4a)u(1 + u − au2)

4(1 + a − 3
2au)2

)
log

(
1 + u − au2)

− C̃
√

1 + 4a(2 + 5a)b2K2(0)u(1 + u − au2)

2(2 − a)3(1 + a − 3
2au)2

+ 2C̃b2

(2 − a)3(1 + 4a)3/2

(
1 − 2a(5 + a)

(C.11)+ (2 + 5a)(1 + 4a)2u(1 + u − au2)

4(1 + a − 3
2au)2

)
K2(u)

}
,

and the constant D2 can be fixed as

D2 = 4C̃b2

(2 − a)4(1 + 4a)3/2

{√
1 + 4a

(
2(1 + 4a)(1 + a)2 log(2 − a) − 9a(2 − a)

)
+ 1

2
(2 + 5a)(1 + 4a)2K2(0) − (1 + a)

(
2 − 2a + 41a2)K2(1)

}
,

so that ((1 − u)F ′−2(u))|u=1 = 0. Then, we can write the solution as

F−2(u) =
u∫

du
C̃b2

4 3/2 2
2(2 − a) (1 + 4a) (1 − u)u(1 + u − au )
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×
{

8(2 − a)(1 + a)2(1 + 4a)3/2u
(
1 + u − au2) log(u)

+ (2 − a)(1 + 4a)3/2(a(2 + a)(1 + 4a)u3 − (
2 + 9a + 13a2)u2

− (
2 − 3a − 8a2)u − 4(1 + a)2) log

(
1 + u − au2)

+ (1 + 4a)2(2 + 5a)K2(0)(1 − u)
(
4(1 + a)2

+ (
2 − 3a − 8a2)u − a(2 − a)u2)

− 8(1 + a)
(
2 − 2a + 41a2)K2(1)

(
1 + a − 3

2
au

)2

− (2 − a)
(
a(1 + 4a)2(2 + 5a)u3 − (2 − a)

(
1 + 11a + 46a2 + 18a3)u2

(C.12)− a
(
1 + 11a + 46a2 + 18a3)u − 4(1 + a)2(1 − 10a − 2a2))K2(u)

}
.

Expanding this expression around u = 0, we have

(C.13)F−2(u) = C̃b2D−(1 + a) log(u) + C2 + O(u),

where C2 is an integration constant.
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