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Hypoxia increases expression of selective facilitative glucose
transporters (GLUT) and 2-deoxy-D-glucose uptake in human adipocytes
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Abstract

Hypoxia modulates the production of key inflammation-related adipokines and may underlie adipose tissue dysfunction in obesity.
Here we have examined the effects of hypoxia on glucose transport by human adipocytes. Exposure of adipocytes to hypoxia (1% O2) for
up to 24 h resulted in increases in GLUT-1 (9.2-fold), GLUT-3 (9.6-fold peak at 8 h), and GLUT-5 (8.9-fold) mRNA level compared to
adipocytes in normoxia (21% O2). In contrast, there was no change in GLUT-4, GLUT-10 or GLUT-12 expression. The rise in GLUT-1
mRNA was accompanied by a substantial increase in GLUT-1 protein (10-fold), but there was no change in GLUT-5; GLUT-3 protein
was not detected. Functional studies with [3H]2-deoxy-D-glucose showed that hypoxia led to a stimulation of glucose transport (4.4-fold)
which was blocked by cytochalasin B. These results indicate that hypoxia increases monosaccharide uptake capacity in human adipo-
cytes; this may contribute to adipose tissue dysregulation in obesity.
� 2007 Elsevier Inc.
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White adipose tissue is increasingly recognised as an
important component of whole-body homeostasis. No
longer regarded solely as energy storage cells, adipocytes
secrete a large number of protein factors (adipokines)
which are involved in a diverse range of biological func-
tions, including energy balance, lipid metabolism, insulin
sensitivity, angiogenesis, and haemostasis [1,2]. A large
number of adipokines are related to inflammation and
immunity, and these include TNFa, IL-1b, IL-6, IL-8,
MCP-1, and MIF [2–4]. Obesity is characterised by a state
of chronic, low-grade inflammation and white adipose tis-
sue participates directly in this through the increased pro-
duction of inflammation-related adipokines [2,5]. An
exception is adiponectin, with its anti-inflammatory actions
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[6]. The recruitment of macrophages into adipose tissue is
an important component of the inflammatory response
during the development of obesity [7,8].

Inflammation in adipose tissue is increasingly consid-
ered to lead to the development of the disorders associated
with obesity, such as type 2 diabetes and the metabolic syn-
drome [2,3,5,9]. However, the mechanistic basis for the
inflammatory response as tissue mass expands is unknown.
Suggestions include endoplasmic reticulum stress and oxi-
dative stress [10,11]. We have proposed that hypoxia may
act as a key trigger [2], and incubation of murine-derived
adipocytes under low O2 tension leads to an induction in
leptin, VEGF, visfatin, and PAI-1 expression [12–14]. In
a study on human adipocytes we have now shown that
the expression and secretion of several key pro-inflamma-
tory adipokines are upregulated in hypoxic conditions
induced either chemically or by low O2 tension [15]. These
include IL-6, leptin, VEGF, angiopoietin-like protein 4,
and MIF [15]. The expression and secretion of adiponectin,
on the other hand, has been shown to fall in both human
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adipocytes and in 3T3-L1 cells [12,15,16]. Evidence for
hypoxia occurring in adipose tissue in vivo in obesity has
been presented for animal models [16].

The GLUT-1 facilitative glucose transporter gene and
genes encoding glycolytic enzymes are recognised to be
hypoxia-sensitive in many cells, expression being regulated
through the hypoxia-inducible transcription factor, HIF-1
[17]. Increased GLUT-1 gene expression has been observed
in human adipocytes in response to low O2 tension [15].
However, adipose tissue expresses several different GLUT
isoforms [18,19] and in this study, we have investigated
the effects of hypoxia on the expression of the different
GLUT isoforms in human adipocytes. We show that
GLUT-1, GLUT-3, and GLUT-5 gene expression (but
not GLUT-4, GLUT-10, and GLUT-12) is increased by
hypoxia, that GLUT-1 protein is also increased, and that
these changes are accompanied by a hypoxia-induced
increase in glucose transport by human adipocytes.

Materials and methods

Cell culture. Cryopreserved human subcutaneous preadipocytes,
derived from human adipose tissue of six female subjects (mean BMI 27.3;
average age 39 years), were obtained (together with culture media) from
Zen-Bio Inc. Cells were differentiated and cultured exactly as previously
described [15]. Fully differentiated cells at day 14 post-induction were
subjected to a hypoxic environment by placing in a MIC-101 modular
incubator chamber (Billups-Rosenberg), which was flushed with 1% O2/
94% N2/5% CO2, sealed and placed at 37 �C for up to 24 h as indicated.
Control cells were cultured in a standard incubator (21% O2 and 5% CO2).
All incubations at each time-point were performed in replicates of up to
six wells. Human SGBS adipocytes (courtesy of M Wabitsch) were dif-
ferentiated and cultured as previously described [18].

Real-time PCR. Total RNA was isolated directly from mature adi-
pocytes (TRIZOL, Invitrogen), treated with DNase I (Invitrogen) and
cDNA synthesised (Reverse-iT� Kit, Abgene). Relative quantification of
gene expression was measured by real-time PCR on a Mx3005P cycler
(Stratagene) using the 2�DDCt method [20]. All samples were normalized to
Table 1
Primer sequence data used for real-time PCR and mean Ct values obtained w

Gene Sequence 50–3 0

GLUT-1 F: ATACTCATGACCATCGCGCTAG
R: AAAGAAGGCCACAAAGCCAAA

GLUT-3 F: ACTTTGACGGACAAGGGAAATG
R: ACCAGTGACAGCCAACAGG

GLUT-4 F: TTCCAACAGATAGGCTCCGAAG
R: AAGCACCGCAGAGAACACAG

GLUT-5 F: GGAGCAACAGGATCAGAGC
R: GGAAGGATGACCCAAAGGC

GLUT-10 F: GCCTTCTGCAACAGCTTCAAC
R: ACAAGCCGATGGTGCCAATG

GLUT-12 F: TGCTTGTTTATGTTGCTGCTTTT
R: TGATCCCACCAGGAAAGATCTC

POLR2A F: ATGGAGATCCCCACCAATATCC
R: CATGGGACTGGGTGCTGAAC

b-Actin F: TTGCCGACAGGATGCAGAA
R: GCCGATCCACACGGAGTACT

n.a., not applicable.
values of POLR2A or b-actin and the results expressed as ‘fold change’
relative to controls. Primers were designed using Beacon Designer soft-
ware (Premier Biosoft Int.) and the qPCR products detected using SYBR
Green (Core kit, Eurogentec) incorporating a melt curve analysis for each
run. Primer sequences are shown in Table 1.

Immunoblot analysis. Total protein lysates were prepared by collecting
the cells in lysis buffer (0.5 M Tris, pH 6.8, 10% SDS, 10% glycerol, 1 mM
PMSF, and 0.2 mM DTT) supplemented with Roche Complete protein-
ase inhibitor mix. Lysates were homogenised with a 23G syringe needle
and the protein concentration determined using BCA reagent. Samples
(30–40 lg/lane) were then separated by 10% SDS–PAGE and transferred
to a nitrocellulose membrane (Hybond-ECL, GE Healthcare). Primary
antibodies used were HIF-1a (R&D Systems), GLUT-1 (Prof S.A Bald-
win, University of Leeds, UK), GLUT-5 (Dr S.W Cushman, NIH, USA)
and a-tubulin (Sigma). Secondary antibodies, conjugated to HRP, were
anti-rabbit (Serotech), anti-mouse (Santa Cruz), and anti-goat (R&D
Systems). Signals were detected by enhanced chemiluminescence and
developed using Hyperfilm-ECL (GE Healthcare). The membranes were
successively placed in stripping buffer (62.5 mM Tris–HCl, pH 6.8, 2%
SDS, and 100 mM b-mercaptoethanol) for 30 min at 50 �C, washed with
PBS and subsequently reprobed. The intensity of the signals was quan-
tified by scanning densitometry (Phoretix 1D Quantifier, Nonlinear
Dynamics).

Measurement of 2-deoxy-D-glucose transport. Glucose transport into
cells was determined using 2-deoxy-D-glucose (2-DG) based on a protocol
from the Wabitsch laboratory (P. Fischer-Posovszky, personal commu-
nication). Cells cultured in 24-well plates were washed with PBS and then
incubated in KRH buffer (130 mM NaCl, 10 mM Hepes, 10 mM MgSO4,
2.5 mM NaH2PO4, 4.6 mM KCl, and 2.5 mM CaCl2, pH 7.4) containing
1% BSA for 15 min at 37 �C, 5% CO2. 2-DG was added to a concentration
of 60 lM containing 0.2 lCi/well of 2-deoxy-D-[1-3H]glucose (Sp. Act 315
GBq/mmol, GE Healthcare) for 5 min at 37 �C, 5% CO2. Uptake was
stopped by the addition of 2 ml of ice-cold PBS containing 200 lM
phloretin (Sigma). The cells were washed three times with PBS stop
solution, solubilised in 0.1 N NaOH for 10 min at 22 �C. The cell lysates
were subjected to liquid scintillation counting using EcoScint A fluid
(National Diagnostics). For cells subjected to hypoxia, PBS and KRH
buffers were stored in an atmosphere of 1% O2/94% N2/5% CO2 prior to
addition to the cells. The uptake of 2-DG was measured in the absence and
presence of 40 lM cytochalasin B to correct for non-specific uptake.

Statistical analysis. The results are expressed as mean values ± SE.
Differences between groups were analysed by unpaired Student’s t tests.
ith adipocytes (Zen-Bio) under basal (normoxic) conditions

Size (bp) Ct value

93 25.7
G

180 22.8

87 27.1

89 21.4

82 25.1

T 86 28.8

81 26.2

101 n.a
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Fig. 1. Facilitative glucose transporter gene expression in human adipo-
cytes in hypoxia. Adipocytes at day 14 (post-induction of differentiation)
were exposed to 21% or 1% O2 for up to 24 h. Total RNA was isolated and
GLUT gene family mRNAs quantified by real-time PCR. Results are
mean values ± SE (n = 4), expressed as relative to the control group. (A)
‘Zen-Bio’ adipocytes; (B) SGBS adipocytes. Twenty-one percent of O2

(open bars); 1% O2 (shaded bars). *P < 0.05; **P < 0.01; ***P < 0.001,
compared to adipocytes in normoxia.
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Results

Expression of facilitative glucose transporter (GLUT) genes

in hypoxia

Human adipocytes differentiated from preadipocytes
(Zen-Bio) in culture were incubated in 21% or 1% O2 for
4, 8, and 24 h, and the levels of mRNA for specified GLUT
gene family members assessed by real-time PCR. As shown
in Fig. 1A, a significant increase (4-fold) was observed in
the relative level of GLUT-1 mRNA by 4 h and at the sub-
sequent time points. GLUT-1 mRNA level was highest at
24 h, with a 9.2-fold increase. When the cells were returned
to 21% O2 (for 16 h) following exposure to 1% O2 for 8 h,
GLUT-1 mRNA level returned to initial levels.

There was also a significant elevation in the level of
GLUT-3 and GLUT-5 mRNAs in hypoxia at each of three
time points examined (Fig. 1A). In the case of GLUT-3, the
maximum increase was 9.6-fold at 8 h and the mRNA level
returned to normal following 16 h recovery in normoxia. A
significant increase in GLUT-5 mRNA was observed by
4 h at 1% O2 and the level increased to a maximum of
8.9-fold at 24 h. However, unlike GLUT-1 and GLUT-3,
GLUT-5 mRNA remained unchanged following return of
the cells to 21% O2 for 16 h (Fig. 1A). Analysis of
GLUT-4, GLUT-10, and GLUT-12 revealed that in con-
trast to the previous GLUTs, there was no significant
change in mRNA levels following exposure to low O2 ten-
sion (Fig. 1A).

To determine whether hypoxia-induced expression of
GLUT-1, GLUT-3, and GLUT-5 is characteristic of
human adipocytes, SGBS adipocytes were exposed to 1%
O2 for 24 h. Similar findings to Zen-Bio adipocytes were
observed in that increases in mRNA levels were found
for GLUT-1 (14.6-fold), GLUT-3 (6.4-fold), and GLUT-
5 (2.8-fold), whereas no significant change was detected
for GLUT-4, GLUT-10 or GLUT-12 (Fig. 1B). One differ-
ence between the two adipocyte types was that while the
increase in GLUT-5 mRNA in the Zen-Bio cells was higher
than that of GLUT-3, this was opposite in the SGBS cell
strain. The Ct values obtained under basal conditions for
each of the GLUTs are shown in Table 1.

Immunoblot analysis of GLUT proteins in hypoxia

In the next experiments, the effect of hypoxia on GLUT
protein levels was examined. Total cellular lysates prepared
from the differentiated adipocytes were examined with anti-
bodies to those GLUT family members which showed an
increase in gene expression following exposure to 1% O2.
Initially, induction of HIF-1a, the inducible subunit of the
hypoxia-sensitive transcription factor HIF-1, was con-
firmed in the adipocytes by Western blotting (Fig 2A).
The GLUT protein pattern is shown in Fig. 2B. When nor-
malised to the a-tubulin signal, an increase of over 10-fold
in GLUT-1 protein abundance was found in the hypoxic
cells compared to the controls (Fig. 2C). However, there
was no change in the abundance of GLUT-5. Despite
repeated attempts with four different antibodies, we were
unable to detect an unambiguous, specific signal for
GLUT-3 protein.
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Fig. 2. Facilitative glucose transporter protein expression in human
adipocytes in hypoxia. Adipocytes at day 14 (post-induction of differen-
tiation) were exposed to 21% or 1% O2 for 24 h. Total cellular lysates were
isolated and western blot analysis performed for (A) HIF-1a, and (B)
GLUT-1 and GLUT-5. Representative blots are shown. (C) Quantifica-
tion of GLUT-1 and GLUT-5 proteins by densitometry normalised to a-
tubulin. The densitometry values for each protein are set relative to the
respective control as =1. n = 5 per group, AU = arbitrary units. Twenty-
one percent of O2 (open bars); 1% O2 (shaded bars). ***P < 0.001,
compared to adipocytes in normoxia.
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Fig. 3. Uptake of 2-deoxy-D-glucose by human adipocytes in hypoxia.
Adipocytes at day 14 (post-induction of differentiation) were exposed to
21% or 1% O2 for 24 h. Uptake of [3H]2-deoxy-D-glucose was measured in
the absence and presence of 40 lM cytochalasin B (�/+ CytoB). The
results are expressed as mean values ± SE, (n = 6, in three separate
experiments). Twenty-one percent of O2 (open bars); 1% O2 (shaded bars).
***P < 0.001, compared to adipocytes in normoxia.
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2-Deoxy-D-glucose uptake in hypoxia

To assess the functional consequences of increased
GLUT expression following exposure of human adipocytes
to 1% O2, the uptake of 2-DG, a non-metabolised analogue
of D-glucose, was determined. The results in Fig. 3 show
that 24 h exposure to 1% O2 led to a 3.3-fold increase in
the uptake of 2-DG by the adipocytes. Incubation in the
presence of the glucose transport inhibitor, cytochalasin
B, resulted in a marked fall in 2-DG uptake with the com-
plete abolition of the hypoxia-induced increase (Fig. 3).
Correction of the uptake data for non-specific transport
(uptake in the presence of cytochalasin B) indicates that
hypoxia increased 2-DG uptake 4.5-fold.
Discussion

We have proposed that hypoxia occurs in white adipose
tissue as tissue mass increases during the development of
obesity, and that this underlies the inflammatory response
leading to obesity-associated diseases such as type 2 diabe-
tes and the metabolic syndrome [2]. This concept is based on
several observations, particularly that hypertrophied adipo-
cytes are larger than the normal diffusion distance of O2
within tissues [14], that the proportion of the cardiac output
to adipose tissue is not increased in the obese [21], and that
obese subjects do not exhibit the post-prandial increase in
blood flow to adipose tissue that occurs in the lean [22]. Sev-
eral recent studies are consistent with this proposition, dem-
onstrating increased expression and secretion of
inflammation-related adipokines such as IL-6, leptin,
MIF, and VEGF by adipocytes (including human) under
hypoxic conditions [12–15]. In contrast, adiponectin pro-
duction by adipocytes is inhibited by hypoxia [12,15,16].

There are multiple metabolic adaptations to a reduced
O2 environment, with cells switching to anaerobic glycoly-
sis thereby producing less cellular ATP per glucose mole-
cule (Pasteur Effect). Consequently, the demand for
glucose rises leading to an increase in the number of glu-
cose transporters on the plasma membrane. The present
study demonstrates that in human adipocytes exposure to
hypoxia selectively regulates members of the GLUT trans-
porter family. It also demonstrates that human adipocytes,
like other cell types, increase their uptake of glucose in
response to low O2 tension. The data presented would indi-
cate that the induction of GLUT-1 is mainly responsible
for the increased glucose uptake, both GLUT-1 mRNA
and protein increasing markedly in cells maintained in hyp-
oxic conditions. The increase in GLUT-1 mRNA is consis-
tent with recent observation on human adipocytes [15] and
on mouse 3T3-L1 cells [16]. Upregulation of GLUT-1 pro-
tein represents a response to chronic hypoxia [23], with
GLUT-1 gene transcription being directly regulated by
HIF-1a [24].

Increases in GLUT-3 and GLUT-5 gene expression were
also observed in response to hypoxia in the present study.
However, in the case of GLUT-3 we were unable to detect
the protein itself—despite using different antibodies which
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provided a clear signal in tissues such as the brain in which
this transporter is present. The apparent absence of
GLUT-3 protein, or its presence at very low levels, would
indicate that this GLUT isoform does not play a role in
the hypoxia-induced stimulation in glucose transport by
human adipocytes. Previous studies have also shown dis-
cordance between GLUT-3 mRNA levels and protein
expression [25,26]. GLUT-3 gene expression has been
observed previously in adipose tissue [27]. The signal
observed here in cultured human adipocytes by real-time
PCR occurred at a low Ct value (Table 1), indicating a rel-
atively high abundance of the mRNA. We have also
detected GLUT-3 mRNA by RT-PCR and confirmed its
identity by DNA sequencing in both human adipocytes
and 3T3-L1 cells (results not shown). GLUT-3 is not as
widely characterised as GLUT-1, but it has recently been
shown to be hypoxia-responsive in neural stem cells [28].

Although the expression of GLUT-5 was found to be
upregulated during hypoxia, a corresponding increase in
protein abundance was not detected following 24 h expo-
sure to 1% O2. While its role as a fructose transporter
means that GLUT-5 would not have contributed to the
hypoxia-induced increase in glucose uptake, a requirement
for fructose by hypoxic adipocytes has not been reported.
Post-translational mechanisms may regulate the expression
of the protein under hypoxic conditions in particular.

The absence of any response to hypoxia for GLUT-4,
GLUT-10, and GLUT-12 gene expression suggests that
these transporters do not contribute to the increased glu-
cose uptake of hypoxic adipocytes. Similarly, the protein
levels for GLUT-4 in total cell lysates remained unchanged
(results not shown). Our results are similar to the finding
that L6 muscle cells show no change in GLUT-4 protein
levels in total plasma membranes in response to low O2 ten-
sion [29]. However, it has been reported that sequestered
intracellular vesicles of GLUT-4 are translocated to the
plasma membrane during acute hypoxia by a mechanism
distinct from that occurring with insulin stimulation [30].
Acute translocation of GLUT-4 to the plasma membrane
takes place independently of transcription or translation
[31], and the possibility that such a process may occur in
hypoxic adipocytes cannot be excluded. Similarly,
GLUT-12 is thought to reside in intracellular vesicles and
may be subject to translocation under parallel conditions
[32]. However, no information is available with regard to
a potential role in hypoxia for either GLUT-12 or
GLUT-10.

The recruitment and activation of glycolytic enzymes by
hypoxia are well established [33] and the increased influx of
glucose would be expected to cause disruption to cellular
glucose homeostasis. There is now considerable evidence
in support of adipocytes being regulators of glucose
homeostasis through both endocrine and non-endocrine
mechanisms [34]. Indeed, the concept that the adipocyte
can act as a glucose sensor has been proposed [35]. In this
model, decreased glucose influx into the cell may provide
signal cues that are released by the adipocyte. The situation
in hypoxia where anaerobic glycolysis is enhanced may
impose the opposite, but nonetheless detrimental, effect
as a result of excess glucose influx.

In conclusion, prolonged exposure to hypoxia may lead
to cellular dysfunction beyond that directly involving the
production of adipokines, such as in disruption to cellular
glucose and lipid metabolism; this may underscore the ini-
tiation and progression of obesity-related disorders.
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