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Abstract

Fractional Sobolev spaces, also known as Besov or Slobodetski spaces, arise in many areas of analysis,
stochastic analysis in particular. We prove an embedding into certain q-variation spaces. Applications in-
clude a new route to a regularity result by Kusuoka for stochastic differential equations, integration against
Besov-paths, a regularity criterion for rough paths and a new regularity result for Cameron–Martin paths
associated to fractional Brownian motion.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Fractional Sobolev, Besov spaces; q-Variation embedding; Rough paths; Regularity of the Ito-map;
Regularity of Cameron–Martin

1. Fractional Sobolev spaces

For a real valued measurable path h : [0,1] → R and δ ∈ (0,1) and p ∈ (1,∞) we define the
fractional Sobolev (semi-)norm

|h|Wδ,p =
( ∫ ∫

[0,1]2

|ht − hs |p
|t − s|1+δp

ds dt

)1/p

∈ [0,+∞].
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For δ = 1 and p ∈ (1,∞), writing ḣ for the weak derivative, we set

|h|W 1,p =
( 1∫

0

|ḣt |p dt

)1/p

∈ [0,+∞].

Define Wδ,p as the set of h for which |h|Lp + |h|Wδ,p < ∞. They are known to be Banach-
spaces. For 1 � δ > 1/p > 0 one can assume that h is continuous; compare with the embedding
theorems below. It then makes sense to consider the closed subspace

W
δ,p

0 = {
h ∈ Wδ,p: h(0) = 0

}
which is Banach under | · |Wδ,p . We finally remark that the space W 1,p is precisely the set of
absolutely continuous paths on [0,1] with (a.e. defined) derivative in Lp[0,1]. The space W

1,2
0

is the usual Cameron–Martin space for Brownian motion. We recall some well-known continuous
respectively compact embeddings1 [1–3],

p ∈ (1,∞), 1 � δ̃ > δ � 0 ⇒ Wδ̃,p � Wδ,p, (1.1)

1 < p � q < ∞, δ ≡ 1 − 1/p + 1/q > 0 ⇒ W 1,p ⊂ Wδ,q . (1.2)

2. A q-variation embedding

Theorem 1. Let p ∈ (1,∞) and α = 1 − 1/p > 0. Then the variation of any h ∈ W 1,p is con-
trolled by the control function2

ω(s, t) = |h|W 1,p;[s,t](t − s)α, 0 � s � t � 1

and we have the continuous embeddings

W 1,p ⊂ Cα-Hölder and W 1,p ⊂ C1-var.

Proof. By absolute continuity and Hölder’s inequality with conjugate exponents p and 1/α

|hs,t | =
t∫

s

|ḣr |dr � (t − s)α

( t∫
s

|ḣr |p dr

)1/p

= |h|W 1,p;[s,t](t − s)α.

We now show that the variation of h is controlled by the control function

ω(s, t) = |h|W 1,p;[s,t](t − s)α, t � s.

Only super-additivity, ω(s, t)+ω(t, u) � ω(s,u) with s � t � u, is non-trivial. Note p ∈ (1,∞).
From Hölder’s inequality with conjugate exponents p and p/(p − 1) = 1/α we obtain

1 The symbol � means compact embedding.
2 A continuous, super-additive map (s, t) 	→ ω(s, t) ∈ [0,∞), defined for 0 � s � t � 1.
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|h|W 1,p;[s,t](t − s)α + |h|W 1,p;[t,u](u − t)α

�
(|h|p

W 1,p;[s,t] + |h|p
W 1,p;[t,u]

)1/p[
(t − s)

α
p

p−1 + (u − t)
α

p
p−1

](p−1)/p

= |h|W 1,p;[s,u](u − t)α.

This shows that ω is super-additive and we conclude that for any 0 � a < b � 1,

|h|1-var;[a,b] � ω(a, b) = |b − a|α|h|W 1,p;[a,b].

In particular, we established W 1,p ⊂ Cα-Hölder and W 1,p ⊂ C1-var. �
Theorem 2. Let 0 < δ < 1 and p � 1 such that

α = δ − 1/p > 0.

Set q = 1/δ. Then the q-variation of any h ∈ Wδ,p is controlled by a constant multiple of the
control function

ω(s, t) = |h|q
Wδ,p;[s,t](t − s)αq, 0 � s � t � 1,

and we have the continuous embeddings

Wδ,p ⊂ Cα-Hölder and Wδ,p ⊂ Cq-var.

Proof. We have

|h|p
Wδ,p;[s,t] ≡ Fs,t =

∫ ∫
[s,t]2

|hu,v|p
|v − u|1+δp

dudv =
∫ ∫
[s,t]2

( |hu,v|
|v − u|1/p+δ

)p

dudv.

The Garsia–Rodemich–Rumsey lemma with Ψ (·) = (·)p and p(·) = (·)1/p+δ yields

|hs,t | � C

t−s∫
0

(
Fs,t

u2

)1/p

dp(u) = C|h|Wδ,p;[s,t]

t−s∫
0

u−2/p dp(u)

= C|h|Wδ,p;[s,t]

t−s∫
0

u−1/p+δ−1 du = C|h|Wδ,p;[s,t](t − s)δ−1/p,

using α ≡ δ − 1/p > 0. We now show that the q-variation of h is controlled by the control
function

ω(s, t) := |h|q
Wδ,p;[s,t](t − s)αq, t � s.

Only super-additivity, ω(s, t)+ω(t, u) � ω(s,u) with s � t � u, is non-trivial. Note that p/q =
1/(pα + 1) ∈ (1,∞). From Hölder’s inequality with conjugate exponents p/q and p/(p − q)

we obtain
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|h|q
Wδ,p;[s,t](t − s)qα + |h|q

Wδ,p;[t,u](u − t)qα

�
(|h|p

Wδ,p;[s,t] + |h|p
Wδ,p;[t,u]

)q/p[
(t − s)

qα
p

p−q + (u − t)
qα

p
p−q

](p−q)/p
.

The first factor is easily estimated:

(|h|p
Wδ,p;[s,t] + |h|p

Wδ,p;[t,u]
)q/p � |h|q

Wδ,p;[s,u].

To estimate the second factor note that the exponent of t − s, respectively u − t , equals one;
indeed

qα
p

p − q
= 1 ⇐⇒ q = p

pα + 1

and the second factor equals

(u − s)(p−q)/p = (u − s)qα.

This shows that ω is super-additive and we conclude that for any 0 � a < b � 1,

|h|q-var;[a,b] � Cω(a, b)1/q = C|b − a|α|h|Wδ,p;[a,b].

In particular, we have established continuity of the embeddings

Wδ,p ⊂ Cα-Hölder and Wδ,p ⊂ Cq-var. �
The case p = 2 deserves special attention. The assumptions of Theorem 2 are then satisfied

for any δ ∈ (1/2,1).

Remark 1. In [7], Kusuoka discusses differentiability of SDE solution beyond the usual Malli-
avin sense. In particular, he shows the existence of a nice version of the Itô-map which has
derivatives in directions W

δ,2
0 ⊃ W

1,2
0 for δ ∈ (1/2,1). Since W

δ,2
0 ⊂ Cq-var with q = 1/δ < 2

this result is now explained by Lyons’ theory of rough paths [8,9]. Note that in Lyons’ continuity
statements the modulus ω is preserved. This implies that after perturbation a Brownian path in
a W

δ,2
0 -direction the solution maintains α-Hölder regularity with α = δ − 1/2. (Clearly, this is

not true for an arbitrary perturbation in Cq-var!) We can then extend Gateaux-differentiability to
suited W

δ,p

0 -spaces as long as δ − 1/p > 0 and even apply this to rough path differential equa-
tions driven by enhanced fBM. We note that Kusuoka’s full statement is on Fréchet-smoothness
in starting point and perturbations in W

δ,2
0 . It should be possible to recover this by a careful ap-

plication of Lyons’ universal limit theorem, noting that all estimates are uniform over bounded
sets, but this is not the aim of this paper. (In [10] smoothness in starting point and perturbations
is discussed separately.)

Remark 2. Integrals of form
∫

f dg for f,g ∈ Wδ,2 are discussed in [12]. Theorem 2 reveals
them as normal Young-integral. Following [10] its continuity properties of (f, g) 	→ ∫

f dg are
conveniently expressed in terms of the modulus ω. In particular, the modulus of continuity of the
indefinite integral

∫
f dg is immediately controlled by the Wδ,2-Sobolev-norms of f and g and
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we can easily extend this to Wδ,p provided δ − 1/p > 0. On the other hand, we have no control
of the Wδ,2-norm of the indefinite integral.

Remark 3. When δ < 1 the notion of Wδ,p makes perfect sense for paths with values in a metric
space (E,d). Theorem 2 still holds with the same proof.3 The case of the free step-N nilpotent
group (GN(Rd),⊗) with Carnot–Caratheodory norm ‖ · ‖ and distance d(x, y) = ‖x−1 ⊗ y‖
is of particular importance: Theorem 2 is a criterion for variation and Hölder regularity of a
GN(Rd)-valued path, a fundamental aspect in Lyons’ theory of rough paths [8]. To illustrate the
idea we give a simple application to enhanced Brownian motion B, see [4,5]. Then4

E‖B‖p

Wδ,p;[0,1] =
∫ ∫
[0,1]2

E‖Bs,t‖p

|t − s|1+δp
ds dt = E‖B0,1‖p

∫ ∫
[0,1]2

|t − s|p/2−1−δp ds dt.

For every α < 1/2 and δ ∈ (α,1/2) there exists p0(δ) such that for all p � p0 the double integral
is bounded by 1. Thus for all p large enough,

E‖B‖p

Wδ,p;[0,1] � E‖B0,1‖p.

Is is well known, [5], that ‖B0,1‖ has a Gaussian tail and it follows that ‖B‖Wδ,p has a Gaussian
tail, provided p � p0(δ). For p large enough we have α � δ − 1/p and we conclude that
‖B‖α-Hölder has a Gaussian tail, too. For a direct proof see [4]. Note that the law of B is not
Gaussian and there are no Fernique-type results. Finally, a similar proof can be given for en-
hanced fractional Brownian motion.

Remark 4. Potential spaces, see [2] and the references therein, are a popular alternative to frac-
tional Sobolev spaces. But only the latter adapt easily to (E,d)-valued paths as required in rough
path analysis.

Remark 5. The Wδ,p-embedding of Theorem 2 has two different regimes:

(1) For p large one has q = 1/δ ∼ 1/α. Since every α-Hölder path has finite 1/α-variation (the
converse not being true) one can forget about q-variation.

(2) When p is small, the variation parameter q = 1/δ can be considerably smaller than 1/α and
q-variation is an essential part of the regularity. Elementary examples show that q-variation
does not imply any Hölder regularity and therefore one should not forget about α-Hölder
regularity. The fractional Sobolev space Wδ,p respectively the modulus ω are tailor-made
to keep track of both regularity aspects. Finally, we note that any finite 1/δ-variation path
can be reparametrized to a δ-Hölder path. In comparison, without reparametrization one has
only Hölder regularity of exponent α = δ − 1/p.

3 Simply write hs,t ≡ d(hs ,ht ) and note that the Garsia–Rodemich–Rumsey lemma works for (E,d)-valued continu-
ous functions.

4 Note ‖Bs,t‖D=|t − s|1/2‖B0,1‖.
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3. Cameron–Martin space of fBM

We consider fractional Brownian motion with H ∈ (0,1/2). Call HH the associated
Cameron–Martin space.

Theorem 3. Let 1/2 < δ < H + 1/2. Then HH � W
δ,2
0 .

Proof. From [2] and the references therein we know that HH is continuously embedded in the
potential space I+

H+1/2,2 which we need not define here. Then, [2,3], I+
H+1/2,2 ⊂ Wδ,2 so that

HH ⊂ Wδ,2. (3.1)

The compact embeddings is obtained by a standard squeezing argument: replace δ by δ̃ ∈ (δ,H +
1/2), repeat the argument for δ̃ and then use (1.1). �
Corollary 1. For α ∈ (0,H) and 1/(H + 1/2) < q < ∞ we have

HH � Cα-Hölder, HH � Cq-var.

Remark 6. From HH ⊂ I+
H+1/2,2 it follows that HH ⊂ CH -Hölder, this is well known [2].

Remark 7. For any H ∈ (0,1/2) we can find 1/(H + 1/2) < q < 2. This has useful conse-
quences. For instance, for h,g ∈HH that integral

∫
hdg makes sense as classical Young integral

with all its continuity properties. In particular, the lift of h ∈ HH to a geometric p-rough paths
p > 1/H , see [11], is well defined and convergence of piecewise-linear approximations, uni-
formly over bounded sets in HH , is an easy consequence. Such a result leads to a quick proof of
a large deviations principle for enhanced fractional Brownian motion, see [6] for details.

Appendix A

The proof of (3.1) appears somewhat spread out in the references. We present a direct argu-
ment which avoids potential spaces and fractional calculus and extends to other Volterra kernels.5

Step 1. HH is the image of L2[0,1] under the integral operator K = K1 + K2 where

K1(t, s) = (t − s)H−1/2,

K2(t, s) = sH−1/2F1(t/s), F1 =
(·)−1∫
0

uH−3/2(1 − (u + 1)H−1/2),

for s < t . Set hi = Kig ≡ ∫ ·
0 Ki(·, s)g(s) ds with g ∈ L2[0,1], i = 1,2.

Step 2. An elementary computation shows

5 For instance, every kernel for which one can get estimates as those in Step 2 will lead to a fractional Sobolev embed-
ding.
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sup
u∈[0,1]

1−t∫
0

∣∣K1(s + t, u) − K1(s, u)
∣∣ds = O

(
tH+1/2),

sup
s∈[0,1−t]

1∫
0

∣∣K1(s + t, u) − K1(s, u)
∣∣du = O

(
tH+1/2).

From Cauchy–Schwartz and trivial sup-estimates,

(∗) :=
1−t∫

s=0

∣∣h1(s + t) − h(s)
∣∣2

ds = |g|2
L2 · O(

t1+2H
)
.

The Wδ,2-norm of h1 is equivalent to
∫

dt (∗)/t1+2δ which is less than C|g|2
L2 provided 1 +

2H − (1 + 2δ) > −1 and this happens precisely for δ < H + 1/2.
Step 3. A straight-forward computation shows (one can assume g ∈ C1 ∩ L2 for the com-

putation) that |ḣ2| < C|g|2
L2 provided p < 1/(1 − H) and hence h2 ∈ W 1,p . From (1.2),

W 1,1/(1−H) ⊂ WH+1/2,2. Similarly, given δ < H +1/2 we can find p < 1/(1−H), close enough
to 1/(1 − H) so that W 1,p ⊂ Wδ,2.
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