





JOURNAL OF Functional Analysis

Journal of Functional Analysis 239 (2006) 631-637

www.elsevier.com/locate/jfa

# A variation embedding theorem and applications

Peter Friz a,\*, Nicolas Victoir

<sup>a</sup> Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, UK

Received 28 November 2005; accepted 20 December 2005

Available online 3 February 2006

Communicated by Paul Malliavin

#### Abstract

Fractional Sobolev spaces, also known as Besov or Slobodetski spaces, arise in many areas of analysis, stochastic analysis in particular. We prove an embedding into certain q-variation spaces. Applications include a new route to a regularity result by Kusuoka for stochastic differential equations, integration against Besov-paths, a regularity criterion for rough paths and a new regularity result for Cameron–Martin paths associated to fractional Brownian motion.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Fractional Sobolev, Besov spaces; q-Variation embedding; Rough paths; Regularity of the Ito-map; Regularity of Cameron–Martin

## 1. Fractional Sobolev spaces

For a real valued measurable path  $h:[0,1] \to \mathbb{R}$  and  $\delta \in (0,1)$  and  $p \in (1,\infty)$  we define the fractional Sobolev (semi-)norm

$$|h|_{W^{\delta,p}} = \left(\iint_{[0,1]^2} \frac{|h_t - h_s|^p}{|t - s|^{1 + \delta p}} \, ds \, dt\right)^{1/p} \in [0, +\infty].$$

E-mail address: p.k.friz@statslab.cam.ac.uk (P. Friz).

<sup>\*</sup> Corresponding author.

For  $\delta = 1$  and  $p \in (1, \infty)$ , writing  $\dot{h}$  for the weak derivative, we set

$$|h|_{W^{1,p}} = \left(\int_{0}^{1} |\dot{h}_{t}|^{p} dt\right)^{1/p} \in [0, +\infty].$$

Define  $W^{\delta,p}$  as the set of h for which  $|h|_{L^p} + |h|_{W^{\delta,p}} < \infty$ . They are known to be Banach-spaces. For  $1 \ge \delta > 1/p > 0$  one can assume that h is continuous; compare with the embedding theorems below. It then makes sense to consider the closed subspace

$$W_0^{\delta, p} = \{ h \in W^{\delta, p} \colon h(0) = 0 \}$$

which is Banach under  $|\cdot|_{W^{\delta,p}}$ . We finally remark that the space  $W^{1,p}$  is precisely the set of absolutely continuous paths on [0,1] with (a.e. defined) derivative in  $L^p[0,1]$ . The space  $W_0^{1,2}$  is the usual Cameron–Martin space for Brownian motion. We recall some well-known continuous respectively compact embeddings<sup>1</sup> [1-3],

$$p \in (1, \infty), \quad 1 \geqslant \tilde{\delta} > \delta \geqslant 0 \quad \Rightarrow \quad W^{\tilde{\delta}, p} \in W^{\delta, p},$$
 (1.1)

$$1 0 \quad \Rightarrow \quad W^{1,p} \subset W^{\delta,q}. \tag{1.2}$$

## 2. A q-variation embedding

**Theorem 1.** Let  $p \in (1, \infty)$  and  $\alpha = 1 - 1/p > 0$ . Then the variation of any  $h \in W^{1,p}$  is controlled by the control function<sup>2</sup>

$$\omega(s,t) = |h|_{W^{1,p};[s,t]} (t-s)^{\alpha}, \quad 0 \leqslant s \leqslant t \leqslant 1$$

and we have the continuous embeddings

$$W^{1,p} \subset C^{\alpha\text{-H\"older}}$$
 and  $W^{1,p} \subset C^{1\text{-var}}$ .

**Proof.** By absolute continuity and Hölder's inequality with conjugate exponents p and  $1/\alpha$ 

$$|h_{s,t}| = \int_{s}^{t} |\dot{h}_{r}| dr \leqslant (t-s)^{\alpha} \left( \int_{s}^{t} |\dot{h}_{r}|^{p} dr \right)^{1/p} = |h|_{W^{1,p};[s,t]} (t-s)^{\alpha}.$$

We now show that the variation of h is controlled by the control function

$$\omega(s,t) = |h|_{W^{1,p}:[s,t]}(t-s)^{\alpha}, \quad t \geqslant s.$$

Only super-additivity,  $\omega(s,t) + \omega(t,u) \le \omega(s,u)$  with  $s \le t \le u$ , is non-trivial. Note  $p \in (1,\infty)$ . From Hölder's inequality with conjugate exponents p and  $p/(p-1) = 1/\alpha$  we obtain

<sup>&</sup>lt;sup>1</sup> The symbol ∈ means compact embedding.

A continuous, super-additive map  $(s, t) \mapsto \omega(s, t) \in [0, \infty)$ , defined for  $0 \le s \le t \le 1$ .

$$\begin{split} |h|_{W^{1,p};[s,t]}(t-s)^{\alpha} + |h|_{W^{1,p};[t,u]}(u-t)^{\alpha} \\ & \leq \left(|h|_{W^{1,p};[s,t]}^{p} + |h|_{W^{1,p};[t,u]}^{p}\right)^{1/p} \left[(t-s)^{\alpha\frac{p}{p-1}} + (u-t)^{\alpha\frac{p}{p-1}}\right]^{(p-1)/p} \\ & = |h|_{W^{1,p};[s,u]}(u-t)^{\alpha}. \end{split}$$

This shows that  $\omega$  is super-additive and we conclude that for any  $0 \le a < b \le 1$ ,

$$|h|_{1\text{-var},[a,b]} \le \omega(a,b) = |b-a|^{\alpha} |h|_{W^{1,p},[a,b]}.$$

In particular, we established  $W^{1,p} \subset C^{\alpha\text{-H\"older}}$  and  $W^{1,p} \subset C^{1\text{-var}}$ .  $\square$ 

**Theorem 2.** Let  $0 < \delta < 1$  and  $p \ge 1$  such that

$$\alpha = \delta - 1/p > 0.$$

Set  $q = 1/\delta$ . Then the q-variation of any  $h \in W^{\delta,p}$  is controlled by a constant multiple of the control function

$$\omega(s,t) = |h|_{W^{\delta,p};[s,t]}^q(t-s)^{\alpha q}, \quad 0 \leqslant s \leqslant t \leqslant 1,$$

and we have the continuous embeddings

$$W^{\delta,p} \subset C^{\alpha\text{-H\"older}}$$
 and  $W^{\delta,p} \subset C^{q\text{-var}}$ .

**Proof.** We have

$$|h|_{W^{\delta,p};[s,t]}^p \equiv F_{s,t} = \iint_{[s,t]^2} \frac{|h_{u,v}|^p}{|v-u|^{1+\delta p}} du dv = \iint_{[s,t]^2} \left(\frac{|h_{u,v}|}{|v-u|^{1/p+\delta}}\right)^p du dv.$$

The Garsia–Rodemich–Rumsey lemma with  $\Psi(\cdot) = (\cdot)^p$  and  $p(\cdot) = (\cdot)^{1/p+\delta}$  yields

$$|h_{s,t}| \leq C \int_{0}^{t-s} \left(\frac{F_{s,t}}{u^2}\right)^{1/p} dp(u) = C|h|_{W^{\delta,p};[s,t]} \int_{0}^{t-s} u^{-2/p} dp(u)$$

$$= C|h|_{W^{\delta,p};[s,t]} \int_{0}^{t-s} u^{-1/p+\delta-1} du = C|h|_{W^{\delta,p};[s,t]} (t-s)^{\delta-1/p},$$

using  $\alpha \equiv \delta - 1/p > 0$ . We now show that the *q*-variation of *h* is controlled by the control function

$$\omega(s,t) := |h|_{W^{\delta,p};[s,t]}^q(t-s)^{\alpha q}, \quad t \geqslant s.$$

Only super-additivity,  $\omega(s,t) + \omega(t,u) \le \omega(s,u)$  with  $s \le t \le u$ , is non-trivial. Note that  $p/q = 1/(p\alpha + 1) \in (1,\infty)$ . From Hölder's inequality with conjugate exponents p/q and p/(p-q) we obtain

$$\begin{split} &|h|_{W^{\delta,p};[s,t]}^q(t-s)^{q\alpha} + |h|_{W^{\delta,p};[t,u]}^q(u-t)^{q\alpha} \\ &\leq \left(|h|_{W^{\delta,p};[s,t]}^p + |h|_{W^{\delta,p};[t,u]}^p\right)^{q/p} \left[(t-s)^{q\alpha\frac{p}{p-q}} + (u-t)^{q\alpha\frac{p}{p-q}}\right]^{(p-q)/p}. \end{split}$$

The first factor is easily estimated:

$$(|h|_{W^{\delta,p};[s,t]}^p + |h|_{W^{\delta,p};[t,u]}^p)^{q/p} \le |h|_{W^{\delta,p};[s,u]}^q.$$

To estimate the second factor note that the exponent of t - s, respectively u - t, equals one; indeed

$$q\alpha \frac{p}{p-q} = 1 \iff q = \frac{p}{p\alpha + 1}$$

and the second factor equals

$$(u-s)^{(p-q)/p} = (u-s)^{q\alpha}$$
.

This shows that  $\omega$  is super-additive and we conclude that for any  $0 \le a < b \le 1$ ,

$$|h|_{q\text{-var};[a,b]} \le C\omega(a,b)^{1/q} = C|b-a|^{\alpha}|h|_{W^{\delta,p};[a,b]}.$$

In particular, we have established continuity of the embeddings

$$W^{\delta,p} \subset C^{\alpha ext{-H\"older}}$$
 and  $W^{\delta,p} \subset C^{q ext{-var}}$ .

The case p = 2 deserves special attention. The assumptions of Theorem 2 are then satisfied for any  $\delta \in (1/2, 1)$ .

Remark 1. In [7], Kusuoka discusses differentiability of SDE solution beyond the usual Malliavin sense. In particular, he shows the existence of a nice version of the Itô-map which has derivatives in directions  $W_0^{\delta,2}\supset W_0^{1,2}$  for  $\delta\in(1/2,1)$ . Since  $W_0^{\delta,2}\subset C^{q\text{-var}}$  with  $q=1/\delta<2$  this result is now explained by Lyons' theory of rough paths [8,9]. Note that in Lyons' continuity statements the modulus  $\omega$  is preserved. This implies that after perturbation a Brownian path in a  $W_0^{\delta,2}$ -direction the solution maintains  $\alpha$ -Hölder regularity with  $\alpha=\delta-1/2$ . (Clearly, this is not true for an arbitrary perturbation in  $C^{q\text{-var}}$ !) We can then extend Gateaux-differentiability to suited  $W_0^{\delta,p}$ -spaces as long as  $\delta-1/p>0$  and even apply this to rough path differential equations driven by enhanced fBM. We note that Kusuoka's full statement is on Fréchet-smoothness in starting point and perturbations in  $W_0^{\delta,2}$ . It should be possible to recover this by a careful application of Lyons' universal limit theorem, noting that all estimates are uniform over bounded sets, but this is not the aim of this paper. (In [10] smoothness in starting point and perturbations is discussed separately.)

**Remark 2.** Integrals of form  $\int f \, dg$  for  $f, g \in W^{\delta,2}$  are discussed in [12]. Theorem 2 reveals them as normal Young-integral. Following [10] its continuity properties of  $(f,g) \mapsto \int f \, dg$  are conveniently expressed in terms of the modulus  $\omega$ . In particular, the modulus of continuity of the indefinite integral  $\int f \, dg$  is immediately controlled by the  $W^{\delta,2}$ -Sobolev-norms of f and g and

we can easily extend this to  $W^{\delta,p}$  provided  $\delta - 1/p > 0$ . On the other hand, we have no control of the  $W^{\delta,2}$ -norm of the indefinite integral.

**Remark 3.** When  $\delta < 1$  the notion of  $W^{\delta,p}$  makes perfect sense for paths with values in a metric space (E,d). Theorem 2 still holds with the same proof.<sup>3</sup> The case of the free step-N nilpotent group  $(G^N(\mathbb{R}^d), \otimes)$  with Carnot–Caratheodory norm  $\|\cdot\|$  and distance  $d(x,y) = \|x^{-1} \otimes y\|$  is of particular importance: Theorem 2 is a criterion for variation and Hölder regularity of a  $G^N(\mathbb{R}^d)$ -valued path, a fundamental aspect in Lyons' theory of rough paths [8]. To illustrate the idea we give a simple application to enhanced Brownian motion  $\mathbf{B}$ , see [4,5]. Then<sup>4</sup>

$$\mathbb{E}\|\mathbf{B}\|_{W^{\delta,p};[0,1]}^{p} = \iint_{[0,1]^{2}} \frac{\mathbb{E}\|\mathbf{B}_{s,t}\|^{p}}{|t-s|^{1+\delta p}} ds dt = \mathbb{E}\|\mathbf{B}_{0,1}\|^{p} \iint_{[0,1]^{2}} |t-s|^{p/2-1-\delta p} ds dt.$$

For every  $\alpha < 1/2$  and  $\delta \in (\alpha, 1/2)$  there exists  $p_0(\delta)$  such that for all  $p \ge p_0$  the double integral is bounded by 1. Thus for all p large enough,

$$\mathbb{E}\|\mathbf{B}\|_{W^{\delta,p};[0,1]}^{p} \leq \mathbb{E}\|\mathbf{B}_{0,1}\|^{p}.$$

Is is well known, [5], that  $\|\mathbf{B}_{0,1}\|$  has a Gaussian tail and it follows that  $\|\mathbf{B}\|_{W^{\delta,p}}$  has a Gaussian tail, provided  $p \ge p_0(\delta)$ . For p large enough we have  $\alpha \le \delta - 1/p$  and we conclude that  $\|\mathbf{B}\|_{\alpha\text{-H\"older}}$  has a Gaussian tail, too. For a direct proof see [4]. Note that the law of  $\mathbf{B}$  is not Gaussian and there are no Fernique-type results. Finally, a similar proof can be given for enhanced fractional Brownian motion.

**Remark 4.** Potential spaces, see [2] and the references therein, are a popular alternative to fractional Sobolev spaces. But only the latter adapt easily to (E,d)-valued paths as required in rough path analysis.

**Remark 5.** The  $W^{\delta,p}$ -embedding of Theorem 2 has two different regimes:

- (1) For p large one has  $q = 1/\delta \sim 1/\alpha$ . Since every  $\alpha$ -Hölder path has finite  $1/\alpha$ -variation (the converse not being true) one can forget about q-variation.
- (2) When p is small, the variation parameter  $q=1/\delta$  can be considerably smaller than  $1/\alpha$  and q-variation is an essential part of the regularity. Elementary examples show that q-variation does not imply any Hölder regularity and therefore one should not forget about  $\alpha$ -Hölder regularity. The fractional Sobolev space  $W^{\delta,p}$  respectively the modulus  $\omega$  are tailor-made to keep track of both regularity aspects. Finally, we note that any finite  $1/\delta$ -variation path can be reparametrized to a  $\delta$ -Hölder path. In comparison, without reparametrization one has only Hölder regularity of exponent  $\alpha = \delta 1/p$ .

<sup>&</sup>lt;sup>3</sup> Simply write  $h_{s,t} \equiv d(h_s, h_t)$  and note that the Garsia–Rodemich–Rumsey lemma works for (E, d)-valued continuous functions.

<sup>&</sup>lt;sup>4</sup> Note  $\|\mathbf{B}_{s,t}\|_{=}^{\mathcal{D}} |t-s|^{1/2} \|\mathbf{B}_{0,1}\|$ .

## 3. Cameron-Martin space of fBM

We consider fractional Brownian motion with  $H \in (0, 1/2)$ . Call  $\mathcal{H}^H$  the associated Cameron–Martin space.

**Theorem 3.** Let  $1/2 < \delta < H + 1/2$ . Then  $\mathcal{H}^H \subseteq W_0^{\delta,2}$ .

**Proof.** From [2] and the references therein we know that  $\mathcal{H}^H$  is continuously embedded in the potential space  $I_{H+1/2,2}^+$  which we need not define here. Then, [2,3],  $I_{H+1/2,2}^+ \subset W^{\delta,2}$  so that

$$\mathcal{H}^H \subset W^{\delta,2}. \tag{3.1}$$

The compact embeddings is obtained by a standard squeezing argument: replace  $\delta$  by  $\tilde{\delta} \in (\delta, H + 1/2)$ , repeat the argument for  $\tilde{\delta}$  and then use (1.1).  $\square$ 

**Corollary 1.** For  $\alpha \in (0, H)$  and  $1/(H + 1/2) < q < \infty$  we have

$$\mathcal{H}^H \in C^{\alpha\text{-H\"older}}, \qquad \mathcal{H}^H \in C^{q\text{-var}}.$$

**Remark 6.** From  $\mathcal{H}^H \subset I_{H+1/2,2}^+$  it follows that  $\mathcal{H}^H \subset C^{H\text{-H\"older}}$ , this is well known [2].

**Remark 7.** For any  $H \in (0, 1/2)$  we can find 1/(H+1/2) < q < 2. This has useful consequences. For instance, for  $h, g \in \mathcal{H}^H$  that integral  $\int h \, dg$  makes sense as classical Young integral with all its continuity properties. In particular, the lift of  $h \in \mathcal{H}^H$  to a geometric p-rough paths p > 1/H, see [11], is well defined and convergence of piecewise-linear approximations, uniformly over bounded sets in  $\mathcal{H}^H$ , is an easy consequence. Such a result leads to a quick proof of a large deviations principle for enhanced fractional Brownian motion, see [6] for details.

## Appendix A

The proof of (3.1) appears somewhat spread out in the references. We present a direct argument which avoids potential spaces and fractional calculus and extends to other Volterra kernels. Step 1.  $\mathcal{H}^H$  is the image of  $L^2[0,1]$  under the integral operator  $K=K_1+K_2$  where

$$K_1(t,s) = (t-s)^{H-1/2},$$
  
 $K_2(t,s) = s^{H-1/2} F_1(t/s), \quad F_1 = \int_0^{(\cdot)-1} u^{H-3/2} (1 - (u+1)^{H-1/2}),$ 

for s < t. Set  $h_i = K_i g \equiv \int_0^{\cdot} K_i(\cdot, s) g(s) ds$  with  $g \in L^2[0, 1]$ , i = 1, 2. Step 2. An elementary computation shows

<sup>&</sup>lt;sup>5</sup> For instance, every kernel for which one can get estimates as those in Step 2 will lead to a fractional Sobolev embedding.

$$\sup_{u \in [0,1]} \int_{0}^{1-t} \left| K_1(s+t,u) - K_1(s,u) \right| ds = O(t^{H+1/2}),$$

$$\sup_{s \in [0,1-t]} \int_{0}^{1} \left| K_{1}(s+t,u) - K_{1}(s,u) \right| du = O(t^{H+1/2}).$$

From Cauchy-Schwartz and trivial sup-estimates,

$$(*) := \int_{s=0}^{1-t} \left| h_1(s+t) - h(s) \right|^2 ds = |g|_{L^2}^2 \cdot O\left(t^{1+2H}\right).$$

The  $W^{\delta,2}$ -norm of  $h_1$  is equivalent to  $\int dt(*)/t^{1+2\delta}$  which is less than  $C|g|_{L^2}^2$  provided  $1 + 2H - (1+2\delta) > -1$  and this happens precisely for  $\delta < H + 1/2$ .

Step 3. A straight-forward computation shows (one can assume  $g \in C^1 \cap L^2$  for the computation) that  $|h_2| < C|g|_{L^2}^2$  provided p < 1/(1-H) and hence  $h_2 \in W^{1,p}$ . From (1.2),  $W^{1,1/(1-H)} \subset W^{H+1/2,2}$ . Similarly, given  $\delta < H+1/2$  we can find p < 1/(1-H), close enough to 1/(1-H) so that  $W^{1,p} \subset W^{\delta,2}$ .

### References

- [1] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
- [2] L. Decreusefond, Stochastic calculus with respect to Volterra processes, Ann. Inst. Poincaré (2004).
- [3] D. Feyel, A. de La Pradelle, On fractional Brownian processes, Potential Anal. 10 (3) (1999) 273-288.
- [4] P. Friz, T. Lyons, D. Stroock, Lévy's area under conditioning, Ann. Inst. Poincaré Probab. Statist. 42 (1) (2006) 89–101.
- [5] P. Friz, N. Victoir, Approximations of the Brownian rough path with applications to stochastic analysis, Ann. Inst. Poincaré Probab. Statist. 41 (4) (2005) 703–724.
- [6] P. Friz, N. Victoir, Large deviation principle for enhanced Gaussian processes, preprint, 2005.
- [7] S. Kusuoka, On the regularity of solutions to SDEs, in: K.D. Elworthy, N. Ikeda (Eds.), Asymptotic Problem in Probability Theory: Wiener Functionals and Asymptotics, in: Pitman Res. Notes Math. Ser., vol. 284, Longman Scientific, New York, 1993, pp. 90–106.
- [8] T. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (2) (1998) 215–310.
- [9] T. Lyons, Z. Qian, Calculus of variation for multiplicative functionals, in: New Trends in Stochastic Analysis, Charingworth, 1994, World Scientific, River Edge, NJ, 1997, pp. 348–374.
- [10] T. Lyons, Z. Qian, System Control and Rough Paths, Oxford Univ. Press, Oxford, 2002.
- [11] A. Millet, M. Sanz-Solé, Large deviations for rough paths of the fractional Brownian motion, Ann. Inst. Poincaré Probab. Statist., in press. Available online 17 June 2005.
- [12] M. Zähle, Integration with respect to fractal functions and stochastic calculus. II, Math. Nachr. 225 (2001) 145-183.