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Let {t,, i > 0) be an ordinary renewal process and assume the lifetime distribution function has the form 

F(x) = CC’ (1 + Ax + o(x)) near O+. The asymptotic conditional distribution as n + 00 of { nt,, i 3 0}, given 

that t,, s 1, is that of a renewal process with a gamma lifetime distribution depending only on u. 
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1. Introduction and the main theorem 

Let {t,, n 2 0) be an ordinary renewal process on [0, 00) with associated distribution 

function F, that is, to= 0, and r,, = I:=, 8, for n > 0, where the ‘lifetimes’ 13,) &, . . . 

are independent positive random variables with common distribution function F. 

We assume throughout that 

F(O)=0 and F(t)>0 for all t>O. (1.1) 

Our main result concerns the limiting behaviour of the renewal process on the 

time interval (0, b], given that the number of renewals in (0, b], denoted by 

7~ := max{ n: t, s b}, (1.2) 

goes to infinity. We refer to this conditioning process as ‘thickening’, to contrast it 

with the more usual operation of thinning. It is clear that the 0;‘s cannot be 

independent under a condition of the form 77 3 n or 77 = n. Nevertheless, asymptoti- 

cally, they are independent and furthermore they have a gamma distribution, 

provided F is nicely behaved near O+. For the record, we say a random variable 

X has a T(a, j?) distribution if the distribution of X has probability density function 

(p.d.f.) 

f(x) := (r(~))-‘p~x~~’ eCp for x> 0. (1.3) 
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Our exact result is: 

Theorem 1. Suppose F has the form 

F(x)= cx”{l+hx+o(x)} as x&O, 

where CY > 0, c > 0 and A E R. Then for every k E N 

(1.4) 

andx,s0,x2a0 ,..., ~~20, 

as n+a, (1.5) 

where u,,(T~,... are independent random variables with a r(a, b-la) distribution. 

The same result holds if “7 2 n” is replaced by “7) = n” in (1.5). 

By making a linear change of variables, we see that it suffices to consider the case 

b = 1; henceforth we assume this holds. 

The gamma renewal processes (by which we mean renewal processes with gamma 

lifetimes) are the only nondegenerate processes which we know can arise as limits 

of the type used here. At the end of the paper, we do show that for some F we get 

the degenerate limit for which IP[u, = l] = 1 for all i. 

If (1.4) holds, with (Y = 1, then the limiting lifetime distribution is exponential, 

so the renewal process is Poisson. It is noteworthy that every other gamma renewal 

process is also a possible limit (with b = 1, we must have Eu, = 1). 

A key ingredient in the proof of Theorem 1 is a collection of results taken from 

Section 2 of Doney and O’Brien (1991), hereafter referred to as “the shot noise 

paper”. We present these results in Section 2, using the notation of this paper. They 

are interesting in their own right in the renewal theory context. 

We prove Theorem 1 in Section 3 and add some remarks in Section 4. 

2. Results from the shot noise paper 

The shot noise process is constructed by summing the contributions associated with 

each ‘shot’ or renewal, via a function h. If h = ltO,,,, then the process just counts 

the number of renewals in an interval of length 1, so that statements about shot 

noise can be expressed in terms of the renewal process. For readers who refer to 

the shot noise paper we note that the quantities N(x), S(x) and 5 from that paper 

have the following interpretations here (with h = lLo,,)): N(x) = LX] if tjxl s 1, 

N(x) = 00 otherwise; S(x) = tlxJ if tjxl ~l,S(x)=cootherwise,and<=n+l. With 

this translation, it is possible to read most of Section 2 of the shot noise paper 

without reference to the other sections. 

The proofs of Section 2 of the shot noise paper mostly become only a little simpler 

in the renewal theory context, and we do not want to reproduce them here. The 

main exception is Lemma 1 which is implied by the following obvious statement 

about renewal processes: for any y > 0 and conditional on t, G y, 0,) 02, . . . , 0, have 
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the same distributions. (This fact may be compared with the so-called inspection 

paradox and its variations, as discussed in Kremers (1988).) 

The following two results are translations of Lemmas 3 and 4 in the shot noise 

paper. They assert that if t, sy for large n, then most likely t, is close to y and 

most likely 0,, &, . . . , 8, are all small. These results are certainly plausible but, it 

seems, rather tricky to prove. 

Lemma 1. For each y > 0, 

P[t,Sy-ylt,Sy]+O asn+oo, 

uniforml_y over y E (0, 11. 0 

(2.1) 

Lemma 2. Let B, := max{ 0,) . . . , e,,}. Then for each jixed t > 0, 

P[B,> t)tnsy]+O as n+m, 

uniformly over y E (0, I]. 0 

(2.2) 

Another result of the shot noise paper which is of interest here is that the tail of 

the distribution of n gets small very rapidly in the following sense: 

limP[r]>n+l~n~n]=O. (2.3) n-u^ 

To see this, note that the condition n 2 n is equivalent to the condition t,, s 1. By 

Lemma 1, t, is therefore most likely close to 1 for large n. Since t,,+, - t, and 

It,, . . 1 t,} are independent this means that t,,+, probably exceeds 1. 

As a final remark, we note that Lemmas 1 and 2 and formula (2.3) also hold for 

stationary renewal processes. 

3. Proof of Theorem 1 

We will use the following notation: 

~:=h(a+l)cu-‘, F:=acQa), F,,(y):=P[t,,~y]. (3.1) 

The first major step is to obtain a good approximation for F,,(y) for large n. 

Lemma 3. Under the hypothesis (1.4), 

F,(y)-e~I(Cyn)“/T(ncu+l) as n+cn, 

uniformly over y E [0, I]. 

(3.2) 

Proof. Fix E > 0. For i = 1,2 and x > 0, let 

f W(x) = c ,Cl+h+F,)xg(x), 
(3.3) 
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where g is the p.d.f. of the T(a, 1) distribution and Ei = (-1)‘~. Let 

F”‘(x) = ‘;f”‘(y) dy 
I 

> i=l,2. 
0 

Integrating by parts twice and incorporating (3.1), we obtain 

(3.4) 

F”‘(x) = c(d(a))-’ 
[ 
xn eChtF~)‘{l -(~+E,)x/((Y + l)] 

J 
x 

+(h + E~)*((Y + I)-’ e(i-tF,“‘yoL+’ dy 
0 1 

= cx” e n(X+F,)x/(u+l)(l+O(X)) 

= cxa eA”[l+Ei~X(~+l)-‘+0(x)], 

as x+0+. A comparison of this formula with (1.4) yields the existence of an x0 > 0 

such that 

F”‘(x)SF(x)GF”‘(x) for OGxXxx,. (3.5) 

By reducing x0 if necessary, we also have F ('I, i = 1,2, nondecreasing and [0, l]- 

valued in [0, x0]. Now define distribution functions (d.f.‘s). 

F ̂(',<fi-c",<F , A(21 (3.6) 

which are equal to F’“, F and F’*’ respectively on [0,x0) and are all identically 

one on [x,, Co). 

For i = 0, 1,2 we may by (3.6) construct sequences {e’,“, n 3 l} of independent 

random variables all with d.f. $“’ and with the three sequences coupled in such a 

way that 

e’,‘) 2 f&o > e’,” for all n. 

Let {tf’, n 3 0) be the three corresponding renewal processes and let 

Bj:‘:= max{ e\“, . . . , e’,‘)}, i = 0, 1,2, n 2 1. 

Fix x, E (0, x,,). We then have 

l?[t’nl’<y, Bj:‘~x,]~PD[f(nO’~y, B’,O’~X,] 

=P[t,cy, B,,sx,] 

s$[tysy, B’,Z’GX,]. 

Now choose y > 0 such that 

e-“+“-“Y 2 1 _ E and e -(I+X+F)Y~((l_E)-I. 

Also, let 

A:= A(n,x) 

:= {(s,,.. .,S,,_,)E[O,X,]~~~:X-x,~S,+~~ *+s,_,~x). 

(3.7) 

(3.8) 
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Finally, let {tz, n 2 0) be the renewal process whose lifetimes 0:, n 2 1, have a 

T((Y, 1) distribution and let 

BZ:=max{BT,...,8~}. 

By (3.7) and (3.8), 

F,(y)Xqt(,lky, Bjll’Gx,] 3$[y-yspsy, B(,l)dX,] 
= I;_, [ 1 . . . I, E” e(,+h~p)(sl+...+.~,,_l)g(S,). . . g(s,_,) 

*e(,+h-Fl(c?51-.-.~* ,rml’g(x-s, -. . .-s,_,) ds, . . + ds,_, 1 dx .I’ = En e (I+A-Fj.1. I e(l+xLr)(x-s) I’- y 
u c . . . ds,) . . . d&-l) A 

.g(x-s,-...-s,_,)ds,...ds,,~, dx 1 ,~‘e”+li--F)~(l-&)$[y--~~~~y,B~~~,]. (3.9) 

This is valid even if y < y. We now make use of Lemmas 1 and 2 for { tz, n 2 0) to 

obtain the bound 

F,(y) 3 C” e(‘+*~‘)‘( 1 - E)‘$[ tX S y], (3.10) 

for n 2 N, where N may be chosen independently of y E [0, 11. By Lemma 2, we 

also have 

~,(Y)=$rt,~Y,B,,~x,l+$[t,~Y,B,>x,l 

~$rt,~Y,B,~x,l+&F,(Y), 

for large enough n. By (3.7), Lemma 1 and (3.8), we now obtain as in (3.9) that 

F,(y)~(l-&)-‘$[t,,~y,B,dx,] 

~(l-&)-2P[y-y~t~‘~yy,B’,2’~X,] 

S C” e (‘+h++,(l -E)-+[y- ys t:cy, B;sx,] < C” e(‘+A-++.( 1 _ E)-‘p[ tz s y], (3.11) 

again for all n 3 N where N may be chosen independently of y E [0, 11. Integrating 

by parts, we now calculate 
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say,whereO~f(n,y)~y~““e~~y”“t’(ncu+1)~’~Ouniformlyovery~[0,1]asn~~. 

Substituting this into (3.10) and (3.11), we obtain (3.2). 0 

Lemma 4. For fixed k and d, 

uniformly over z E [0, d]. 

Proof. Applying Lemma 3 and Stirling’s formula, 

F,_,(l -z/n) e i(‘-=!n’{C( 1 - z/n)“}“?-(ncu + 1) 

F,,(l) - e”Z’f ((n - k)a + 1) 

T(ncu + 1) em”’ 

-T((n-k)cu+l) Ck 

_ (na)k<r em”‘(c))“. 0 

Proof of Theorem 1. We are now in position to complete the proof of Theorem 1. 

By Lemma 4, we have 

i7 {n~,~x,}~t,~l 
,=, 1 
=(Fn(l))- I,-:' '~“"'~~~~'~~~,~~~l~~,=)I,...,Rk=y~, 

.F(dy,). . . F(dy,) 
F,,mk(l-nm’(z,+. . .+zk)) 

1 F(d(K'z,)) . . . F(d(n-‘z,)) 

_(najke(acr(ajj-h 

. F(d(K'z,)) . . . F(d(n-‘z,)) 

Integrating by parts twice, we see from (1.4) that 

I 

Y Y 
e ~“‘F(d(n~‘z))=ep”‘F(n~‘x)+cY ep”‘F(nm’z)dz 

0 I 0 

I 

Y 
- emexcn -ax* + (ycn~CI e-UTZCX dz 

0 

(3.12) 
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Thus, the ith factor on the right side of (3.12) is 

which is the d.f. of the r( (Y, CY) distribution, as required to prove the first conclusion 

of Theorem 1. The last statement of Theorem 1 now follows by (2.3). 0 

4. Complements 

There are many F which satisfy (1.1) but do not satisfy (1.4). There is not much 

we can say about whether the left side of (1.5) has a limit in these cases nor, if it 

does, about what the limit is. Noting that the limit in (1.5) is independent of A, one 

is tempted to conjecture that the theorem might extend to the case F(x) = 

CX” (1-t O(x)) as x -+ O-k, but we have no idea if this is true. Our proof depends 

heavily on the fact that F can be approxin~ated by a gamma distribution function 

(if A < 0) or something similar, in order that we may approximate the n-fold 

convolution of F with itself for large n. 

The one other case where we do have some results is when F(x) + 0 very fast as 

x-, O+. We have not attempted to give the most general result possible, opting 

instead for the following result because of its simple proof. 

Theorem 2. Suppose F satisfies 

nF( n-’ - in -“) = o((F(n-‘))“), (4.1) 

as n + ~0, for all E > 0. Then the conditional distribution qf each nOi, given n 2 n, 

converges to the degenerate distribution with unit mass at 1. 

Proof. Let F>O. If n3n and 8,>(1+~)K’ for some n > i, then at least one of 

@,,@2,..., @,, must be less than n-‘-~n-~*. Also, 

P[anyof C),,...,8,<n-‘-~n-~]4nF(n-‘-en-“) 

=0($[0, s n-l,. . .) f&s n-‘1). 

This inequality is maintained when the probabilities are both conditioned on n 2 n. 

It follows that 

Also, (4.1) implies 

P[n0,<1-&I~~n]+O. 0 
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As an example, suppose the distribution of Oi has support {n-l: n = 1,2, . . .} and 

that p,, := P[ 8, = nP’1 satisfies 

w,+1= o(p3. 

Then the degenerate limit of Theorem 2 is obtained. 
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