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Abstract

One dimensional Dirac operators

Lbc(v) y = i


1 0
0 −1


dy

dx
+ v(x)y, y =


y1
y2


, x ∈ [0, π],

considered with L2-potentials v(x) =


0 P(x)

Q(x) 0


and subject to regular boundary conditions (bc), have

discrete spectrum. For strictly regular bc, the spectrum of the free operator Lbc(0) is simple while the
spectrum of Lbc(v) is eventually simple, and the corresponding normalized root function systems are Riesz
bases. For expansions of functions of bounded variation about these Riesz bases, we prove the uniform
equiconvergence property and point-wise convergence on the closed interval [0, π]. Analogous results are
obtained for regular but not strictly regular bc.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Spectral theory of non-self-adjoint boundary value problems (BV P) for ordinary differential
equations on a finite interval I goes back to the classical works of Birkhoff [2,3] and Tamarkin
[36–38]. They introduced a concept of regular (R) boundary conditions (bc) and investigated
asymptotic behavior of eigenvalues and eigenfunctions of such problems. Moreover, they proved
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that the system of eigenfunctions and associated functions (SE AF) of a regular BV P is
complete. Detailed presentation of this topic could be found in [31].

More subtle is the question whether SE AF is a basis or an unconditional basis in the Hilbert
space H0

= L2(I ). Mikhailov [27], Keselman [21] and later Dunford [13] proved that the SE AF
is an unconditional, or Riesz, basis if bc are strictly regular (S R). This property is lost if bc are
R \ S R, i.e., regular but not strictly regular; unfortunately, this is just the case of periodic (Per+)

and antiperiodic (Per−) bc. But Shkalikov [32–34] proved that in R \ S R cases a proper chosen
finite-dimensional projections form a Riesz basis of projections.

Dirac operators

Ly = i


1 0
0 −1


dY

dx
+ v(x)Y, Y =


y1
y2


, v(x) =


0 P(x)

Q(x) 0


(1.1)

with P, Q ∈ L2(I ), and more general operators

My = i B
dY

dx
+ v(x)Y, Y = (y j (x))

d
1 , (1.2)

where B is a d×d-matrix and v(x) is a d×d matrix-valued L2(I ) function, bring new difficulties.
One of them comes from the fact that the values of the resolvent (λ− Lbc)

−1 are not trace class
operators.

For general system (1.2) Malamud and Oridoroga [23–25] proved completeness of SEAF for
a wide class of BVP which includes regular (in the sense of [4]) BVP’s.

The Riesz basis property for 2 × 2 Dirac operators (1.1) was proved by Trooshin and
Yamamoto [39,40] in the case of separated bc and v ∈ L2. Hassi and Oridoroga [15] proved

the Riesz basis property for (1.2) when B =


a 0
0 −b


, with a, b > 0, for separated bc and

v ∈ C1(I ).
Mityagin [29], [30, Theorem 8.8] proved that periodic (or antiperiodic) bc give a rise of a

Riesz system of 2D projections (or 2D invariant subspaces) under the smoothness restriction
P, Q ∈ Hα, α > 1/2, on the potentials v in (1.1). The authors removed that restriction in [11],
where the same result is obtained for any L2 potential v. This became possible in the framework
of the general approach to analysis of invariant (Riesz) subspaces and their closeness to 2D
subspaces of the free operator developed and used by the authors in [6,7,9,8,10].

Moreover, in [12] these results are extended to Dirac operators with any regular bc.
Careful analysis of regular and strictly regular bc and construction of Riesz bases or Riesz
system of projections which is done in [12] give us the background for treating questions on
equiconvergence and point-wise convergence of spectral decompositions (or “the development
in characteristic functions of the system” as Birkhoff and Langer [4] would say).

These questions for ordinary differential operators were raised by Birkhoff [2,3] and Tamarkin
[36–38] as well, or even earlier for second order operators by Steklov et al. A nice survey of
further development of equiconvergence theory over the last 100 years (we do not provide the
names of authors — any list would be incomplete and unfair) is given by Minkin [28].

In this paper we analyze in detail one-dimensional Dirac operators (1.1); we address the
following questions:

(i) for given bc, does the uniform convergence of the Riesz spectral decomposition

f (x) = SN f +

∞
|k|>N

Pk f, x ∈ [0, π],
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for an individual f ∈ L2([0, π],C2) depend on the potential v? (Here SN is the Riesz
projection associated to the eigenvalues λ with |Re λ| < N + 1, and Pk, |k| > N , is the
Riesz projection associated with the eigenvalues λ that are “near” to k.)

(ii) for good enough functions f , say f is of bounded variation, do point-wise limits

lim
m→∞


SN f (x)+

m
|k|>N

Pk f (x)


= F(x)

exist? If yes, how to describe the limit function F(x) in terms of f and bc?

The less rigid questions ask about uniform convergence on compact subsets of (0, π). In this
case for any complete system {un(x)} of eigenfunctions of the operator (1.1) with its biorthogonal
system {ψn}, let us define

σm(x, f ) =


n≤m

⟨ f, ψn⟩un

and compare these partial sums with

Sm(x, f ) =
1
π

 π

0

sin(x − y)

x − y
f (y)dy,

the proxy of partial sums of the standard Fourier series.
Many authors (Il’in [18–20], Horvath [16]) compare σm and Sm on compacts in (0, π). For

example, in [16] it is shown, under the assumption that the system {u j } is a Riesz basis and
v ∈ L p, p > 2, that for any compact K ⊂ (0, π) we have

lim
m


sup
x∈K

|σm(x, f )− Sm(x, f )|


= 0 ∀ f ∈ L2([0, π],C2).

We focus on questions on equiconvergence and point-wise convergence on the entire closed
interval [0, π]. The structure of this paper is the following.

Section 2 reminds elementary facts on Riesz bases and Riesz systems of projections in a
Hilbert space, and gives (after [12]) explicitly such bases and systems of projections in the case
of free Dirac operators subject to arbitrary regular bc,with special attention on their dependence
on parameters of boundary conditions.

Any analysis of spectral decompositions requires accurate information on localization of
spectra Sp(Lbc) and good estimates of the resolvent Rλ = (λ − Lbc)

−1 outside the Sp(Lbc).

Such analysis is done in [12], but in Section 3 we carry it in a different way in order to obtain at
the same time some basic preliminary inequalities that play an essential role later.

Section 4 is the core of this paper. We study the deviation

SN − S0
N =

1
2π i


∂RN T

(Rλ − R0
λ)dλ,

where R0
λ = (λ− L0

bc)
−1 is the resolvent of the free operator L0

bc and RN T is a rectangle chosen
to contain the “first” 2(2N + 1) eigenvalues (counted with multiplicity). By the perturbation
formula Rλ − R0

λ =


∞

m=1 R0
λ(V R0

λ)
m, where V is the operator of multiplication by the matrix

v, we have

SN − S0
N = AN + BN ,
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where

AN =
1

2π i


∂RN T

R0
λV R0

λdλ, BN =
1

2π i


∂RN T

∞
m=2

R0
λ(V R0

λ)
mdλ.

It happens that the estimates of the “nonlinear” component BN (see Proposition 12) are a little
bit simpler; they reduce the problem of equiconvergence to questions on behavior of the “linear”
component AN (F) when n → ∞ and its dependence on the smoothness of potentials v or a
vector-function F. Theorem 16 and Lemma 19 specify these smoothness conditions and lead to
our main result (Theorem 20):

For regular bc, Dirac potentials v =


0 P
Q 0


with P, Q ∈ L2([0, π]) and F =


F1
F2


with

F1, F2 ∈ L2([0, π]),SN − S0
N


F


∞

→ 0 as N → ∞ (1.3)

whenever one of the following conditions is satisfied:
(a) ∃β > 1 such that

k∈2Z
(|F1,k |

2
+ |F2,k |

2)(log(e + |k|))β < ∞,

where (F1,k)k∈2Z and (F2,k)k∈2Z are, respectively, the Fourier coefficients of F1 and F2 about
the system {eikx , k ∈ 2Z};

(b) ∃β > 1 such that
k∈2Z

(|p(k)|2 + |q(k)|2)(log(e + |k|))β < ∞,

where (p(k))k∈2Z and (q(k))k∈2Z are, respectively, the Fourier coefficients of P and Q about
the system {eikx , k ∈ 2Z}.

In particular, if F1, F2 are functions of bounded variation or P, Q are functions of bounded
variation, then (1.3) holds.

This equiconvergence claim reduces (Section 5, Theorem 22) point-wise convergence
problem to the case of free operator where we can use explicit information on Riesz bases of
root functions and answer question (ii) — see Formulas (5.3) and (5.4).

In Section 6 we consider Dirac operators with more general potential matrices T =


T11 T12
T21 T22


and weighted eigenvalue problems. The results and formulas of Section 5 are properly adjusted
to this case.

Finally, in Section 7 we consider Examples (motivated by the paper of Szmytkowski [35])
with self-adjoint separated boundary conditions — see Theorems 29 and 30.

Appendix gives a detailed proof of a technical result (Lemma 19) on C1-multipliers in the
weighted sequence spaces. Discrete Hilbert transform is an essential component of this proof.

2. Preliminaries

1. Riesz bases
Let H be a separable Hilbert space, and let (eγ , γ ∈ Γ ) be an orthonormal basis in H . If

A : H → H is an automorphism, then the system

fγ = Aeγ , γ ∈ Γ , (2.1)
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is an unconditional basis in H . Indeed, for each x ∈ H we have

x = A(A−1x) = A


γ

⟨A−1x, eγ ⟩eγ


=


γ

⟨x, (A−1)∗eγ ⟩ fγ =


γ

⟨x, f̃γ ⟩ fγ ,

i.e., ( fγ ) is a basis, and its biorthogonal system is

f̃γ = (A−1)∗eγ , γ ∈ Γ . (2.2)

Moreover, it follows that

0 < c ≤ ∥ fγ ∥ ≤ C, m2
∥x∥

2
≤


γ

|⟨x, f̃γ ⟩|
2
∥ fγ ∥

2
≤ M2

∥x∥
2, (2.3)

with c = 1/∥A−1
∥, C = ∥A∥, M = ∥A∥ · ∥A−1

∥ and m = 1/M.
A basis of the form (2.1) is called Riesz basis. One can easily see that the property (2.3)

characterizes Riesz bases, i.e., a basis ( fγ ) is a Riesz bases if and only if (2.3) holds with some
constants C ≥ c > 0 and M ≥ m > 0. Another characterization of Riesz bases gives the
following assertion (see [14, Chapter 6, Section 5.3, Theorem 5.2]): If ( fγ ) is a normalized
basis (i.e., ∥ fγ ∥ = 1 ∀γ ), then it is a Riesz basis if and only if it is unconditional.

2. We consider the Dirac operators L = L(v) and L0
= L(0) given by (1.1) on the interval

I = [0, π]. In the following, the space L2(I,C2) is regarded with the scalar product
f1
f2


,


g1
g2


=

1
π

 π

0


f1(x)g1(x)+ f2(x)g2(x)


dx . (2.4)

A general boundary condition (bc) for the operator L(v) is given by a system of two linear
equations

a1 y1(0)+ b1 y1(π)+ a2 y2(0)+ b2 y2(π) = 0 (2.5)

c1 y1(0)+ d1 y1(π)+ c2 y2(0)+ d2 y2(π) = 0

Consider the corresponding operator Lbc(v) in the domain Dom Lbc(v) which consists of all
absolutely continuous y such that y′

1, y′

2 ∈ L2(I,C) and (2.5) holds. It is easy to see that Lbc(v)

is a closed densely defined operator.
Let Ai j denote the 2 × 2 matrix formed by the i-th and j-th columns of the matrix

a1 b1 a2 b2
c1 d1 c2 d2


,and let |Ai j | denote the determinant of the matrix Ai j . Each solution of the

equation L0 y = λy has the form y =


ξe−iλx

ηeiλx


. It satisfies the boundary condition (2.5) if and

only if (ξ, η) is a solution of the system of two linear equations

ξ(a1 + b1z−1)+ η(a2 + b2z) = 0 (2.6)

ξ(c1 + d1z−1)+ η(c2 + d2z) = 0

with z = exp(iπλ). Therefore, there is a nonzero solution y if and only if the determinant of
(2.6) is zero, i.e.,

|A14|z
2
+ (|A13| + |A24|)z + |A23| = 0. (2.7)

Definition 1. The boundary condition (2.5) is called: regular if

|A14| ≠ 0, |A23| ≠ 0, (2.8)
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and strictly regular if additionally

(|A13| + |A24|)
2

≠ 4|A14||A23|. (2.9)

Further only regular boundary conditions are considered. A multiplication from the left of the
system (2.5) by the matrix A−1

14 gives an equivalent to (2.5) system

y1(0)+ by1(π)+ ay2(0) = 0, (2.10)

dy1(π)+ cy2(0)+ y2(π) = 0.

So, without loss of generality one may consider only bc of the form (2.10). The boundary

conditions (2.10) are uniquely determined by the matrix of coefficients


1 b a 0
0 d c 1


. Then the

boundary conditions are regular if

bc − ad ≠ 0, (2.11)

and strictly regular if additionally

(b − c)2 + 4ad ≠ 0. (2.12)

The characteristic equation (2.7) becomes

z2
+ (b + c)z + bc − ad = 0. (2.13)

In the case of strictly regular boundary bc (2.11) and (2.12) guarantee that (2.13) has two

distinct nonzero roots z1 and z2 (i.e., the matrix A23 =


b a
d c


has two distinct eigenvalues

−z1,−z2). Let us fix a pair of corresponding eigenvectors

α1
α2


and


β1
β2


. Then the matrix

α1 β1
α2 β2


is invertible, and we set


α′

1 α′

2
β ′

1 β ′

2


:=


α1 β1
α2 β2

−1

. (2.14)

Let τ1 and τ2 be chosen so that

z1 = eiπτ1 , z2 = eiπτ2 , |Re τ1 − Re τ2| ≤ 1. (2.15)

Then the eigenvalues of L0
bc are λ0

k,ν = k + τν, ν ∈ {1, 2}, k ∈ 2Z, and a corresponding system

of eigenvectors is Φ = {ϕ1
k , ϕ

1
k , k ∈ 2Z}, where

ϕ1
k :=


α1eiτ1(π−x)e−ikx

α2eiτ1x eikx


, ϕ2

k :=


β1eiτ2(π−x)e−ikx

β2eiτ2x eikx


. (2.16)

If bc is regular but not strictly regular, then (2.11) holds but (2.12) fails, i.e.,

(b + c)2 − 4(bc − ad) = (b − c)2 + 4ad = 0. (2.17)

In this case the Eq. (2.13) has a double root z∗ = −(b+c)/2 ≠ 0 (because bc−ad ≠ 0). Choose
τ∗ so that z∗ = exp(iπτ∗), |τ∗| ≤ 1. Then each eigenvalue of L0

bc is of algebraic multiplicity 2
and has the form τ∗ + k, k ∈ 2Z.
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We call the boundary conditions given by the system (2.10) periodic-type if

b = c, a = 0, d = 0, (2.18)

holds. The condition (2.18) takes place if and only if A23 + z∗ I is the zero matrix, so then any

two linearly independent vectors

α1
α2


and


β1
β2


are eigenvectors of A23. With any choice of

such vectors, the system Φ given by (2.16) but with τ2 = τ1 = τ∗, consists of corresponding
eigenfunctions of L0

bc.

Next we consider the case when (2.17) holds but (2.18) fails, i.e.,

|b − c| + |a| + |d| > 0. (2.19)

In this case each eigenvalue of L0
bc is of algebraic multiplicity 2 but of geometric multiplicity 1,

i.e., associated eigenvectors appear. Here we have the following subcases:

(i) a = 0, then (2.17) implies b = c, and by (2.19) we have d ≠ 0;

(ii) d = 0, then (2.17) implies b = c, and by (2.19) we have a ≠ 0;

(iii) a, d ≠ 0, then (2.17) implies b ≠ c.

Now we set


α1 β1
α2 β2


=




0 πb
d 0


for (i),

a 0
c − b

2
πb


for (ii), (iii).

(2.20)

A corresponding system of eigenvectors is given by

Φ1
= {ϕ1

k , k ∈ 2Z}, ϕ1
k =


α1eiτ∗(π−x)e−ikx

α2eiτ∗x eikx


, (2.21)

and

Φ2
= {ϕ2

k , k ∈ 2Z}, ϕ2
k =


(β1 − α1x)eiτ∗(π−x)e−ikx

(β2 + α2x)eiτ∗x eikx


(2.22)

is a system of corresponding associated vectors.

Remark 2. Components of the systems (2.16) and (2.21), (2.22) are uniformly bounded, i.e.,

sup
k∈2Z,ν∈{1,2}

sup
[0,π ]

ϕνk (x) = C = C(bc) < ∞. (2.23)

Here and thereafter, we denote by C any constant that is absolute up to dependence on bc.

Theorem 3. (a) For strictly regular or periodic type bc, the system Φ given by (2.16) is a Riesz
basis in the space L2(I,C2), I = [0, π]. Its biorthogonal system is Φ̃ = {ϕ̃1

k , ϕ̃
2
k , k ∈ 2Z},

where

ϕ̃1
k :=


α′

1eiτ1(π−x)e−ikx

α′

2eiτ1x eikx


, ϕ̃2

k :=


β ′

1eiτ2(π−x)e−ikx

β ′

2eiτ2x eikx


, (2.24)

with α′

1, α
′

2, β
′

1, β
′

2 coming, respectively, from (2.14) for strictly regular bc or periodic type bc.
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(b) For regular but not strictly regular or periodic type bc, the system Φ = Φ1
∪ Φ2

given in (2.21) and (2.22) is a Riesz basis in the space L2(I,C2). Its biorthogonal system is
Φ̃ = {ϕ̃1

k , ϕ̃
2
k , k ∈ 2Z}, where

ϕ̃1
k =


∆̄−1α2eiτ∗(π−x)e−ikx

∆̄−1α1eiτ∗x eikx


,

ϕ̃2
k =


∆̄−1

[β2 + α2(π − x)]eiτ∗(π−x)e−ikx

∆̄−1
[β1 − α1(π − x)]eiτ∗x eikx


(2.25)

with ∆ = α1β2 − α2β1 + πα1α2.

Proof. (a) First we consider the case of strictly regular or periodic type bc. The system

E = {e1
k , e2

k , k ∈ 2Z}, where e1
k :=


eikx

0


, e2

k :=


0

eikx


, (2.26)

is an orthonormal basis in L2(I,C2), I = [0, π]. We have Φ = A(E), where the operator
A : L2(I,C2) → L2(I,C2) is defined by

A


f
g


=


α1eiτ1(π−x) f (π − x)

α2eiτ1x f (x)


+


β1eiτ2(π−x)g(π − x)

β2eiτ2x g(x)


. (2.27)

Since the functions eiτν x and eiτν (π−x), ν = 1, 2, are bounded, it follows that A is bounded
operator. In view of (2.14) its inverse operator A−1 is given by

A−1


F
G


=


e−iτ1x

[α′

1 F(π − x)+ α′

2G(x)]

e−iτ2x
[β ′

1 F(π − x)+ β ′

2G(x)]


, (2.28)

so one can easily see that A−1 is bounded as well. Thus, A is an isomorphism, which proves that
the system Φ is a Riesz basis. By (2.2), its biorthogonal system is Φ̃ = (A−1)∗(E), so we obtain
(2.24) by a direct computation.

(b) In the case of regular but not strictly regular or periodic type bc we consider the operator
A : L2(I,C2) → L2(I,C2) defined by

A


f
g


=


α1eiτ∗(π−x) f (π − x)

α2eiτ∗x f (x)


+


(β1 − α1x)eiτ∗(π−x)g(π − x)

(β2 + α2x)eiτ∗x g(x)


. (2.29)

Then Φ = A(E), where E is the orthonormal basis (2.26). One can easily see that the operator
A is bounded and its inverse operator

A−1


F
G


=

1
∆


[(β2 + α2x)F(π − x)− (β1 − πα1 + α1x)G(x)] e−iτ∗x

[−α2 F(π − x)+ α1G(x)] e−iτ∗x


(2.30)

is also bounded. Thus the system Φ given by (2.21) and (2.22) is a Riesz basis. A direct
computation of Φ̃ = (A−1)∗(E) shows that (2.25) holds. �

Lemma 4. Let bc be given by (2.10), and let A be defined, respectively, by (2.27) if bc is strictly
regular or periodic type and by (2.29) if bc is regular but not strictly regular or periodic type.

If f, g, F,G are continuous functions on [0, π] such that


F
G


= A


f
g


, then


F
G


satisfies bc if

and only if


f
g


satisfies the periodic boundary conditions f (0) = f (π), g(0) = g(π).
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Proof. In view of (2.27) and (2.29), the operator A acts “point-wise” on vector-functions


f
g


multiplying components f and g by smooth functions. Therefore, A generates a linear operator
Ã : C4

→ C4 such that

Ã( f (0), f (π), g(0), g(π)) = (F(0), F(π),G(0),G(π)).

Since A is invertible, Ã is also invertible.
The periodic boundary conditions f (0) = f (π), g(0) = g(π) define a two-dimensional

subspace EPer ⊂ C4, and the boundary conditions (2.10) define a two-dimensional subspace
Ebc ⊂ C4. In fact, the lemma claims that ÃEPer = Ebc. Since Ã is an isomorphism, is enough

to show that ÃEPer ⊂ Ebc. In other words, we need only to prove that if


f
g


satisfies the periodic

boundary conditions then


F
G


= A


f
g


satisfies (2.10).

Since
F
G


= A


f
g


= A


f
0


+ A


0
g


,

it is enough to show that A


f
0


and A


0
g


satisfy bc. Set


y1
y2


:= A


f
0


.

If bc is strictly regular or periodic type boundary condition, then by (2.15) and (2.27) it follows
that

y1(0) = α1z1 f (π), y1(π) = α1 f (0), y2(0) = α2 f (0),

y2(π) = α2z1 f (π).

Therefore, taking into account that f (π) = f (0), we obtain that


y1
y2


satisfies the boundary

conditions (2.10):


1 b a 0
0 d c 1


α1z1 f (π)
α1 f (0)
α2 f (0)
α2z1 f (π)

 = f (0)


b + z1 a
d c + z1


α1
α2


= 0


due to the definition of


α1
α2


, see the lines prior to (2.14) and after (2.18)


.

If bc is regular but not strictly regular or periodic type, then the characteristic equation (2.13)
has a double root z∗ = −(b + c)/2 = exp(iπτ∗), and by (2.29) we have

y1(0) = α1z∗ f (π), y1(π) = α1 f (0), y2(0) = α2 f (0),

y2(π) = α2z∗ f (π).

Using (2.20), one can easily verify that


y1
y2


satisfies the boundary conditions (2.10).

The proof that A


0
g


satisfies the boundary conditions (2.10) is similar; we omit the

details. �

3. Estimates for the resolvent of Lbc and localization of spectra

The operator Lbc(v) maybe considered as a perturbation of the free operator L0
bc. We

study Lbc(v) by considering its Fourier matrix representation with respect to the Riesz basis
Φ = Φ(bc) consisting of root functions of L0

bc, which was constructed in Theorem 3.
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For strictly regular bc, the spectrum of L0
bc consists of two disjoint sequences of simple

eigenvalues

Sp(L0
bc) = {τ1 + k, k ∈ 2Z} ∪ {τ2 + k, k ∈ 2Z},

where τ1, τ2 depend on bc. For regular but not strictly regular bc the spectrum of L0
bc consists of

eigenvalues of algebraic multiplicity 2 and has the form

Sp (L0
bc) = {τ∗ + k, k ∈ 2Z},

where τ∗ depends on bc. In both cases the resolvent operator R0
bc(λ) = (λ − L0

bc)
−1 is well

defined for λ ∉ Sp(L0
bc), and we have

R0
bc(λ)ϕ

ν
k =

1
λ− τν − k

ϕνk , k ∈ 2Z, ν ∈ {1, 2}, (3.1)

where we put τ1 = τ2 = τ∗ in the case of regular but not strictly regular bc. Moreover, R0
bc(λ)

acts continuously from L2([0, π],C2) into L∞([0, π],C2). Indeed, if F =


k,ν Fνk ϕ
ν
k , then

R0
bc(λ)F =


k,ν

Fνk
λ− k − τν

ϕνk .

By (2.23), ∥R0
bc(λ)F∥∞ ≤


k,ν

C |Fνk |

|λ−k−τν |
, so by the Cauchy inequality,

∥R0
bc(λ)F∥∞ ≤ C


k,ν

1

|λ− k − τν |2

1/2 
k,ν

|Fνk |
2

1/2

.

Thus, in view of (2.3),

∥R0
bc(λ)∥L2→L∞ ≤ C1[a(λ− τ1)+ a(λ− τ2)]

1/2, (3.2)

where C1 = C1(bc) and a(λ) is defined and estimated in the following lemma.

Lemma 5. Consider the function

a(λ) =


k∈2Z

1

|λ− k|2
, λ ∉ 2Z. (3.3)

If λ = m + ξ + i t with m ∈ 2Z and −1 < ξ < 1, then

a(λ) ≤
1

ξ2 + t2 +
8

1 + 2|t |
. (3.4)

Proof. Since a(λ+ 2) = a(λ), it is enough to consider the case where m = 0. Then we have

a(λ) =


k∈2Z

1

(ξ − k)2 + t2 ≤
1

ξ2 + t2 + 2

k∈2N

1

(k − 1)2 + t2 .

Since (k − 1)2 + t2
≥

1
2 (k − 1 + |t |)2, we obtain

k∈2N

1

(k − 1)2 + t2 ≤


∞

3/2

2

(u − 1 + |t |)2
du =

4
1 + 2|t |

,

which completes the proof. �
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Let V : L2(I,C2) → L2(I,C2) be the operator of multiplication by the matrix v(x) =
0 P(x)

Q(x) 0


, i.e., V


y1
y2


=


Py2
Qy1


. The operator V could be unbounded in L2(I,C2) but it acts

continuously from L∞(I,C2) into L2(I,C2). Indeed, if y1, y2 ∈ L∞ thenPy2
Qy1

2

=
1
π

 π

0
(|Qy1|

2
+ |Py2|

2)dx ≤ ∥v∥2
·

y1
y2

2

∞

,

where we set for convenience

∥v∥2
= ∥P∥

2
+ ∥Q∥

2,

y1
y2


∞

= max(∥y1∥∞, ∥y2∥∞). (3.5)

Therefore,

∥V ∥L∞→L2 ≤ ∥v∥. (3.6)

The following lemma follows immediately from the explicit form of the bases Φ and their
biorthogonal systems given in Theorem 3.

Lemma 6. The matrix representation of V with respect to the basis Φ has the form

V ∼


V 11 V 12

V 21 V 22


, V ην

=


V ην

jk


j,k∈2Z

, η, ν ∈ {1, 2}, (3.7)

V ην
jk = ⟨Vϕνk , ϕ̃

η
j ⟩ = wην( j + k), (3.8)

where

wην =

wην(m)


∈ ℓ2(2Z), ∥wην∥ℓ2 ≤ C∥v∥, (3.9)

with C = C(bc).

Proof. Indeed, in view of the explicit formulas for the basis Φ = {ϕνk } and its biorthogonal
system Φ̃ = {ϕ̃ν} it follows that (3.8) holds with

wην(m) = pην(−m)+ qην(m), (3.10)

where pην(k), qην(k), k ∈ 2Z are, respectively, the Fourier coefficients of functions of the form

gην(x)P(x), hην(x)Q(x), gην, hην ∈ C∞([0, π]), η, ν = 1, 2. � (3.11)

For convenience, we set

r(m) = max{|wµν(m)|, µ, ν = 1, 2}, m ∈ 2Z; (3.12)

then

r = (r(m)) ∈ ℓ2(2Z), ∥r∥ ≤ C∥v∥. (3.13)

The standard perturbation formula for the resolvent

Rbc(λ) = R0
bc(λ)+ R0

bc(λ)V R0
bc(λ)+

∞
m=2

R0
bc(λ)(V R0

bc(λ))
m (3.14)
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is valid if the series on the right converges. From (3.2) and (3.6) it follows that V R0
bc(λ) is a

continuous operator in L2([0, π],C2) which norm does not exceed

∥V R0
bc(λ)∥ ≤ ∥V ∥L∞→L2∥R0

bc(λ)∥L2→L∞

≤ C1∥v∥ · [a(λ− τ1)+ a(λ− τ2)]
1/2. (3.15)

But this estimate does not guarantee the convergence in (3.14) for λ’s which are close to the real
line. Therefore, our next goal is to estimate the norms ∥R0

bc(λ)V R0
bc(λ)∥L2→L∞ .

But first we introduce some notations. For each ℓ2–sequence x = (x( j)) j∈2Z and m > 0 we
set

Em(x) =


| j |≥m

|x( j)|2
1/2

. (3.16)

In a case of strictly regular bc, we subdivide the complex plane C into strips

Hm =


z ∈ C : −1 ≤ Re


z − m −

τ1 + τ2

2


≤ 1


, m ∈ 2Z, (3.17)

and set

H N
=


|m|≤N

Hm, (3.18)

ρ :=
1
2

min(1 − |Re(τ1 − τ2)|/2, |τ1 − τ2|/2), (3.19)

Dµ
m = {z ∈ C : |z − τµ − m| < ρ}, m ∈ 2Z (3.20)

and

RN T =


z = x + i t :

x − Re
τ1 + τ2

2

 < N + 1, |t | < T


, (3.21)

where N ∈ 2N and T > 0.
In case of regular but not strictly regular boundary conditions we subdivide the complex plane

C into strips

Hm = {z ∈ C : −1 ≤ Re (z − m − τ∗) ≤ 1} , m ∈ 2Z, (3.22)

and set

H N
=


|m|≤N

Hm, (3.23)

Dm = {z ∈ C : |z − τ∗ − m| < 1/4}, m ∈ 2Z (3.24)

and

RN T = {z = x + i t : |x − Re τ∗| < N + 1, |t | < T } , (3.25)

where N ∈ 2N and T > 0.
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Lemma 7. (a) For λ ∈ Hm \ (D1
m ∪ D2

m) in a case of strictly regular bc, or for λ ∈ Hm \ Dm in
a case of regular but not strictly regular bc, we have

∥R0
bc(λ)V R0

bc(λ)∥L2→L∞ ≤ C


∥v∥

√
|m|

+ (E|m|(r))


for m ≠ 0, (3.26)

where C = C(bc).
(b) If T ≥ 1 + 2|τ1| + 2|τ2|, then

∥R0
bc(λ)V R0

bc(λ)∥L2→L∞ ≤ C
∥v∥

T
for |I m λ| ≥ T, (3.27)

where C = C(bc).

Proof. In view of the matrix representations of the operators V and R0
bc(λ) given in (3.1) and

Lemma 6, if F =


k,ν Fνk ϕ
ν
k then

R0
bc(λ)V R0

bc(λ)F =


k,ν


j,η

wην( j + k)Fνk
(λ− j − τη)(λ− k − τν)

ϕνk ,

where τ1 = τ2 = τ∗ in case of regular but not strictly regular bc.
For convenience, we set

gk = max(|F1
k |, |F2

k |), k ∈ 2Z. (3.28)

Then g = (gk) ∈ ℓ2 and ∥g∥ ≤ C∥F∥, where C = C(bc).
By (2.23) and (3.12),

∥R0
bc(λ)V R0

bc(λ)F∥∞ ≤ C

k,ν


j,η

r( j + k)|gk |

|λ− j − τη ∥ λ− k − τν |
. (3.29)

Let λ ∈ Hm . Then λ = m + ξ + Re τ1+τ2
2 + i t with −1 < ξ ≤ 1 (in the case of regular but

not strictly regular bcτ1 = τ2 = τ∗). Therefore, in view of (2.15), we have for k ≠ m

|λ− k − τν | ≥ |m − k| − 1 −
1
2
|Re(τ1 − τ2)| ≥ |m − k| −

3
2

≥
1
4
|m − k|. (3.30)

For strictly regular bc and λ ∈ Hm \ (D1
m ∪ D2

m), (3.30) implies

∥R0
bc(λ)V R0

bc(λ)F∥∞ ≤ C


r(2m)gm

ρ2 +
4
ρ
σ1 +

4
ρ
σ2 + 16σ3


(3.31)

where σ1 =


k≠m
r(m+k)gk

|m−k|
,

σ2 =


j≠m

r( j + m)gm

| j − m|
, σ3 =


k≠m


j≠m

r( j + k)gk

|m − j ∥ m − k|
.

We have
k≠m

r(m + k)

|m − k|
=


|k−m|>|m|

r(m + k)

|m − k|
+


|k−m|≤|m|

r(m + k)

|m − k|
.

By the Cauchy inequality,


|k−m|>|m|

r(m + k)

|m − k|
≤ ∥r∥ ·

 
|k−m|>|m|

1

(m − k)2

1/2

≤
∥r∥

√
|m|

.
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On the other hand, if |k − m| ≤ |m| then |k + m| ≥ 2|m| − |m − k| ≥ |m|. Therefore


|k−m|≤|m|

r(m + k)

|m − k|
≤

 
|k−m|≤|m|

r(m + k) |2
1/2 

k≠m

1

(m − k)2

1/2

≤


j≥|m|

r( j) |2
1/2

·
π
√

3
≤ 2E|m|(r).

Since |gk | ≤ ∥g∥, the above inequalities imply that

σα ≤ ∥g∥


∥r∥

√
|m|

+ 2E|m|(r)


, α = 1, 2. (3.32)

Next we estimate σ3 ≤ σ 1
3 + σ 2

3 + σ 3
3 , where

σ 1
3 =


|m−k|>

|m|

2


j≠m

r( j + k)gk

|m − j ∥ m − k|
, σ 2

3 =


k≠m


|m− j |> |m|

2

r( j + k)gk

|m − j ∥ m − k|
,

σ 3
3 =


|m−k|≤

|m|

2


|m− j |≤ |m|

2

r( j + k)gk

|m − j ∥ m − k|
.

By the Cauchy inequality,

(σ 1
3 )

2
≤


k


|gk |

2


j

|r( j + k)|2


·


j≠m

1

( j − m)2


|m−k|>
|m|

2

1

(k − m)2

≤ ∥r∥
2
· ∥g∥

2π
2

3
·

4
|m|

≤
16
|m|

∥r∥
2
∥g∥

2.

The same argument gives the same estimate for σ 2
3 .

On the other hand, if | j − m| ≤ |m|/2 and |k − m| ≤ |m|/2, then | j + k| ≥ 2|m| − |m − j | −
|m − k| ≥ |m|. Therefore, by the Cauchy inequality we obtain

(σ 3
3 )

2
≤


|k−m|≤

|m|

2

|gk |
2


| j−m|≤

|m|

2

|r( j + k)|2

 ·


j≠m

1

( j − m)2

k≠m

1

(k − m)2

≤ ∥g∥
2(E|m|(r))

2π
2

3
π2

3
≤ 16∥g∥

2(E|m|(r))
2.

From the above estimates it follows

σ3 ≤ 4∥g∥


2∥r∥
√

|m|
+ E|m|(r)


. (3.33)

Now, in view of (3.31), the estimates (3.32) and (3.33) imply (3.26) in the case of strictly
regular bc. In the case of regular but not strictly regular bc the proof is the same because for
λ ∈ Hm \ Dm (3.29) implies (3.31) with ρ = 1/4.

Finally, we prove (b). By (3.2) and (3.6), it follows that

∥R0
bc(λ)V R0

bc(λ)∥L2→L∞ ≤ C∥v∥ · [a(λ− τ1)+ a(λ− τ2)].
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If T > 1 + 2|τ1| + 2|τ2| and |I m λ| ≥ T, then

|I m (λ− τν)| ≥ T − |τν | ≥ T/2, ν = 1, 2.

Therefore, by Lemma 5 we obtain, for |I m λ| ≥ T,

a(λ− τ1)+ a(λ− τ2) ≤
2

(T/2)2
+

16
T

≤
24
T
,

which implies (3.27). �

By (3.6) we have

∥V R0
bc(λ)V R0

bc(λ)∥L2→L2 ≤ ∥v∥ · ∥R0
bc(λ)V R0

bc(λ)∥L2→L∞ .

Therefore, in view of (3.26) and (3.27), the following holds.

Corollary 8. There are N0 ∈ 2N and T0 > 0 such that if |m| ≥ N and λ ∈ Hm \ (D1
m ∪ D2

m)

in case of strictly regular bc or λ ∈ Hm \ Dm in case of regular but not strictly regular bc, or if
|I m λ| ≥ T0,

∥V R0
bc(λ)V R0

bc(λ)∥L2→L2 ≤ 1/2. (3.34)

By (3.14), the validity of (3.34) for some λ means that the resolvent Rbc(λ) exists for that λ,
which leads to the following localization of spectra assertion.

Lemma 9. (a) For strictly regular bc there is an N0 = N0(v, bc) ∈ 2N and T0 = T0(v, bc) > 0
such that if N ≥ N0, N ∈ 2N, and T ≥ T0 then

Sp (Lbc(vζ )) ⊂ RN T ∪


|m|>N


D1

m ∪ D2
m


for vζ = ζv, |ζ | ≤ 1. (3.35)

(b) For regular but not strictly regular bc there is an N0 = N0(v, bc) ∈ 2N and T0 =

T0(v, bc) > 0 such that if N ≥ N0, N ∈ 2N, and T ≥ T0 then

Sp (Lbc(vζ )) ⊂ RN T ∪


|m|>N

Dm for vζ = ζv, |ζ | ≤ 1. (3.36)

For strictly regular bc, consider the Riesz projections associated with L = Lbc

SN =
1

2π i


∂RN T

(λ− L)−1dλ, Pn,α =
1

2π i


∂Dα

n

(λ− L)−1dλ, α = 1, 2, (3.37)

and let S0
N and P0

n,α be the Riesz projections associated with the free operator L0
bc. A standard

argument (continuity about the parameter ζ in (3.35)) shows that

dim Pn,α = dim P0
n,α = 1, dim SN = dim S0

N = 2N + 2. (3.38)

If bc are regular but not strictly regular, consider the Riesz projections associated with
L = Lbc

SN =
1

2π i


∂RN T

(λ− L)−1dλ, Pn =
1

2π i


∂Dn

(λ− L)−1dλ, (3.39)
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and let S0
N and P0

n be the Riesz projections associated with the free operator L0
bc. The same

argument, as in the case of strictly regular bc, shows that

dim Pn = dim P0
n = 2, dim SN = dim S0

N = 2N + 2. (3.40)

Further analysis of the Riesz projections leads to the following result — see [12, Theorems 15
and 20].

Theorem 10. Suppose v is an L2-Dirac potential.
(a) If bc is strictly regular then there are N0 = N0(v, bc) ∈ 2N and T0 = T0(v, bc) > 0

such that if N ≥ N0, N ∈ 2N, and T ≥ T0 then the Riesz projections SN , S0
N and

Pn,α, P0
n,α, n ∈ 2Z, |n| > N , are well defined by (3.37), and we have

|n|>N

∥Pn,α − P0
n,α∥

2 < ∞, α = 1, 2. (3.41)

Moreover, the system {SN ; Pn,α, n ∈ 2Z, |n| > N , α = 1, 2} is a Riesz basis of projections
in L2([0, π],C2), i.e.,

f = SN (f)+

2
α=1


|n|>N

Pn,α(f) ∀f ∈ L2([0, π],C2), (3.42)

where the series converge unconditionally.
(b) If bc is regular but not strictly regular, there are N0 = N0(v, bc) ∈ 2N and T0 = T0(v, bc) >

0 such that if N ≥ N0, N ∈ 2N, and T ≥ T0 then the Riesz projections SN , S0
N and

Pn, P0
n , n ∈ 2Z, |n| > N , are well defined by (3.39), and we have
|n|>N

∥Pn − P0
n ∥

2 < ∞. (3.43)

Moreover, the system {SN ; Pn, n ∈ 2Z, |n| > N } is a Riesz basis of projections in
L2([0, π],C2), i.e.,

f = SN (f)+


|n|>N

Pn(f) ∀f ∈ L2([0, π],C2), (3.44)

where the series converge unconditionally.

Since the projections Pn,α in (3.42) are one-dimensional, we obtain the following.

Corollary 11. If bc is strictly regular, then there exists a Riesz basis in L2([0, π],C2) consisting
of eigenfunctions and at most finitely many associated functions of the Dirac operator Lbc(v).

4. Equiconvergence

By Theorem 3, for every regular bc there is a Riesz basis Φ = {ϕνk } in L2([0, π],C2)

consisting of root functions of the free Dirac operator L0
bc. In the next section, we study the

point-wise convergence of the L2-expansions with respect to the basis Φ = Φ(bc)


k∈2Z

2
ν=1

⟨F, ϕ̃νk ⟩ϕνk . (4.1)

By Corollary 11, for strictly regular bc there is a Riesz basis Ψ = {ψνk } in L2([0, π],C2)

consisting of root functions of the Dirac operator Lbc(v). The point-wise convergence of the
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corresponding L2-expansions

F =


k∈Z

2
ν=1

⟨F, ψ̃νk ⟩ψνk (4.2)

is closely related to the point-wise convergence in (4.1) because (under some assumptions on F
or v)  

|k|≤N

2
ν=1

⟨F, ψ̃νk ⟩ψνk −


|k|≤N

2
ν=1

⟨F, ϕ̃νk ⟩ϕνk


∞

→ 0 as N → ∞. (4.3)

Further we refer to (4.3) as equiconvergence of spectral decompositions (4.1) and (4.2).
Let RN T be the rectangle defined in (3.21) and let SN and S0

N be the corresponding projections
defined by (3.37). Then (4.3) can be written asSN − S0

N


F


∞

→ 0 as N → ∞. (4.4)

This form of the equiconvergence statement is suitable for regular but not strictly regular bc as
well. Of course, SN = SN (v, bc) but for the sake of simplicity the dependence on v and bc is
suppressed in notations. Further, we also write Rλ instead of Rbc(λ).

Since

Rλ − R0
λ = R0

λV R0
λ +

∞
m=2

R0
λ(V R0

λ)
m,

we have

SN − S0
N =

1
2π i


∂RN T

(Rλ − R0
λ)dλ = AN + BN , (4.5)

where

AN =
1

2π i


∂RN T

R0
λV R0

λdλ (4.6)

BN =
1

2π i


∂RN T

∞
m=2

R0
λ(V R0

λ)
mdλ. (4.7)

Next we show that all restrictions on the class of functions for which (4.4) holds come from
analysis of the operators AN .

Proposition 12. For every regular bc, L2-potential v and F ∈ L2([0, π],C2),

∥BN F∥∞ → 0 as N → ∞ (N ∈ 2N). (4.8)

Proof. To prove (4.8) it is enough to show that

(i) there is a constant K > 0 such that

∥BN ∥L2→L∞ ≤ K ∀ N ≥ N0; (4.9)

(ii) ∥BN G∥∞ → 0 as N → ∞ for functions G in a dense subset of L2([0, π],C).
Then a standard argument shows that (i) and (ii) imply (4.8).
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First we prove (i). The integral in (4.7) does not depend on the choice of T > T0 because the
integrand depends analytically on λ if |I m λ| > T0. Therefore, for every T > T0,

∥BN ∥L2→L∞ ≤
1

2π


∂RN T

 ∞
m=2

R0
λ(V R0

λ)
m


L2→L∞

d|λ|. (4.10)

In view of (3.2), to estimate the latter integral we need to find estimates from above of
a(λ− τ1)+ a(λ− τ2) for λ ∈ ∂RN T , where a(λ) is the function defined in Lemma 5.

The boundary ∂RN T consist of four segments ∆−

1 ,∆
+

1 ,∆
−

2 ,∆
+

2 , where ∆±

1 = {λ = x + i t :

−N − 1 + Re τ1+τ2
2 ≤ x ≤ N + 1 + Re τ1+τ2

2 , t = ±T },∆±

2 = {λ = x + i t : x = ±(N + 1)+
Re τ1+τ2

2 , −T ≤ t ≤ T }. If λ ∈ ∆±

1 , then |I m λ| = T, so for T > T0 ≥ 1 + 2|τ1| + 2|τ2|

|I m (λ− τν)| ≥ T − |τν | ≥ T/2, ν = 1, 2.

Then, by Lemma 5,

a(λ− τ1)+ a(λ− τ2) ≤
2

(T/2)2
+

16
T

≤
24
T
, λ ∈ ∆±

1 . (4.11)

If λ ∈ ∆±

2 , then λ− τα = ±(N + 1)+ (−1)αRe τ1−τ2
2 + i(t − I m τα), α = 1, 2. By (2.15),

it follows that

λ− τα = mα + ξα + i(t − I m τα), mα ∈ 2Z, ξα ∈ [−1,−1/2] ∪ [1/2, 1], α = 1, 2.

Therefore, by Lemma 5 we obtain

a(λ− τ1)+ a(λ− τ2) ≤ h(t), t = I m λ, λ ∈ ∆±

2 , (4.12)

where

h(t) :=

2
α=1


1

1/4 + |t − I m τα|2
+

8
1 + 2|t − I m τα|


. (4.13)

The integrand of the integral in (4.10) does not exceed ∞
m=2

R0
λ(V R0

λ)
m


L2→L∞

≤ ∥R0
λV R0

λV R0
λ∥L2→L∞

∞
m=0

∥(V R0
λ)

m
∥L2→L2 .

By (3.15), ∥V R0
λ∥ ≤ C∥v∥ · [a(λ− τ1)+ a(λ− τ2)]

1/2, so (4.11) and (4.12) yield

∥V R0
λ∥ ≤


5C∥v∥/

√
T if λ ∈ ∆±

1 ,

C∥v∥


h(t) if λ ∈ ∆±

2 , t = I m λ.

By (4.13), h(t) → 0 as |t | → ∞. Therefore, there is a constant C1 = C1(bc) > 0 such that

sup{∥V R0
λ∥L2→L2 : λ ∈ ∂RN T } ≤ C1∥v∥. (4.14)

In view of Corollary 8 — see (3.34) — if T > T0, N > N0 and λ ∈ ∂RN T then
∥V R0

λV R0
λ∥L2→L2 ≤ 1/2, so

∞
m=0

∥(V R0
λ)

m
∥L2→L2 ≤

∞
s=1

(1 + C1∥v∥)∥(V R0
λV R0

λ)
s
∥L2→L2 ≤ 1 + C1∥v∥. (4.15)
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On the other hand, (3.2) and (3.6) imply that

∥R0
λV R0

λV R0
λ∥L2→L∞ ≤ C∥v∥2

[a(λ− τ1)+ a(λ− τ2)]
3/2. (4.16)

Therefore, in view of (4.11), (4.12) and (4.15), it follows that ∞
m=2

R0
λ(V R0

λ)
m


L2→L∞

≤


C2(24/T )3/2 if λ ∈ ∆±

1 ,

C2[h(t)]
3/2 if λ ∈ ∆±

2 , t = I mλ

with C2 = C(1 + C1∥v∥)∥v∥
2. Now, choosing T = N and taking into account that

∞

−∞
[h(t)]3/2dt < ∞ (see (4.13)), we obtain that the integrals in (4.10) are uniformly bounded.

This completes the proof of (i).
Next we prove (ii). Fix a regular bc, and let Φ = {ϕνk } be the corresponding Riesz basis of

eigenfunctions of the free operator L0
bc given in Theorem 3. Since the linear combinations of ϕνk

are dense in L2([0, π],C2), it is enough to prove (ii) for G = ϕνk .

Fix k ∈ 2Z and ν ∈ {1, 2}. By (4.7), we have for every T > T0

∥BNϕ
ν
k ∥∞ ≤

1
2π


∂RN T

 ∞
m=2

R0
λ(V R0

λ)
mϕνk


∞

d|λ|. (4.17)

The integrand does not exceed ∞
m=2

R0
λ(V R0

λ)
mϕνk


∞

≤ ∥R0
λV R0

λ∥L2→L∞

∞
m=0

∥(V R0
λ)

m
∥L2→L2∥V R0

λϕ
ν
k ∥.

By (3.1), (3.6) and (2.23),

∥V R0
λϕ

ν
k ∥ ≤ ∥v∥ · ∥R0

λϕ
ν
k ∥∞ ≤

C∥v∥

|λ− k − τν |
.

If λ ∈ ∆±

1 , then |I m λ| = T so for large enough T it follows |λ − k − τν | ≥ T/2. If λ ∈ ∆±

2 ,

then λ = ±(N + 1)+ Re τ1+τ2
2 + i t, so for large enough N we obtain

|λ− k − τν | ≥
1

√
2


N + 1 − |k| −

Re
τ1 − τ2

2

+
1

√
2
|t − I m τν | ≥

N + |t |

2
.

Therefore, for large enough N ,

∥V R0
λϕ

ν
k ∥ ≤


2C∥v∥

T
for λ ∈ ∆±

1 ,

2C∥v∥

N + |t |
for λ ∈ ∆±

2 .

On the other hand, (3.2) and (3.6) imply that

∥R0
λV R0

λ∥L2→L∞ ≤ C∥v∥[a(λ− τ1)+ a(λ− τ2)].

Therefore, by (4.11), (4.12) and (4.15) it follows that ∞
m=2

R0
λ(V R0

λ)
mϕνk


∞

≤

C3T −2 if λ ∈ ∆±

1 ,

C3
h(t)

N + |t |
if λ ∈ ∆±

2 , I m λ = t,
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where C3 = C3(∥v∥, bc). The integral in (4.17) is sum of integrals on ∆±

1 and ∆±

2 . In view of
the latter estimates, if we choose T = N , then the integrals over ∆±

1 go to zero as N → ∞. On
the other hand, by (4.13) h(t) ≍

1
1+|t | , so the integrals over ∆±

2 do not exceed a multiple of
∞

−∞

1
(1 + |t |)(N + |t |)

dt = 2
log N

N − 1
→ 0 as N → ∞.

This completes the proof. �

Corollary 13. In the above notations, for every regular bc, L2-potential v and F ∈

L2([0, π],C2)

lim
N

SN − S0
N


F


∞

= 0 ⇐⇒ lim
N

∥AN F∥∞ = 0. (4.18)

Next we give conditions on v or F that guarantee the existence of the right-hand limit in (4.18).
Let us fix a regular bc, and let Φ = {ϕνk } be the corresponding Riesz basis of eigenfunctions of
the free operator L0

bc given in Theorem 3.

Lemma 14. Under the above assumptions, for every ϕνk ∈ Φ

∥ANϕ
ν
k ∥∞ → 0 as N → ∞. (4.19)

Proof. Fix ϕνk and consider N > |k|. By (3.1) and Lemma 6,

(ANϕ
ν
k )(x) =

1
2π i


∂RN T

2
η=1


j∈2Z

wην( j + k)

(λ− j − τη)(λ− k − τν)
ϕ
η
j (x)dλ,

so by the Residue Theorem

(ANϕ
ν
k )(x) =

2
η=1


| j |>N

wην( j + k)

(k + τν)− ( j + τη)
ϕ
η
j (x).

If j, k ∈ 2Z, j ≠ k, then

|k − j + τν − τη| ≥ |k − j | − |Re(τν − τη)| ≥ |k − j | − 1 ≥
|k − j |

2
. (4.20)

Therefore, in view of (2.23) and (3.12), it follows that

∥ANϕ
ν
k ∥∞ ≤ 4C


| j |>N

r( j + k)

|k − j |
.

Thus, the Cauchy inequality implies

∥ANϕ
ν
k ∥∞ ≤ 4C∥r∥

 
| j |>N

1

|k − j |2

1/2

≤
4C∥r∥

(N − |k|)1/2
→ 0

as N → ∞, which completes the proof. �
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Fix an L2-function F : [0, π] → C2 and consider

(AN F)(x) =
1

2π i


∂RN T

R0
λV R0

λFdλ, (4.21)

Let F =
2
ν=1


k∈2Z Fνk ϕ

ν
k be the expansion of F about the basis {ϕνk }. By the matrix

representation of the operators V and R0
bc it follows that

(AN F)(x) =
1

2π i


∂RN T

2
ν,η=1


k∈2Z


j∈2Z

wην( j + k)Fνk
(λ− j − τη)(λ− k − τν)

ϕ
η
j (x)dλ. (4.22)

The Residue Theorem implies

(AN F)(x) =

2
ν,η=1


|k|≤N


| j |>N

wην( j + k)Fνk
(k + τν)− ( j + τη)

ϕ
η
j (x)

+

2
ν,η=1


|k|>N


| j |≤N

wην( j + k)Fνk
( j + τη)− (k + τν)

ϕ
η
j (x).

We set

gm = max
F1

m

 , F2
m

 ; (4.23)

then g = (gm) ∈ ℓ2(2Z) and ∥g∥ ≤ const · ∥F∥. Therefore, in view of (2.23), (3.12), (4.20) and
(4.23), it follows that

∥AN F∥∞ ≤ 8C(σ1(N )+ σ2(N )), (4.24)

where

σ1(N ) =


|k|≤N


| j |>N

r( j + k)gk

j − k

 , σ2(N ) =


|k|>N


| j |≤N

r( j + k)gk

k − j

 , (4.25)

and j, k, N are even numbers.

Lemma 15. In the above notations, the following holds:

(a) If g = (gk) ∈ ℓp(2Z), p ∈ (1, 2) and r = (r(k)) ∈ ℓ2(2Z), then

σµ(N ) ≤ C(p)∥r∥∥g∥p, µ = 1, 2. (4.26)

(b) If g = (gk) ∈ ℓ2(2Z) and r = (r(k)) ∈ ℓp(2Z), p ∈ (1, 2), then

σµ(N ) ≤ C(p)∥r∥p∥g∥, µ = 1, 2. (4.27)

(c) If ∃δ > 1 : |g|
2
δ :=


k |gk |

2
[log(|k| + e)]δ < ∞ and r ∈ ℓ2(2Z), then

σµ(N ) ≤ C(δ)∥r∥|g|δ, µ = 1, 2. (4.28)

(d) If ∃δ > 1 : |r |
2
δ :=


k |r(k)|2[log(|k| + e)]δ < ∞ and g ∈ ℓ2(2Z), then

σµ(N ) ≤ C(δ)|r |δ∥g∥, µ = 1, 2. (4.29)
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Proof. Throughout the proof j, k ∈ 2Z and N ∈ 2N. We will use the following inequalities: if
|k| ≤ N then for s ≥ 2

| j |>N

1
| j − k|s

≤


∞

N+1−|k|

1
x s dx ≤

1

(N + 1 − |k|)s−1 , (4.30)

and if |k| > N then for s ≥ 2
| j |≤N

1
|k − j |s

≤


∞

|k|−N−1

1
x s dx ≤

1

(|k| − N − 1)s−1 . (4.31)

Suppose |k| ≤ N . In case (a), the Cauchy inequality and (4.30) with s = 2 imply


| j |>N

r( j + k)

j − k

 ≤ ∥r∥

 
| j |>N

1

( j − k)2

1/2

≤ ∥r∥
1

(N + 1 − |k|)1/2
.

Therefore, by the Hölder inequality (with q = p/(p − 1) > 2), it follows

σ1(N ) ≤ ∥r∥


|k|≤N

|gk |

(N + 1 − |k|)1/2

≤ ∥r∥


|k|≤N

|gk |
p

1/p 
|k|≤N

(N + 1 − |k|)−q/2

1/q

≤ C(p)∥r∥∥g∥p,

where C(p) =


∞

m=1 2m−q/2
1/q

, q = (p − 1)/p.
In case (b), the Hölder inequality (with q > 2) and (4.30) with s = q imply

σ1(N ) ≤


|k|≤N

|gk | ∥r∥p

 
| j |>N

1
| j − k|q

1/q

≤


|k|≤N

|gk | ∥r∥p

(N + 1 − |k|)1−1/q .

By the Cauchy inequality, we obtain

σ1(N ) ≤ ∥r∥p∥g∥


∞

m=1

2

m2−2/q

1/2

≤ C(p)∥r∥p∥g∥

with C(p) =


∞

m=1
2

m2/p

1/2
.

In case (c), the Cauchy inequality and (4.30) with s = 2 imply

σ1(N ) ≤ ∥r∥


|k|≤N

|gk |

(N + 1 − |k|)1/2
.

If |k| ≤ N/2, then N + 1 − |k| ≥ N + 1 − N/2 = (N + 2)/2, so applying again the Cauchy
inequality we obtain


|k|≤N/2

|gk |

(N + 1 − |k|)1/2
≤ ∥g∥

 
|k|≤N/2

1
N + 1 − |k|

1/2

≤ 2∥g∥.
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On the other hand, if |k| > N/2 then |k| ≥ N + 2 − |k|, so
N/2<|k|≤N

|gk |

(N + 1 − |k|)1/2
≤


N/2<|k|≤N

|gk |[log(e + |k|)]δ/2

(N + 1 − |k|)1/2[log(N + 2 − |k|)]δ/2

≤ |g|δ

 
N/2<|k|≤N

1
(N + 1 − |k|)[log(N + 2 − |k|)]δ

1/2

≤ C1(δ)|g|δ

with C1(δ) =


∞

m=1
2

m(log(m+1))δ

1/2
. Since ∥g∥ ≤ |g|δ, it follows that

σ1(N ) ≤ C(δ)∥r∥|g|δ with C(δ) = 2 + C1(δ).

In case (d), the Cauchy inequality implies


| j |>N

r( j + k)

j − k

 ≤ E N+2−|k|(r)

 
| j |>N

1

( j − k)2

1/2

, (4.32)

where Em(r) =


|i |≥m |r(i)|2

1/2
. Since

(Em(r))
2

≤
1

(log m)δ


|k|≥m

|r(k)|2[log(e + |k|)]δ ≤
|r |

2
δ

(log m)δ
,

in view of (4.32) and (4.30) with s = 2 it follows

σ1(N ) ≤ |r |δ


|k|≤N

|gk |

(N + 1 − |k|)1/2(log(N + 2 − |k|))δ/2

≤ |r |δ∥g∥ ·


∞

m=1

2
m(log(m + 1))δ

1/2

≤ C(δ)|r |δ∥g∥

with C(δ) =


∞

m=1
2

m(log(m+1))δ

1/2
.

This completes the proof of (4.26)–(4.29) for σ1(N ). The proof in the case of sums σ2(N )
is essentially the same — but then |k| ≥ N + 2 and | j | ≤ N , so one has to use (4.31) instead
of (4.30) and replace in all formulas N + 1 − |k| by |k| − N − 1. For example, in case (c), the
Cauchy inequality and (4.31) with s = 2 imply

σ2(N ) ≤ ∥r∥


|k|>N

|gk |

(|k| − N − 1)1/2
.

Therefore, again by the Cauchy inequality, it follows

σ2(N ) ≤ ∥r∥


|k|>N

|gk |[log(e + |k|)]δ/2

(|k| − N − 1)1/2[log(|k| − N )]δ/2

≤ ∥r∥ |g|δ

 
|k|>N

1
(|k| − N − 1)[log(|k| − N )]δ

1/2

≤ C1(δ)∥r∥ |g|δ

with C1(δ) =


∞

m=1
2

m(log(m+1))δ

1/2
. We omit the details about cases (a), (b) and (d). �
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Theorem 16. Given a regular bc, L2-potential v and F ∈ L2([0, π],C2), let g = (gk)k∈2Z be
defined by (4.23) and let r = (r(k))k∈2Z be defined by Lemma 6 and (3.12). Then

∥AN F∥∞ → 0 as N → ∞ (4.33)

whenever one of the following conditions holds:

(a) ∃p ∈ (1, 2) such that (gk) ∈ ℓp(2Z);
(b) ∃p ∈ (1, 2) such that (r(k)) ∈ ℓp(2Z);
(c) ∃δ > 1 such that


k |gk |

2
[log(|k| + e)]δ < ∞;

(d) ∃δ > 1 such that


k |r(k)|2[log(|k| + e)]δ < ∞.

Moreover, each of the conditions (a)–(d) guarantees that

∥(SN − S0
N )F∥∞ → 0 as N → ∞. (4.34)

Proof. Suppose F ∈ L2([0, π],C2) and F =


k∈2Z
2
ν=1 Fνk ϕ

ν
k is the expansion of F about

the basis Φ. Let (a) holds (with g = (gk) defined by gk = max(|F1
k |, |F2

k |), i.e., by (4.23)).
Fix ε > 0 and choose an N1 ∈ 2Z such that


|k|>N1

|gk |
p < ε p. Set

F̃ =


|k|>N1

2
ν=1

Fνk ϕ
ν
k , g̃ = (g̃k), g̃k = 0 if |k| ≤ N1, g̃k = gk if |k| > N1.

By (4.24) and Lemma 15(a), it follows that

∥AN F̃∥∞ ≤ 16CC(p)∥r∥∥g̃∥p ≤ 16CC(p)∥r∥ · ε.

On the other hand, since F − F̃ is a finite linear combination of basis functions ϕνk , Lemma 14
implies that

∥AN (F − F̃)∥∞ → 0 as n → ∞.

Therefore, lim sup ∥AN F∥∞ ≤ 16CC(p)∥r∥ · ε for every ε > 0, so (4.33) holds.
The proof is similar in the cases (b)–(d) — we use Lemma 14 and, respectively, parts (b)–(d)

of Lemma 15.
Of course, in view of Proposition 12, each of the conditions (a)–(d) implies that limN ∥(SN −

S0
N )F∥∞ = 0. �

For a given regular bc, Theorem 16 gives sufficient conditions for equiconvergence in terms of

matrix representation of the potential v =


0 P
Q 0


and coefficients of the expansion of F =


F1
F2


about the basis Φ (which consists of root functions of L0

bc).
In particular, for periodic (Per+) or antiperiodic (Per−) boundary conditions,

Per±
: y1(π) = ±y1(0), y2(π) = ±y2(0),

we may consider the following bases of eigenfunctions:

ΦPer+ =


ϕ1

k =


e−ikx

0


, ϕ2

k =


0

eikx


, k ∈ 2Z


,

ΦPer− =


ϕ1

k =


e−ikx

0


, ϕ2

k =


0

eikx


, k ∈ 1 + 2Z


.
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Now the matrix representation of the operator of multiplication by v is

V ∼


V 11 V 12

V 21 V 22


, V 11

jk = V 22
jk = 0, V 12

jk = p(− j − k), V 21
jk = q( j + k),

where p(m) and q(m), m ∈ 2Z are, respectively, the Fourier coefficients of the functions P
and Q about the system {eimx , m ∈ 2Z}, and the corresponding sequence (r(m)) (compare with
Lemma 6 and (3.12)) is

r(m) = max(|p(−m)|, |q(m)|), m ∈ 2Z.

Therefore, the following holds (compare with [30, Proposition 7.3]).

Corollary 17. Let v =


0 P
Q 0


. Suppose there is p ∈ (1, 2) such that

m∈2Z
(|p(m)|p

+ |q(m)|p) < ∞,

or there is δ > 1 such that
m∈2Z

(|p(m)|2 + |q(m)|2)[log(e + |m|)]δ < ∞,

where p(m) and q(m) are, respectively, the Fourier coefficients of the functions P and Q about
the system {eimx , m ∈ 2Z}. Then we have, for periodic Per+ or antiperiodic Per− boundary
conditions,

∥(SN − S0
N )F∥∞ → 0 as N → ∞ ∀F ∈ L2([0, π],C2).

However, one needs to impose on F conditions depending on bc to guarantee equiconvergence
for every L2-potential v. For example, if bc = Per±, Theorem 16 implies the following.

Corollary 18. Suppose v is an L2-potential matrix. Then

∥(SN − S0
N )F∥∞ → 0 as N → ∞

providing one of the following holds:

(i) bc = Per+, and there is p ∈ (1, 2) such that
m∈2Z

(|F1,m |
p

+ |F1,m |
p) < ∞,

or there is δ > 1 such that
m∈2Z

(|F1,m |
2
+ |F1,m |

2)[log(e + |m|)]δ < ∞,

where F1,m and F2,m are, respectively, the Fourier coefficients of the functions F1 and F2
about the system {eimx , m ∈ 2Z};

(ii) bc = Per−, and there is p ∈ (1, 2) such that
m∈1+2Z

(|F1,m |
p

+ |F1,m |
p) < ∞,

or there is δ > 1 such that
m∈1+2Z

(|F1,m |
2
+ |F1,m |

2)[log(e + |m|)]δ < ∞,
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where F1,m and F2,m are, respectively, the Fourier coefficients of the functions F1 and F2
about the system {eimx , m ∈ 1 + 2Z}.

Next we discuss what conditions guarantee equiconvergence property simultaneously for all
regular bc.

Recall that if Ω = (Ω(k))k∈2Z is a sequence of positive numbers (weight sequence), one may
consider the weighted sequence space

ℓ2(Ω , 2Z) =


x = (xk) :


k∈2Z

(|xk |Ω(k))2 < ∞


and the corresponding Sobolev space

H(Ω) =


f =


k∈2Z

fkeikx
: ( fk) ∈ ℓ2(Ω)


. (4.35)

In particular, consider the Sobolev weights

Ωα(k) = (1 + k2)α/2, k ∈ 2Z, (4.36)

and the logarithmic weights

ωβ(k) = (log(e + |k|))β , k ∈ 2Z, β ∈ R. (4.37)

Let Hα and hβ denote the corresponding Sobolev spaces (4.35). Of course, Hα
⊂ hβ if α > 0

and hβ ⊂ Hα if α < 0 for any β.

Lemma 19. Let g ∈ C1([0, π]).

(a) If f ∈ Hα, −1/2 < α < 1/2, then f · g ∈ Hα.

(b) If f ∈ hβ , −∞ < β < ∞, then f · g ∈ hβ .

Proof is given in Appendix. These statements are straightforward corollaries or partial cases
of the discrete Muckenhoupt theorem [17, Theorem 10]. Prior to 1972/73 the case (b), i.e.,
boundedness of discrete Hilbert transform in the spaces hβ had been proven by Carleson
[5, (10.1)]. The recent book [26] gives many further results on multipliers in Sobolev spaces
of functions of one or several variables.

Theorem 20. For regular bc, Dirac potentials v =


0 P
Q 0


with P, Q ∈ L2([0, π]) and

F =


F1
F2


with F1, F2 ∈ L2([0, π]),SN − S0

N


F


∞

→ 0 as N → ∞ (4.38)

whenever one of the following conditions is satisfied:

(a) ∃β > 1 such that
k∈2Z

(|F1,k |
2
+ |F2,k |

2)(log(e + |k|))β < ∞,

where (F1,k)k∈2Z and (F2,k)k∈2Z are, respectively, the Fourier coefficients of F1 and F2
about the system {eikx , k ∈ 2Z};
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(b) ∃β > 1 such that
k∈2Z

(|p(k)|2 + |q(k)|2)(log(e + |k|))β < ∞,

where (p(k))k∈2Z and (q(k))k∈2Z are, respectively, the Fourier coefficients of P and Q about
the system {eikx , k ∈ 2Z}.

In particular, if F1, F2 are functions of bounded variation or P, Q are functions of
bounded variation, then (4.38) holds.

Proof. Suppose a regular bc is fixed. Let Φ = (ϕνk ) and Φ̃ = (ϕ̃νk ) be the corresponding Riesz
basis of eigenvectors of L0

bc and its biorthogonal system constructed in Theorem 10.
Suppose (a) holds for a function F . In view of the explicit formulas (2.24) and (2.25) for the

biorthogonal system Φ̃ it follows that the expansion coefficients Fνk = ⟨F, ϕ̃νk ⟩ can be represented
as

Fνk = f ν1,−k + f ν2,k, k ∈ 2Z, ν = 1, 2,

where f ν1,k and f ν2,k are the Fourier coefficients of functions of the form

f ν1 (x) = hν1(x)F1(x)+ hν2(x)F2(x), ν = 1, 2,

with hν1(x), hν2(x) ∈ C∞([0, π]). Now Lemma 19(b) implies that
k∈2Z

(|F1
k |

2
+ |F2

k |
2)(log(e + |k|))β < ∞,

but then Condition (c) of Theorem 16 holds, hence (4.38) follows.
Suppose (b) holds with some β > 1. In view of Lemma 6 and its proof, the sequences

(wην(m))m∈2Z, which generate the matrix representation of the operator V (see (3.8) and (3.9))
are given by (3.10) in terms of the Fourier coefficients of some products of P and Q by C∞-
functions (see (3.11)). Therefore, by Lemma 19 we have (wην(m)) ∈ ℓ2(ωβ). In view of (3.12),
this implies that Condition (d) in Theorem 16 holds, hence (4.38) follows.

It is well-known (see [41, Chapter 2, Section 4, Theorem 4.12]), that if f : [0, π] is a
function of bounded variation then its Fourier coefficients fk =

1
π

 π
0 f (x)e−ikx dx satisfy

| fk | ≤ C/|k|, k ≠ 0, where C = C( f ). Therefore, if F1, F2 are functions of bounded variation
then (a) holds, and if P, Q are functions of bounded variation then (b) holds, so in both cases
(4.38) follows, which completes the proof.

Of course, one can handle the case of functions of bounded variation directly, without using
Lemma 19. Indeed, the matrix representation coefficients of V and the expansion coefficients of
F about the basis Φ = {ϕνk } are coming from the Fourier coefficients of products of P, Q and
F1, F2 with some smooth functions. Since a product of a function of bounded variation with a
smooth function is also a function of bounded variation, the corresponding sequences (r(m)) and
(gk) are dominated by const/|k|, so they are in the space ℓ2(ωβ) for β > 1. Thus, respectively,
(c) or (d) in Theorem 16 holds, so the claim follows. �

5. Point-wise convergence of spectral decompositions

It is well-known that if f is a function of bounded variation on [0, π] then its Fourier series
with respect to the system {eimx , m ∈ 2Z} converges point-wise to 1

2 [ f (x − 0)+ f (x + 0)] for
x ∈ (0, π), and to 1

2 [ f (π − 0)+ f (0 + 0)] for x = 0, π . More precisely, the following holds.
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Lemma 21 (See [41, Vol 1, Theorem 8.14]). If f : [0, π] → C is a function of bounded
variation, then

lim
M→∞

M
m=−M

⟨ f (x), eimx
⟩eimx

=


1
2
[ f (x − 0)+ f (x + 0)] if x ∈ (0, π),

1
2
[ f (π − 0)+ f (0 + 0)] if x = 0, π.

(5.1)

Moreover, the convergence is uniform on every closed subinterval of (0, π) on which f is
continuous, and the convergence is uniform on the closed interval [0, π] if and only if f is
continuous and f (0) = f (π).

For systems of o.d.e., an interesting point-wise convergence statement has been proven in
[4, pp. 127–128], but under rather restrictive assumptions. For example, the matrices Wa and Wb
(see [4], lines 5–6 on p. 64 and Formula (7) there, or Formula (46) on p. 87) are assumed to
be invertible but this never happens in the case of separated bc like (7.3) in Section 7 below.
Another strong assumption is that the spectrum Sp(Lbc) is eventually simple (see [4, lines 9–11
on p. 98]). In general, this assumption is not satisfied for regular but not strictly regular bc.

We do not impose any assumption on the boundary conditions but regularity. The main result
of this section is the following.

Theorem 22. Let bc be a regular boundary condition given by (2.10), and let Φ = {ϕνk , k ∈ 2Z,
ν = 1, 2} and Φ̃ = {ϕ̃νk , k ∈ 2Z, ν = 1, 2} be the corresponding Riesz basis of root functions of
L0

bc and its biorthogonal system which are constructed in Theorem 3. If f, g : [0, π] → C are
functions of bounded variation which are continuous at 0 and π , then

lim
M→∞

M
m=−M

2
ν=1


f
g


, ϕ̃νm


ϕνm(x) =


f̃ (x)
g̃(x)


, (5.2)

where
f̃ (x)
g̃(x)


=

1
2


f (x − 0)+ f (x + 0)
g(x − 0)+ g(x + 0)


for x ∈ (0, π) (5.3)

and


f̃ (x)
g̃(x)


=


1
2

 f (0)− b f (π)− ag(0)
d

bc − ad
f (0)+ g(0)−

b

bc − ad
g(π)

 if x = 0,

1
2


−

c

bc − ad
f (0)+ f (π)+

a

bc − ad
g(π)

−d f (π)− cg(0)+ g(π)


if x = π.

(5.4)

Moreover, if both f (π−t) and g(t) are continuous on some closed subinterval of (0, π), then the
convergence (5.2) is uniform on that interval. The convergence is uniform on the closed interval

[0, π] if and only if f and g are continuous on [0, π] and


f
g


satisfies the boundary condition

bc given by (2.10).

Proof. Let A and A−1 be the operators defined in the proof of Theorem 3 by (2.27) and (2.28)
in case bc is strictly regular or periodic type, and by (2.29) and (2.30) in case bc is regular but

not strictly regular or periodic type. The operators A and A−1 act on a vector-function


f (t)
g(t)


by
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multiplying f (t), g(t), f (π − t), g(π − t) by some C∞-functions, so A and A−1 are defined
point-wise. Recall from the proof of Theorem 3 that

ϕνk = Aeνk , ϕ̃νk = (A−1)∗eνk , where e1
k =


eikt

0


, e2

k =


0

eikt


. (5.5)

Suppose f and g are functions of bounded variation on [0, π], and let
F
G


(t) := A−1


f
g


(t); (5.6)

then F and G are functions of bounded variation on [0, π] also (as products of functions of
bounded variations by C∞-functions).

In view of (2.28) and (2.30), the functions F(t) and G(t) are continuous at t if and only if
f (π − t) and g(t) are continuous at t. Therefore,

(i) if f (π − t) and g(t) are continuous on some closed interval I ⊂ [0, π] then F and G are
continuous on I as well.
Moreover, by Lemma 4,

(ii) if f and g are continuous on [0, π] and


f
g


satisfies the boundary conditions (2.10),

then F and G are continuous on [0, π] and


F
G


satisfies the periodic boundary conditions

F(0) = F(π),G(0) = G(π).

By (5.5),
f
g


, ϕ̃1

m


=


A−1


f
g


, e1

m


=


F
G


,


eimt

0


= ⟨F, eimt

⟩,

and similarly,


f
g


, ϕ̃2

m


= ⟨G, eimt

⟩.

By Lemma 21, the Fourier series of F and G with respect to the system {eimt , m ∈ 2Z}

converge point-wise, and the convergence is uniform in the cases (i) and (ii) mentioned above.
Let F̃(x) and G̃(x) denote, respectively, the point-wise sums of those series at x ∈ [0, π]. Fix a
point x ∈ [0, π]; then

M
m=−M

2
ν=1


f
g


, ϕ̃νm


ϕνm(x) = A


M

−M


⟨F, eimt

⟩e1
m + ⟨G, eimt

⟩e2
m


(x)

= A


M

m=−M

⟨F, eimt
⟩eimt

M
m=−M

⟨G, eimt
⟩eimt

 (x) → A


F̃
G̃


(x)

as M → ∞.

Therefore, the expansion of


f
g


about the basis Φ converges point-wise to the vector-function

f̃ (x)
g̃(x)


:= A


F̃
G̃


(x). (5.7)
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Moreover, the convergence is uniform on every closed subinterval of [0, π] on which both
f (π − t) and g(t) are continuous, and on the closed interval [0, π] if f and g are continuous on

[0, π] and


f
g


satisfies the boundary conditions (2.10).

For x ∈ (0, π), Lemma 21 implies that


F̃(x)
G̃(x)


=


1
2
[F(x − 0)+ F(x + 0)]

1
2
[G(x − 0)+ G(x + 0)]

 =
1
2


F(x − 0)
G(x − 0)


+

1
2


F(x + 0)
G(x + 0)


,

so 
f̃ (x)
g̃(x)


=

1
2

A


F(x − 0)
G(x − 0)


+

1
2

A


F(x + 0)
G(x + 0)


. (5.8)

In case bc is strictly regular or periodic type the operator A−1 is given by (2.28), so
F(x − 0)
G(x − 0)


= A−1


f
g


(x − 0) =


e−iτ1x

[α′

1 f (π − x + 0)+ α′

2g(x − 0)]

e−iτ2x
[β ′

1 f (π − x + 0)+ β ′

2g(x − 0)]


and we obtain by (2.27) and (2.14)

A


F(x − 0)
G(x − 0)


=


α1[α

′

1 f (x + 0)+ α′

2g(π − x − 0)]

α2[α
′

1 f (π − x + 0)+ α′

2g(x − 0)]



+


β1[β

′

1 f (x + 0)+ β ′

2g(π − x − 0)]

β2[β
′

1 f (π − x + 0)+ β ′

2g(x − 0)]


=


f (x + 0)
g(x − 0)


.

In an analogous way it follows that A


F(x + 0)
G(x + 0)


(x) =


f (x − 0)
g(x + 0)


. Therefore, in view of (5.8), we

obtain that (5.3) holds for strictly regular or periodic type bc.
In case of regular bc which is not strictly regular or periodic type, (2.30) implies that

F(x − 0)
G(x − 0)


=

1
∆


e−iτ∗x

[(β2 + α2x) f (π − x + 0)− (β1 − πα1 + α1x)g(x − 0)
e−iτ∗x

[−α2 f (π − x + 0)+ α1g(x − 0)],


,

where ∆ = α1β2 − α2β1 + πα1α2. Therefore, by (2.29) it follows that

A


F(x − 0)
G(x − 0)


=

1
∆


α1(β2 + α2π − α2x) f (x + 0)− α1(β1 − α1x)g(π − x − 0)
α2(β2 + α2x) f (π − x + 0)− α2(β1 − πα1 + α1x)g(x − 0)


+

1
∆


(β1 − α1x)(−α2 f (x + 0)+ α1g(π − x − 0))
(β2 + α2x)(−α2 f (π − x + 0)+ α1g(x − 0))


=


f (x + 0)
g(x − 0)


.

Similar calculation shows that A


F(x + 0)
G(x + 0)


(x) =


f (x − 0)
g(x + 0)


. Therefore, (5.3) holds in case bc is

regular but not strictly regular or periodic type.
Next we evaluate f̃ (0), f̃ (π), g̃(0), g̃(π). For convenience, the calculations are presented in

a matrix form.
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If bc is regular or periodic type, then by (5.7) and (2.27)
f̃ (0)
f̃ (π)
g̃(0)
g̃(π)

 =


0 α1z1 0 β1z2
α1 0 β1 0
α2 0 β2 0
0 α2z1 0 β2z2




F̃(0)
F̃(π)
G̃(0)
G̃(π)

 , (5.9)

where z1 = eiτ1π and z2 = eiτ2π are the roots of (2.13) (in case bc is strictly regular z1 ≠ z2; if
bc is periodic type then z1 = z2 = z∗, and τ1 = τ2 = τ∗).

In view of Lemma 21, we have
F̃(0)
F̃(π)
G̃(0)
G̃(π)

 =


1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2




F(0)
F(π)
G(0)
G(π)

 . (5.10)

On the other hand, by (5.6) and (2.28) it follows that
F(0)
F(π)
G(0)
G(π)

 =


0 α′

1 α′

2 0
α′

1/z1 0 0 α′

2/z1
0 β ′

1 β ′

2 0
β ′

1/z2 0 0 β ′

2/z2




f (0)
f (π)
g(0)
g(π)

 . (5.11)

Now (5.9)–(5.11) imply
f̃ (0)
f̃ (π)
g̃(0)
g̃(π)

 =
1
2

M


f (0)
f (π)
g(0)
g(π)

 , (5.12)

where

M =



α1α
′

1 + β1β
′

1 α1α
′

1z1 + β1β
′

1z2 α1α
′

2z1 + β1β
′

2z2 α1α
′

2 + β1β
′

2

α1α
′

1

z1
+
β1β

′

1

z2
α1α

′

1 + β1β
′

1 α1α
′

2 + β1β
′

2
α1α

′

2

z1
+
β1β

′

2

z2
α2α

′

1

z1
+
β2β

′

1

z2
α2α

′

1 + β2β
′

1 α2α
′

2 + β2β
′

2
α2α

′

2

z1
+
β2β

′

2

z2

α2α
′

1 + β2β
′

1 α2α
′

1z1 + β2β
′

1z2 α2α
′

2z1 + β2β
′

2z2 α2α
′

2 + β2β
′

2


. (5.13)

Next we evaluate the entries of the matrix M = (Mi j ). In view of (2.14) we have

α1α
′

1 + β1β
′

1 = 1, α2α
′

2 + β2β
′

2 = 1, α1α
′

2 + β1β
′

2 = 0, α2α
′

1 + β2β
′

1 = 0,

so Mi i = 1, i = 1, 2, 3, 4, and M14 = M23 = M32 = M41 = 0. In order to find the
remaining elements of M recall that


α1
α2


and


β1
β2


are eigenvectors of the matrix


b a
d c


which

correspond to its eigenvalues −z1 and −z2 (see the text between (2.13) and (2.14)). Therefore,
we have

bα1 + aα2 = −z1α1, dα1 + cα2 = −z1α2,

bβ1 + aβ2 = −z2β1, dβ1 + cβ2 = −z2β2.
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In addition, (2.13) implies that

z1 + z2 = −(b + c), z1z2 = bc − ad.

Using the above formulas we obtain

M12 = α1α
′

1z1 + β1β
′

1z2 = −α′

1(bα1 + aα2)− β ′

1(bβ1 + aβ2)

= −b(α1α
′

1 + β1β
′

1)− a(α2α
′

1 + β2β
′

1) = −b;

M13 = α1α
′

2z1 + β1β
′

2z2 = −α′

2(bα1 + aα2)− β ′

2(bβ1 + aβ2)

= −b(α1α
′

2 + β1β
′

2)− a(α2α
′

2 + β2β
′

2) = −a;

M21 =
α1α

′

1

z1
+
β1β

′

1

z2
=

1
z1z2

(α1α
′

1z2 + β1β
′

1z1)

=
1

bc − ad


α1α

′

1(−b − c − z1)+ β1β
′

1(−b − c − z2)


=
1

bc − ad


−(b + c)(α1α

′

1 + β1β
′

1)− M12


=
−c

bc − ad
;

M24 =
α1α

′

2

z1
+
β1β

′

2

z2
=

1
z1z2

(α1α
′

2z2 + β1β
′

2z1)

=
1

bc − ad


α1α

′

2(−b − c − z1)+ β1β
′

2(−b − c − z2)


=
1

bc − ad


−(b + c)(α1α

′

2 + β1β
′

2)− M13


=
a

bc − ad
.

In an analogous way one can find M31,M34,M42 and M43; we omit the details and give
the final result:

M =
1
2


1 −b −a 0

−c

bc − ad
1 0

a

bc − ad
d

bc − ad
0 1

−b

bc − ad
0 −d −c 1

 . (5.14)

Hence, (5.4) holds if bc is strictly regular or periodic type.
In the case bc is regular but not strictly regular or periodic type we use the same argument but

work with the operators A and A−1 defined by (2.29) and (2.30). By (5.7) and (2.29)
f̃ (0)
f̃ (π)
g̃(0)
g̃(π)

 =


0 α1z∗ 0 β1z∗

α1 0 β1 − α1π 0
α2 0 β2 0
0 α2z∗ 0 (β2 + α2π)z∗




F̃(0)
F̃(π)
G̃(0)
G̃(π)

 , (5.15)

where ∆ = α1β2 − α2β1 + πα1α2 and z∗
= eiπτ∗ .

On the other hand, by (5.6) and (2.30) it follows that


F(0)
F(π)
G(0)
G(π)

 =
1
∆



0 β2 −β1 + πα1 0
β2 + πα2

z∗

0 0
−β1

z∗

0 −α2 α1 0
−α2

z∗

0 0
α1

z∗




f (0)
f (π)
g(0)
g(π)

 . (5.16)
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Now (5.15), (5.10) and (5.16) imply that (5.12) holds with

M =
1
∆



∆ (α1β2 − β1α2)z∗ πα2
1z∗ 0

∆ + πα1α2

z∗

∆ 0 −
πα2

1

z∗

πα2
2

z∗

0 ∆
α1β2 − β1α2

z∗

0 −πα2
2z∗ (∆ + πα1α2)z∗ ∆

 . (5.17)

The parameters α1, α2, β1, β2 come from (2.20), where we consider three cases: (i) a = 0;

(ii) d = 0; (iii) a ≠ 0, b ≠ 0.
In case (iii), we have

α1 = a, α2 = (c − b)/2, β1 = 0, β2 = πb.

Recall also that z∗ = −
b+c

2 and z2
∗ = bc − ad because z∗ is a double root of (2.13). Therefore,

∆ = α1β2 − α2β1 + πα1α2 = πab + πa
c − b

2
= πa

b + c

2
= −πaz∗.

Next we evaluate the entries of M in case (iii):

M12 =
1
∆
(α1β2 − α2β1)z∗ =

1
−πaz∗

πabz∗ = −b;

M21 =
∆ + πα1α2

∆z∗

=
πa b+c

2 + πa c−b
2

−πaz2
∗

=
−c

bc − ad
;

M13 =
πα2

1z∗

∆
=
πa2z∗

−πaz∗

= −a; M24 = −
πα2

1

∆z∗

=
−πa2

−πaz2
∗

=
a

bc − ad
.

In a similar way we calculate M31,M34,M42,M43 and obtain that in case (iii) the matrix M
is given by (5.14).

An elementary calculation (which is omitted) shows that in cases (i) and (ii) the matrix M
is given by (5.14) also, so (5.4) holds if bc is regular but not strictly regular or periodic type as
well. This completes the proof. �

6. Generalizations

6.1. Weighted eigenvalue problems and general potential matrices

Suppose ρ ∈ L1([x1, x2]) and ρ(x) ≥ const > 0. Let L2([x1, x2], ρ) be the space of all
measurable functions f : [x1, x2] → C such that

∥ f ∥
2
ρ =

 x2

x1

| f (x)|2ρ(x)dx < ∞.

Suppose that

T =


T11 T12
T21 T22


,

1
ρ

Ti j ∈ L2([x1, x2], ρ).

Consider the operator

Lbc(T, ρ)y :=
1

ρ(x)


i


1 0
0 −1


dy

dx
+ T y


, y =


y1
y2


, (6.1)
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subject to the boundary conditions bc

y1(x1)+ b y1(x2)+ a y2(x1) = 0, (6.2)

d y1(x2)+ c y2(x1)+ y2(x2) = 0,

in the domain Dom Lbc(T, ρ) ⊂

L2([x1, x2], ρ)

2
which consists of all absolutely continuous

functions y such that (6.2) holds and y′

1/ρ, y′

2/ρ ∈ L2([x1, x2], ρ). It is easy to see that
Lbc(T, ρ) is a densely defined closed operator. A standard computation of the adjoint operators
leads to the following.

Lemma 23. In the above notations,

(Lbc(T, ρ))
∗

= L bc(T
∗, ρ), where T ∗

=


T 11 T 21

T 12 T 22


(6.3)

and the boundary conditions bc are defined by

by1(x1)+ y1(x2)+ d y2(x2) = 0, ay1(x1)+ y2(x1)+ cy2(x2) = 0. (6.4)

The boundary conditions (6.4) are not written in the standard form (6.2) but a multiplication
of the system of Eqs. (6.4) from the left by the inverse matrix

b d
a c

−1

=


c/∆ −d/∆

−a/∆ b/∆


, ∆ = bc − ad,

would bring the boundary conditions bc to the standard form. This observation leads to the
following

Corollary 24. The operator Lbc(T, ρ) is self-adjoint if and only if

b = c/∆, a = −d/∆, d = −a/∆, c = b/∆, T = T ∗.

An appropriate change of the variable transforms the operator Lbc(T, ρ) into an operator

acting in

L2([0, π])

2
. Indeed, let

t (x) = K
 x

x1

ρ(ξ)dξ, x1 ≤ x ≤ x2, (6.5)

where the constant K > 0 is chosen so that t (x2) = K
 x2

x1
ρ(ξ)dξ = π , and let x(t) :

[0, π] → [x1, x2] be the inverse function of t (x). The change of variable x = x(t) give rise
of an isomorphism

W : L2([x1, x2], ρ) → L2([0, π]), (W f )(t) = f (x(t))

because
 π

0 | f (x(t))|2dt = K ·
 x2

x1
| f (x)|2ρ(x)dx . Of course, the operator

W (2)
:


L2([x1, x2], ρ)

2
→


L2([0, π])

2
, W (2)


f
g


=


W f
Wg


is also an isomorphism.
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Consider the operator

Lbc(S)u := i


1 0
0 −1


du

dt
+ Su, u =


u1
u2


(6.6)

with

S =


S11 S12
S21 S22


, Si j (t) =

1
Kρ(x(t))

Ti j (x(t)), i, j ∈ {1, 2},

subject to the boundary conditions bc

u1(0)+ bu1(π)+ au2(0) = 0, (6.7)

du1(π)+ cu2(0)+ u2(π) = 0,

in the domain D(Lbc(S)) ⊂

L2([0, π])

2
which consists of all absolutely continuous functions

u such that (6.7) holds and u′

1, u′

1 ∈ L2([0, π]).

Lemma 25. The operators Lbc(T, ρ) and K · Lbc(S) are similar.

Proof. Change the variables in (6.1), (6.2) by

x = x(t), u(t) = y(x(t)) =


y1(x(t))
y2(x(t))


, 0 ≤ t ≤ π. (6.8)

Then u′(t) = y′(x(t)) · x ′(t) = y′(x(t)) 1
Kρ(x(t)) , the boundary conditions (6.2) transform into

(6.7), the domain D(Lbc(T, ρ)) transforms into D(Lbc(S)), so the operator L(Tbc, ρ) transforms
into the operator K · Lbc(S). In other words, we obtain that

W (2)L(Tbc, ρ) = K · Lbc(S)W (2),

which completes the proof. �

Set

s1(t) =

 t

0
S11(τ )dτ, s2(t) =

 t

0
S22(τ )dτ, 0 ≤ t ≤ π. (6.9)

(This Liouville type transformation is often used in analysis of systems of ordinary differential
equations; see for example [22].)

Proposition 26. In the above notations, the Dirac operator

Lbc(S)u = i


1 0
0 −1


du

dt
+


S11 S12
S21 S22


u, Si j ∈ L2([0, π]), (6.10)

subject to the boundary conditions bc

u1(0)+ bu1(π)+ au2(0) = 0, (6.11)

du1(π)+ cu2(0)+ u2(π) = 0,

is similar to the Dirac operator

L bc(v)ũ = L0ũ + vũ, v =


0 S12e−i(s1(t)+s2(t))

S21ei(s1(t)+s2(t)) 0


, (6.12)
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subject to the boundary conditions bc

ũ1(0)+ b̃ũ1(π)+ ãũ2(0) = 0, (6.13)

d̃ ũ1(π)+ c̃ũ2(0)+ ũ2(π) = 0,

where

b̃ = beis1(π), ã = a, d̃ = dei(s1(π)+s2(π)), c̃ = ceis2(π). (6.14)

Proof. A simple calculation shows that formally

ALbc(S) = L bc(v)A, where A =


e−is1(t) 0

0 eis2(t)


. (6.15)

The domain Dom(Lbc(S)) consists of all absolutely continuous functions u =


u1
u2


such that

(6.11) holds and u′

1, u′

2 ∈ L2([0, π]), and the domain Dom(L bc(v)) consists of all absolutely

continuous functions ũ =


ũ1
ũ2


such that (6.13) holds and ũ′

1, ũ′

2 ∈ L2([0, π]). Therefore,

u ∈ Dom(Lbc(S)) if and only if ũ = Au ∈ Dom(L bc(v)). This, together with (6.15), means that
the operator Lbc(S) subject to the boundary conditions (6.11) is similar to the operator L bc(v)

subject to the boundary conditions (6.13). �

In view of Lemma 25 and Proposition 26, now we can extend our results from the previous
sections to the case of weighted eigenvalue problems on an arbitrary finite interval [x1, x2].

Definition 27. We say that the Eqs. (6.2) give regular, strictly regular or periodic type boundary
conditions for the operator (6.1) if (6.13) are regular, strictly regular or periodic type boundary
conditions for the operator (6.12).

By (2.11) and (6.14), the boundary conditions (6.13) are regular if

b̃c̃ − ãd̃ = (bc − ad)ei(s1(π)+s2(π)) ≠ 0,

so (6.11) are regular boundary conditions for the operator (6.10) if and only if

bc − ad ≠ 0. (6.16)

From (2.12) and (6.14) it follows that (6.13) are strictly regular boundary conditions for the
operator (6.10) if and only if (b̃ − c̃)2 + 4ãd̃ ≠ 0 which is equivalent to

beis1(π) − ceis2(π)
2

+ 4adei(s1(π)+s2(π)) ≠ 0. (6.17)

Finally, by (2.18) and (6.14), the Eqs. (6.11) give periodic type boundary conditions for the
operator (6.10) if

beis1(π) = ceis2(π), a = 0, d = 0. (6.18)

The next theorem generalizes the results in Sections 3–5 (see Theorems 10, 20 and 22).

Theorem 28. Suppose ρ ∈ L1([x1, x2]), ρ(x) ≥ const > 0, and

T =


T11 T12
T21 T22


,

1
ρ

Ti j ∈ L2([x1, x2], ρ). (6.19)
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Consider the Dirac the operator

Lbc(T, ρ)y :=
1

ρ(x)


i


1 0
0 −1


dy

dx
+ T y


, y =


y1
y2


, (6.20)

subject to regular bc (in the sense of Definition 27)

y1(x1)+ by1(x2)+ ay2(x1) = 0, dy1(x2)+ cy2(x1)+ y2(x2) = 0. (6.21)

(A) If bc are strictly regular (i.e., (6.16) and (6.17) hold), then in (L2([x1, x2], ρ))
2 there is a

basis of Riesz projections {SN , Pαn , α = 1, 2, N , n ∈ 2Z, |n| > N } of the operator
Lbc(T, ρ) such that dim SN = 2N + 2, dim Pαn = 1, and

f = SN f +


|n|>N

2
α=1

Pαn f ∀f =


f1
f2


∈ (L2([x1, x2], ρ))

2, (6.22)

where the series converge unconditionally in (L2([x1, x2], ρ))
2.

(B) If bc are regular but not strictly regular (i.e., (6.16) holds but (6.17) fails), then in
(L2([x1, x2], ρ))

2 there is a bases of Riesz projections {SN , Pn, N , n ∈ 2Z, |n| > N }

of the operator Lbc(T, ρ) such that dim SN = 2N + 2, dim Pn = 2, and

f = SN f +


|n|>N

Pnf ∀f =


f1
f2


∈ (L2([x1, x2], ρ))

2, (6.23)

where the series converge unconditionally in (L2([x1, x2], ρ))
2.

(C) If f =


f1
f2


, where f1 and f2 are functions of bounded variation on [x1, x2], then the series

(6.22) and (6.23) converge point-wise to a function f̃(x) =


f̃1(x)
f̃2(x)


in the sense that

(SN f)(x)+ lim
M→∞


N<|n|≤M

2
α=1


Pαn f


(x) = f̃(x) (6.24)

in the strictly regular case, and

(SN f)(x)+ lim
M→∞


N<|n|≤M

(Pnf)(x) = f̃(x) (6.25)

if bc is regular but not strictly regular. Moreover,

f̃(x) =
1
2
(f(x − 0)+ f(x + 0)) if x ∈ (x1, x2), (6.26)

and

f̃(x1) =
1
2

 f1(x1 + 0)− b f1(x2 − 0)− a f2(x1 + 0)
d

bc − ad
f1(x1 + 0)+ f2(x1 + 0)−

b

bc − ad
f2(x2 − 0)

 , (6.27)

f̃(x2) =
1
2


−c

bc − ad
f1(x1 + 0)+ f1(x2 − 0)+

a

bc − ad
f2(x2 − 0)

−d f1(x2 − 0)− c f2(x1 + 0)+ f2(x2 − 0)


. (6.28)
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If, in addition, both f1(x2 − x) and f2(x) are continuous on some closed subinterval of
(x1, x2) then the convergence in (6.24) and (6.25) is uniform on that interval. The convergence
is uniform on the closed interval [x1, x2] if and only if f1 and f2 are continuous on [0, π] and

f1
f2


satisfies the boundary condition bc given by (6.21).

Remark. One can easily see by (6.21), (6.27) and (6.28) that if the function f is continuous at x1
and x2 then

f̃(x1) = f(x1), f̃(x2) = f(x2)

if and only if f satisfies the boundary conditions (6.21).

Proof. In view of Lemma 25 and Proposition 26, (A) and (B) follow from Theorem 10. Below,
we show that (C) follows from Theorem 22.

By Lemma 25, a suitable change of variable t = t (x) transforms the operator Lbc(T, ρ)

subject to the boundary conditions given by the matrix


1 b a 0
0 d c 1


on [x1, x2] into the operator

Lbc(S) subject to bc given by the same matrix on [0, π]. Therefore, it is enough to prove (C) in
the case where x1 = 0, x2 = π, ρ ≡ 1 and T ≡ S.

By Proposition 26, the operator Lbc(S) is similar to the operator L bc(v) defined in (6.12) and

subject to the boundary conditions bc given by the matrix


1 b̃ ã 0
0 d̃ c̃ 1


, where ã, b̃, c̃, d̃ are

defined by (6.14). By (6.15),

Lbc(S) = A−1L bc(v)A with A =


e−is1(t) 0

0 eis2(t)


,

where s1(t) and s2(t) come from (6.9).
Since the operators A and A−1 act on vector-functions by multiplying their components by

exponential functions, the point-wise convergence of the spectral decompositions of the operator
L bc(v) yields a point-wise convergence of the spectral decompositions of the operator Lbc(S).
Therefore, under the assumptions in (C), (6.26) holds, and the convergence is uniform on a closed
subinterval I ⊂ (0, π) provided that f1(π − t) and f2(t) are continuous on I . Moreover, if f1

and f2 are continuous and


f1
f2


satisfies the boundary condition (6.21), then A


f1
f2


satisfies the

boundary conditions bc, so the uniform convergence on [0, π] follows from Theorem 22.
Next we consider the convergence at the points x1 = 0, x2 = π and show that (6.27) and

(6.28) hold. Let {ŜN (v), P̂n(v), |n| > N } be a basis of Riesz projections of the operator L bc(v),

and let

{SN = A−1 ŜN (v)A, Pn = A−1 P̂n(v)A, |n| > N }

be the corresponding basis of Riesz projections of the operator Lbc(S). Then we have, for every
t ∈ [0, π],

f̃(t) = (SN f)(t)+ lim
M→∞


N<|n|≤M

(Pnf)(t)

= (A−1 ŜN (v)Af)(t)+ lim
M→∞


N<|n|≤M


A−1 P̂n(v)Af


(t).

Therefore,

f̃(t) = A−1
f1f1


(t), t ∈ [0, π], (6.29)
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wheref1f2


(t) = SN (v)A


f1
f2


(t)+ lim

M→∞


N<|n|≤M

Pn(v)A


f1
f2


(t). (6.30)

Since

S


f1
f2


(t) =


e−is1(t) f1(t)
eis2(t) f2(t)


and A−1


g1
g2


(t) =


eis1(t)g1(t)

e−is2(t)g2(t)


,

we obtain
f1(0)f1(π)f2(0)f2(π)

 =
1
2

Mbc


f1(0)

e−is1(π) f1(π)

f2(0)
eis2(π) f2(π)

 ,

f1(0)f1(π)f2(0)f2(π)

 =


f1(0)

eis1(π)f1(π)f2(0)
e−is2(π)f2(π)

 ,
where Mbc is the transition matrix (5.14) corresponding to the boundary conditions bc. Since

Mbc =



1 −b̃ −ã 0
−c̃

b̃c̃ − ãd̃
1 0

ã

b̃c̃ − ãd̃
d̃

b̃c̃ − ãd̃
0 1

−b̃

b̃c̃ − ãd̃
0 −d̃ −c̃ 1

 ,

an easy calculation (which is omitted) shows that the formulas (6.27) and (6.28) hold with
x1 = 0, x2 = π. This completes the proof. �

7. Self-adjoint separated boundary conditions

A boundary condition bc given by a matrix


1 b a 0
0 d c 1


is called separated if b = c = 0;

such bc has the form

y1(x1)+ ay2(x1) = 0, dy1(x2)+ y2(x2) = 0. (7.1)

In the case

a = e2iα1 , d = e−2iα2 , α1, α2 ∈ [0, π), (7.2)

we have a self-adjoint separated bc which could be written in the form

e−iα1 y1(x1)+ eiα1 y2(x1) = 0, e−iα2 y1(x2)+ eiα2 y2(x2) = 0. (7.3)

In view of Corollary 24, (7.3) gives the general form of self-adjoint separated boundary
conditions.

Theorem 29. Consider on [x1, x2] the Dirac operator

Lbc(D)y =


i 0
0 −i


dy

dx
+ Dy, D =


A1 + i A2 P1 + i P2
P1 − i P2 A1 − i A2


, (7.4)

where A1, A2, P1, P2 are real L2-functions, and bc is given by (7.3).
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(a) The spectrum of Lbc(D) is discrete; each eigenvalue is real and has equal geometric and
algebraic multiplicities. Moreover, there are numbers N = N (D, bc) ∈ N and τ =

τ(D, bc) ∈ R such that, with ℓ = x2 − x1, the interval

τ − N −

1
4


π
ℓ
,

τ + N +

1
4


π
ℓ


contains exactly 2N + 1 eigenvalues (counted with multiplicity), and for n ∈ Z with |n| > N

there is exactly one (simple!) eigenvalue λn ∈


τ + n −

1
4


π
ℓ
,

τ + n +

1
4


π
ℓ


.

(b) There is a Riesz basis in L2([x1, x2],C2) which elements are eigenfunctions of the operator
(Lbc(D)) of the form

Φ =


ϕk
ϕk


=


uk + ivk
uk − ivk


, uk, vk ∈ L2([x1, x2],R), k ∈ Z


, (7.5)

and its adjoint biorthogonal system has the form

Ψ =


ψk

ψk


=


ak + ibk
ak − ibk


, ak, bk ∈ L2([x1, x2],R), k ∈ Z


. (7.6)

(c) If F =


F1
F2


is a function of bounded variation on [x1, x2], then its expansion about the basis

Φ converges point-wise to a function F̃(x),

F̃(x) =


F̃1

F̃2


(x) = lim

M→∞


|k|≤M

ck(F)


uk + ivk
uk − ivk


(x), (7.7)

where

ck(F) =


F1
F2


,


ak + ibk
ak − ibk


, k ∈ Z, (7.8)

and

F̃(x) =
1
2
(F(x − 0)+ F(x + 0)), x1 < x < x2, (7.9)

F̃(x1) =


F1(x1 + 0)− exp(2iα1)F2(x1 + 0)

− exp(−2iα1)F1(x1 + 0)+ F2(x1 + 0)


, (7.10)

F̃(x2) =


F1(x2 − 0)− exp(2iα2)F2(x2 − 0)

− exp(−2iα2)F1(x2 − 0)+ F2(x2 − 0)


. (7.11)

Moreover, if F1(x2 −x) and F2(x) are continuous on some closed subinterval of (x1, x2) then
the convergence in (7.7) is uniform on that interval. The convergence is uniform on the closed

interval [x1, x2] if and only if F1 and F2 are continuous on [0, π] and


F1
F2


satisfies the boundary

condition bc given by (7.3).

Proof. (a) Set

s1(x) =

 x

x1

(A1(ξ)+ i A2(ξ))dξ, s2(x) =

 x

x1

(A1(ξ)− i A2(ξ))dξ ;

then s1(x) = s2(x), so the sum s1(x) + s2(x) is real-valued. As in Proposition 26 (see
(6.12)–(6.14)), one can easily see that the operator Lbc(D) is similar to the Dirac operator
L bc(v), with

v =


0 (P1 + i P2)e

−i(s1(x)+s2(x))

(P1 − i P2)e
i(s1(x)+s2(x)) 0


,



P. Djakov, B. Mityagin / Journal of Approximation Theory 164 (2012) 879–927 919

bc : ã = a = e2iα1 , b̃ = b = 0, c̃ = 0, d̃ = e−2iα2ei(s1(x2)+s2(x2)),

and

M Lbc(D) = L b̃c(v)M, M =


e−is1(x) 0

0 eis2(x)


. (7.12)

The matrix v is hermitian because the sum s1(x) + s2(x) is real-valued. Since bc is a self-
adjoint boundary condition of the form (7.3), it follows that the operator L bc(v) is self-adjoint.
Therefore, its spectrum is real, and moreover, discrete by Part (A) of Theorem 28.

In the case x1 = 0, x2 = π a localization of the spectrum of L bc(v) can be obtained by
the general scheme from Section 2 and Lemma 9. Indeed, now the characteristic equation (2.13)
becomes

z2
= ãd̃ = e2i(α1−α2)ei(s1(π)+s2(π)),

so its solutions z1, z2 can be written as

z1 = eiπτ , z2 = eiπ(τ+1), where τ =
1

2π
[2α1 − 2α2 + s1(π)+ s2(π)].

Therefore, it follows that Sp(L0bc
) = {λ = τ + n, n ∈ Z}, so Lemma 9 implies (a) in this case.

The general case of an arbitrary interval [x1, x2] could be reduced to the case of [0, π] by the
change of variable x = x1 +

ℓ
π

t, ℓ = x2 − x1.

(b) In view of Part (B) of Theorem 28 there is a Riesz basis in L2([x1, x2],C2) which consists
of eigenfunctions of L bc(v). Moreover, since it is a self-adjoint operator there is an orthonormal
basis which consists of eigenfunctions of L bc(v).

One can easily see that the real vector subspace of L2([x1, x2],C2)

H =


ϕ

ϕ


: ϕ ∈ L2([x1, x2],C)


is invariant subspace for both Lbc(D) and L bc(v). Moreover, since

g1
g2


=


ϕ

ϕ


+ i


ψ

ψ


with ϕ =

g1 + g2

2
and ψ =

g1 − g2

2i
,

we have L2([x1, x2],C2) = H ⊕ i H.
Suppose λ ∈ Sp (L bc(v)), and let Eλ = {y : L bc(v)y = λy} be the space of eigenvectors

corresponding to λ. By (a) we know that λ is real, and dim Eλ < ∞. Since λ is real, one can
easily see by taking the conjugates that

g1
g2


∈ Eλ ⇒


g2
g1


∈ Eλ. (7.13)

Suppose that


g1
g2


=


ϕ

ϕ


+ i


ψ

ψ


∈ Eλ. Then (7.13) implies


g2
g1


=


ϕ

ϕ


− i


ψ

ψ


∈ Eλ, which

yields

ϕ

ϕ


=

1
2


g1
g2


+

1
2


g2
g1


∈ Eλ and


ψ

ψ


=

1
2i


g1
g2


−

1
2i


g2
g1


∈ Eλ. Hence,

Eλ = (Eλ ∩ H)⊕ i(Eλ ∩ H),

which implies that every basis in (Eλ ∩ H) (regarded as a real vector space) is a basis in Eλ
(regarded as a complex vector space) as well. Therefore, one may choose in each of the spaces
Eλ a basis consisting of mutually orthogonal normalized vectors from Eλ ∩ H. Since all but
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finitely many of these spaces are one-dimensional, it follows that there is an orthonormal basis
fk, k ∈ Z, of the form (7.5) which consists of eigenfunctions of L bc(v).

By (7.12), the system

Φ = {M fk, k ∈ Z}

is a Riesz basis in L2([x1, x2],C2) which consists of eigenfunctions of Lbc(D), and the
corresponding biorthogonal system is

Ψ = {(M−1)∗ fk, k ∈ Z}, (A−1)∗ =


e−is1 0

0 eis2 .


Since s1(x) = s2(x), one can easily verify that the system Φ has the form (7.5) and Ψ has the
form (7.6).

Finally, in view of (7.2), (c) follows from part (C) of Theorem 28. �

Next we provide a version of Theorem 29 for real-valued functions.

Theorem 30. Let ρ ∈ L1([x1, x2]), ρ(x) ≥ const > 0 for x ∈ [x1, x2], and

T =


T11 T12
T21 T22


,

1
ρ

Ti j ∈ L2([x1, x2], ρ), Ti j − real-valued. (7.14)

Consider the operator

Rbc(T )


u
v


:=

1
ρ


0 −1
1 0


d

dx


u
v


+ T


u
v


, (7.15)

subject to the boundary conditionsbc : u(x j ) cosα j + v(x j ) sinα j = 0, α1 ≠ α2, j = 1, 2. (7.16)

(A) The spectrum of the operator Rbc is discrete; each eigenvalue is real and has equal
geometric and algebraic multiplicities. Moreover, there are numbers N = N (T, bc), τ =

τ(T, bc) and ℓ = ℓ(ρ, x2 − x1) such that the interval

τ − N −

1
4


π
ℓ
,

τ + N +

1
4


π
ℓ


contains 2N + 1 eigenvalues λk, −N ≤ k ≤ N (counted with multiplicity), and
for n ∈ Z, |n| > N , there is only one (simple!) eigenvalue λn in the interval
τ + n −

1
4


π
ℓ
,

τ + n +

1
4


π
ℓ


.

(B) Let B =


un
vn


, n ∈ Z


be a system of normalized real-valued eigenfunctions

corresponding to the sequence of eigenvalues (λn)n∈Z. Then the system B is a Riesz basis in
L2([x1, x2], ρ)

2
, i.e.,

f
g


=


n∈Z

Cn( f, g)


un
vn


∀


f
g


∈


L2([x1, x2], ρ)

2
, (7.17)

where the series converge unconditionally.
(C) If f and g are real-valued functions of bounded variation on [x1, x2], then the series in

(7.17) converges point-wise in the sense that

lim
M→∞


|n|≤M

Cn( f, g)


un(x)
vn(x)


:=


f̃ (x)
g̃(x)


(7.18)



P. Djakov, B. Mityagin / Journal of Approximation Theory 164 (2012) 879–927 921

where
f̃ (x)
g̃(x)


=

1
2


f (x − 0)
g(x − 0)


+


f (x + 0)
g(x + 0)


for x ∈ (x1, x2), (7.19)

and 
f̃ (x1)

g̃(x1)


=

1
2


f (x1 + 0)(1 − cos 2α1)− g(x1 + 0) sin 2α1

− f (x1 + 0) sin 2α1 + g(x1 + 0)(1 + cos 2α1)


, (7.20)

f̃ (x2)

g̃(x2)


=

1
2


f (x2 − 0)(1 − cos 2α2)− g(x2 − 0) sin 2α2

− f (x2 − 0) sin 2α2 + g(x2 − 0)(1 + cos 2α2)


. (7.21)

In addition, if the functions f and g are continuous on a closed subinterval [x1 + δ, x2 − δ] ⊂

(x1, x2), then the convergence in (7.18) is uniform on [x1+δ, x2−δ]. The convergence is uniform

on the closed interval [x1, x2] if and only if f and g are continuous on [x1, x2] and


f
g


satisfies

the boundary condition bc given in (7.16).

Proof. (A) In view Lemma 25, we may assume that ρ ≡ 1. Set

A1 =
1
2
(T11 + T22), P1 =

1
2
(T11 − T22), A2 =

1
2
(T21 − T12),

P2 =
1
2
(T21 + T12)

and consider the operator Lbc(D) in (7.4) with D =


A1 + i A2 P1 + i P2
P1 − i P2 A1 − i A2


and bc given by (7.3).

A simple calculation shows that


u
v


satisfies (7.16) if and only if


u + iv
u − iv


satisfies (7.3), and

Lbc(D)


u + iv
u − iv


= λ


u + iv
u − iv


⇔ Rbc(T )


u
v


= λ


u
v


. (7.22)

Therefore, λ is an eigenvalue of Rbc(T ) if and only if it is an eigenvalue of Lbc(D) with the same
geometric multiplicity, and the localization of eigenvalues of Rbc(T ) given in (A) follows from
part (a) of Theorem 29. But it remains to explain that the spectrum of Rbc(T ) is discrete — see
below.

(B) By Theorem 29, the system Φ in (7.5) is a Riesz basis in L2([x1, x2],C2) consisting
of eigenfunctions of the operator Lbc(D), and its biorthogonal system is given by (7.6). Fix

f
g


∈ L2([x1, x2],R2) and consider the expansion of


f + ig
f − ig


about the Riesz basis Φ. Then

f + ig
f − ig


=


k

Ck( f, g)


uk + ivk
uk − ivk


, (7.23)

where the series converges in unconditionally in L2([x1, x2],C2) and

C( f, g) =


f + ig
f − ig


,


ak + ibk
ak − ibk


=


f
g


, 2


ak
bk


. (7.24)

By taking the first components in (7.23) and separating the real and imaginary parts we obtain
f
g


=


k

Ck( f, g)


uk
vk


∀


f
g


∈ L2([x1, x2],R2), (7.25)

where the series converge unconditionally in L2([x1, x2],R2).
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In view of (7.22), (7.24) and (7.25), the system

B =


uk
vk


:


uk + ivk
uk − ivk


∈ Φ, k ∈ Z


(7.26)

is a Riesz basis in L2([x1, x2],R2) (and therefore, in L2([x1, x2],C2)) which consists of
eigenfunctions of the operator Rbc(T ), and its biorthogonal system is

B∗
=


2


ak
bk


:


ak + ibk
ak − ibk


∈ Ψ , k ∈ Z


. (7.27)

Now one can use the Riesz basis (7.26) in order to construct the resolvent (λ − Rbc(T ))
−1 for

any λ ≠ λk, k ∈ Z, which shows that the spectrum of Rbc(T ) is discrete and consists of the
eigenvalues λk, k ∈ Z.

(C) Let f and g be functions of bounded variation on [x1, x2]. Set

F =


F1
F2


=


f + ig
f − ig


; then f = Re F1, g = I m F1

In view of Part (c) of Theorem 29, we have

lim
M→∞


|n|≤M

Cn( f, g)


un(x)+ ivn(x)
un(x)− ivn(x)


:= F̃(x), (7.28)

where F̃(x) =


F̃1(x)
F̃2(x)


is given by Formulas (7.9)–(7.11) in terms of F . Obviously, we have

F̃2(x) = F̃1(x). Taking the first components in (7.28) and separating the real and imaginary
parts we obtain

lim
M→∞


|n|≤M

Cn( f, g)


un(x)
vn(x)


:=


f̃ (x)
g̃(x)


(7.29)

with f̃ (x) = Re F̃1(x) and g̃(x) = I m F̃1(x). Now (C) follows immediately from Part (c) of
Theorem 29. �

We are thankful to R. Szmytkowski for bringing our attention to the point-wise convergence
problem of spectral decompositions of 1D Dirac operators. In the case of self-adjoint separated
boundary conditions, our point-wise convergence results (see (7.20) and (7.21)) confirm the
formula suggested by Szmytkowski [35, Formula 3.14].
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Appendix. Discrete Hilbert transform and multipliers

The aim of this Appendix is to prove Lemma 19. In fact, we explain that if f ∈ H(Ω) and
g ∈ C1([0, π]), then f · g ∈ H(Ω) for a wider class of weights then we need in Lemma 19 —
see below Proposition 32.

Recall that if ξ = (ξk) ∈ ℓ2(Z) then its discrete Hilbert transform is defined by

(Hξ)n =


k≠n

ξk

n − k
, n ∈ Z.

It is well known that the operator H : ℓ2(Z) → ℓ2(Z) is bounded. Moreover, let Ω = (Ω(k))k∈Z
be a weight sequence such that

Ω(0) ≥ 1, Ω(−k) = Ω(k), Ω(k) ≤ Ω(k + 1) for k ≥ 0. (A.1)

Then it is known by [17, Theorem 10] that the discrete Hilbert transform H acts continuously in
the weighted space

ℓ2(Ω) =


ξ : ∥ξ∥2

Ω =


|ξk |

2Ω2(k) < ∞


if and only if the weight Ω satisfies the condition

sup
k,n


1

n + 1

k+n
m=k

Ω2(m)×
1

n + 1

k+n
m=k

1

Ω2(m)


< ∞. (A.2)

See [1] for the proof of a particular version of this criterion which is good enough for Lemma 31.

Lemma 31. Suppose the weight Ω satisfies (A.1) and

∃C > 0 : Ω(2k) ≤ C Ω(k) ∀ k ∈ 2Z; (A.3)

∃C > 0 : Ω(k) ≤ C


1 + |k| ∀ k ∈ 2Z. (A.4)

If f ∈ H(Ω) and g ∈ H1
per , then f · g ∈ H(Ω).

Proof. Recall that H1
per = H

√
1 + k2


. Let ( f̂ (k)) and (ĝ(k)) be the Fourier coefficients of f

and g with respect to the system eikx , k ∈ 2Z. It is enough to show that f̂ ∗ ĝ ∈ ℓ2(Ω). To this
end we consider, for b ∈


ℓ2(Ω)

∗
= ℓ2(Ω−1), the ternary form

T =


m


k

f̂ (k)ĝ(m − k)b(m)

and show that it is bounded.
Set

ξ(k) = f̂ (k)Ω(k), η(k) = ĝ(k)


1 + k2, β(k) = b(k)/Ω(k), k ∈ 2Z.

Then we have ξ, η, β ∈ ℓ2(2Z) and

∥ξ∥ = ∥ f̂ ∥ℓ2(Ω), ∥η∥ = ∥ĝ∥
ℓ2(

√
1+k2)

, ∥β∥ = ∥b∥ℓ2(Ω−1).

Now the ternary form T can be written as

T =


k,m

ξ(k)

Ω(k)
·

η(m − k)
1 + (m − k)2

· β(m)Ω(m),
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and the Cauchy inequality implies

|T |
2

≤


k,m

|ξ(k)|2|η(m − k)|2


k,m

Ω2(m)
|β(m)|2

Ω2(k)[1 + (m − k)2]


≤ S∥ξ∥2

∥η∥2
∥β∥

2,

where

S = sup
m


k

Ω2(m)

Ω2(k)[1 + (m − k)2]
.

Next we explain that S < ∞. Indeed, in view of (A.3), if |k| ≥ |m|/2 then Ω(m) ≤ Ω(2k) ≤

CΩ(k). Therefore,
|k|≥|m|/2

Ω2(m)

Ω2(k)[1 + (m − k)2]
≤ C2


|k|≥|m|/2

1

[1 + (m − k)2]
≤ C2(1 + π).

On the other hand, if |k| < |m|/2 then |m − k| > |m|/2. Thus,
|k|<|m|/2

Ω2(m)

Ω2(k)[1 + (m − k)2]
≤


| j |>|m|/2

Ω2(m)

1 + j2 ≤
4Ω2(m)

1 + |m|
.

Now (A.4) implies that

S ≤ sup
m


C2(1 + π)+

4Ω2(m)

1 + |m|


< ∞,

which completes the proof. �

Proposition 32. If a weight sequence Ω satisfies (A.2)–(A.4), f ∈ H(Ω) and g ∈ C1([0, π]),
then f · g ∈ H(Ω).

Proof. The C1-function g could be written as a sum of a linear function and a periodic C1-
function as

g(x) = ℓ(x)+ g1(x) with ℓ(x) = m x, m = (g(π)− g(0))/π.

Since g1 ∈ Hper , Lemma 31 implies that f · g1 ∈ H(Ω). So, it remains to prove that
x f (x) ∈ H(Ω).

Since

x =


k∈2Z

c(k)eikx , with c(0) = π/2, c(k) =
i

k
for k ≠ 0,

we obtain that

c ∗ f̂ (k) =
π

2
f̂ (k)+ i


j≠k

f̂ ( j)

k − j
, that is c ∗ f̂ =

π

2
f̂ + i H( f̂ ).

Since (A.2) holds, H( f̂ ) ∈ ℓ2(Ω) (due to the results of [17]), so c ∗ f̂ ∈ ℓ2(Ω). Thus,
x f (x) ∈ H(Ω), which completes the proof. �
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Proposition 32 would imply Lemma 19 if we check that the conditions (A.2)–(A.4) for the
weights Ω given by

Ω(k) = (1 + |k|)α, 0 ≤ α < 1/2, (A.5)

or

Ω(k) = (log(e + |k|))δ, 0 ≤ δ < ∞. (A.6)

Lemma 33. Weights Ω given by (A.5) and (A.6) satisfy the conditions (A.2)–(A.4).

Proof. Elementary inequalities show that (A.3) and (A.4) hold. To check (A.2) we have to show
that there is M > 0 such that

1
n + 1

s(k, n)×
1

n + 1
S(k, n) ≤ M ∀k ∈ Z, n ∈ Z+, (A.7)

where

s(k, n) =

k+n
m=k

1

Ω2(m)
, S(k, n) =

k+n
m=k

Ω2(m).

There are three cases:

(a) k < −2n; (b) − 2n ≤ k ≤ n; (c) k > n.

By (A.1), Ω(−m) = Ω(m); therefore, with k1 = −k − n we have

s(k, n) = s(k1, n), S(k, n) = S(k1, n),

so the case (a) reduces to (c). If k > n, then by (A.1) and (A.3)

Ω(k) ≤ Ω(m) ≤ Ω(2k) ≤ C Ω(k), k ≤ m ≤ k + n.

Therefore, it follows that

1
n + 1

s(k, n) ≤
1

Ω2(k)
and

1
n + 1

S(k, n) ≤ Ω2(2k) ≤ C2Ω2(k),

so the product in (A.7) does not exceed the constant C2 from (A.3).
Next, we consider the case (b) where −2n ≤ k ≤ n. Then, by (A.1), it follows

s(k, n)

n + 1
=

1
n + 1

k+n
k

1

Ω2(m)
≤

2
1 + 2n

2
2n
0

1

Ω2(m)
= 4

s(0, 2n)

2n + 1
(A.8)

and

S(k, n) ≤ 2S(0, 2n) ≤ 2(2n + 1)Ω2(2n). (A.9)

If Ω is of the form (A.5), then

s(0, 2n) =

2n
j=0

1

(1 + j)2α
≤ 1 +

 2n

0

1

(1 + x)2α
dx ≤

2
1 − 2α

(1 + 2n)1−2α,

so (A.8) and (A.9) show that the product in (A.7) does not exceed
4

2n + 1
·

2
1 − 2α

(2n + 1)1−2α


· 4(2n + 1)2α ≤
32

1 − 2α
.



926 P. Djakov, B. Mityagin / Journal of Approximation Theory 164 (2012) 879–927

If Ω is of the form (A.6), then

s(0, 2n)

2n + 1
=

1
2n + 1

 
0≤ j≤

√
n

1

(log(e + j))2δ
+


√

n< j≤2n

1

(log(e + j))2δ


≤

1 +
√

n

1 + 2n
+

1 + 2n −
√

n

1 + 2n

1
log


e +

√
n
2δ ≤

M
log


e +

√
n
2δ

with

M = 2 max
n≥0


log


e +

√
n
2δ

1 +
√

n
+ 1.

Since (A.9) holds for every monotone weight Ω it follows that the product (A.7) does not exceed
M · M̃2δ with M̃ = maxn≥0

log(e+2n)
log(e+

√
n)

. This completes the proof of Lemma 33. �
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