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Abstract

In (Ayala et al. (Discrete Appl. Math. 125 (1) (2003) 3) it was introduced the notion of a
digital fundamental group �d

1 (O=S; �) for a set of pixels O in relation to another set S which plays
the role of an “obstacle”. This notion intends to be a generalization of the digital fundamental
groups of both digital objects and their complements in a digital space. However, the suitability
of this group was only checked for digital objects in that paper. As a sequel, we extend here
the results in Ayala et al. (2003) for complements of objects. More precisely, we prove that
for arbitrary digital spaces the group �d

1 (O=S; �) maps onto the usual fundamental group of the
di9erence of continuous analogues |AO ∪ S | − |AS |. Moreover, this epimorphism turns to be
an isomorphism for a large class of digital spaces including most of the examples in digital
topology.
? 2003 Elsevier B.V. All rights reserved.
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0. Introduction

This paper deals with a notion of digital fundamental group for complements of
objects in binary digital pictures. The interest of searching for a good notion of
digital fundamental group arises from the theory of 3d image thinning algorithms.
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After applying a 3d thinning algorithm, the “tunnels” in the input and output digital
pictures must agree in number and position, and this can be correctly speciGed by
saying that the algorithm preserves the digital fundamental groups of both the object
displayed in the picture and its complement (see Criterion 2.3.2 in [8]).
The Grst notion of a digital fundamental group was the topological approach given by

Khalimsky [7] for a particular class of spaces (Khalimsky’s spaces) deGned on the set
Zn; n¿ 0, and more generally for locally Gnite topological T0 spaces. This way, Khal-
imsky deals with sets of pixels regardless of considering them as digital objects them-
selves or as complements of other objects. However, depending on how one chooses
to represent pixels in a Khalimsky’s space, the loops deGning this group may not con-
sist entirely of pixels, property which seem not be appropriate for candidates to digital
loops. Later on, Kong [8] gave a purely digital notion of fundamental group for a large
class of graph-based digital spaces, including the (
; �)-connected spaces deGned on the
grid Zn, where (
; �)∈ {(4; 8); (8; 4)} if n=2 and (
; �)∈ {(6; 26); (26; 6); (6; 18); (18; 6)}
if n=3. As usual in the graph-theoretical approach to Digital Topology, Kong’s digital
fundamental group involves a di9erent deGnition for objects and their complements in
a given digital space. Namely, if O ⊆ Zn is an object in the (
; �)-connected digital
space, Kong deGnes the digital fundamental group of the complement of O in that space
as the fundamental group of the object Zn − O in the corresponding (�; 
)-connected
digital space. Nevertheless, this notion is restricted to 2d and 3d digital spaces and
seems not generalize to give higher digital homotopy groups.
Recently, the authors [4] have introduced a fairly general notion of digital funda-

mental group that is close enough to the topological approach of Khalimsky but it is
given in quite reasonable digital terms. That notion includes, as particular cases, the
corresponding notions for both objects and their complements in a digital space. More
precisely, in [4] we deGne the digital fundamental group �d

1 (O=S; �) of a set of pixels
O regarding to an object S, which plays the role of an “obstacle” that the loops in O
cannot cross; the particular cases �d

1 (O=∅; �) and �d
1 (O=(X − O); �) correspond to the

digital fundamental groups of O when it is respectively considered as the digital object
displayed in a picture and as the complement of the digital object X −O. As it usually
happens to the connectivity and other topological properties of a set of pixels O, that
may be di9erent depending on whether O is regarded as a digital object or as the
complement of the digital object X − O, the groups �d

1 (O=∅; �) and �d
1 (O=(X − O); �)

may be distinct.
This approach presents, at least from a theoretical point of view, several advantages

over the notions of Khalimsky and Kong. Firstly, it can be readily generalized to deGne
higher digital homotopy groups (see [4]), as Khalimsky’s notion, and, secondly, this
group is available on a larger class of arbitrarily dimensional digital spaces than Kong’s
digital fundamental group.
The group �d

1 (O=S; �) was introduced within the framework of the multilevel archi-
tecture for Digital Topology given in [3]. That architecture provides a link between the
discrete world of digital pictures and Euclidean spaces, where the “continuous percep-
tion” that an observer may take on a picture is represented via a polyhedron called its
continuous analogue. In general, this link can be used to obtain new results in Digital
Topology, by translating the corresponding continuous results (for instance, we use it
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in [2] to prove a general Digital Index Theorem for all (
; �)-connected spaces on
Z3 and also for digital spaces deGned on the grid Zn, for n¿ 3). Moreover, this link
can be also used to check that a new digital notion is an accurate counterpart of the
usual continuous one. So, we give in [4] an isomorphism from the digital fundamental
group �d

1 (O=∅; �) of an object O onto the classical fundamental group of its continuous
analogue.
As a sequel, we extend in this paper the results in [4] to the more elaborate case

of the digital fundamental group �d
1 (O=(X − O); �) of an object’s complement. More

precisely, for an arbitrary obstacle S �= ∅, we give in Section 3.1 an epimorphism
from the digital fundamental group �d

1 (O=S; �) onto the fundamental group of the com-
plement of the obstacle’s continuous analogue. Although there is strong evidence that
this epimorphism is not injective in general, we show in Section 3.2 that it is actu-
ally an isomorphism for a large class of digital spaces, including those most used in
image processing. This supports also for complements of objects the suitability of our
deGnition of the digital fundamental group �d

1 in [4].
For the convenience of the reader we review the basic notions of the multilevel

architecture quoted above and the deGnition of the group �d
1 (O=S; �) in Sections 1 and

2, respectively.

1. Preliminaries

In this section we brieNy summarize the basic notions of the multilevel architecture
for digital topology developed in [3] as well as the notation that will be used through
all the paper.
In that architecture, the spatial layout of pixels in a digital image is represented

by a device model, which is a homogeneously n-dimensional locally Gnite polyhedral
complex K . Each n-cell in K is representing a pixel, and so the digital object displayed
in a digital image is a subset of the set celln(K) of n-cells in K ; while the other lower
dimensional cells in K are used to describe how the pixels could be linked to each other.
A digital space is a pair (K;f), where K is a device model and f is weak lighting
function deGned on K . The function f is used to provide a continuous interpretation,
called continuous analogue, for each digital object O ⊆ celln(K). Next we describe
these two notions in detail.
By a homegeneously n-dimensional locally Gnite polyhedral complex we mean a

set K of polytopes, in some Euclidean space Rd, provided with the natural ordering
given by the relationship “to be face of ”, that in addition satisGes the four following
properties:

1. If �∈K and � is a face of � then �∈K .
2. If �; �∈K then � ∩ � is a face of both � and �.
3. For each point x in the underlying polyhedron |K |=∪{�; �∈K} of K , there exists

a neigbourhood of x which intersects only a Gnite number of polytopes in K ; in
particular, each polytope of K is face of a Gnite number of other polytopes in K .

4. Each polytope �∈K is face of some n-dimensional polytope in K .
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Given a device model K and two polytopes �; �∈K , we shall write �6 � if � is a face
of �, and �¡� if in addition � �= �. A centroid-map on K is a map c :K → |K | such
that c(�) belongs to the interior of �; that is, c(�)∈ ◦

�=�−@�, where @�=∪{�; �¡�}
stands for the boundary of �. We refer to [13,15] for further notions on polyhedral
topology.

Remark 1. A homegeneously n-dimensional locally Gnite polyhedral complex K can
be regarded as an abstract cellular complex whose cells are the polytopes in K . So,
for simplicity, K will be called a polyhedral complex, and its polytopes will be simply
referred to as cells in this paper. Moreover, the abstract complex K can be endowed
with the structure of a locally Gnite topological T0 space (i.e., such that each point has
a Gnite closure and a Gnite neighbourhood) with base B = {U
; 
∈K}, where U
 =
{�∈K ; 
6 �}. Actually, this topological space (K;B) is a quotient of the Euclidean

polyhedron |K | by the map q : |K | → K that assigns the cell � to each point x∈ ◦
�.

Example 2. In this paper it will be essential the role played by the archetypical device
model Rn, termed the standard cubical decomposition of the Euclidean n-space Rn.
The device model Rn is the complex determined by the collection of unit n-cubes in
Rn whose edges are parallel to the coordinate axes and whose centers are in the set
Zn. The centroid-map we will consider in Rn associates to each cube � its barycen-
ter c(�), which is a point in the set Zn. Here, Z = 1

2Z stands for the set of points
{x∈R; x = z=2; z ∈Z}. In particular, if dim � = n then c(�)∈Zn, where dim � de-
notes the dimension of �. So that, every digital object O in Rn can be identiGed with
a subset of points in Zn. Henceforth we shall use this identiGcation without further
comment.

Before to proceed with the deGnition of weak lighting function, we need some notions,
which are illustrated in Fig. 1 for an object O in the device model R2.

The Grst two notions formalize two types of “digital neighbourhoods” of a cell 
∈K
in a given digital object O ⊆ celln(K). Indeed, we call the star of 
 in O to the set
stn(
;O) = {�∈O; 
6 �} of n-cells (pixels) in O having 
 as a face. Similarly, the
extended star of 
 in O is the set st∗n(
;O) = {�∈O; 
∩ � �= ∅} of n-cells (pixels) in
O intersecting 
.

Fig. 1. The support of an object O and two types of digital neighbourhoods in O for a cell 
. The cells in
O together with the bold edges and dots are the elements in supp(O).
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The third notion is the support of a digital object O which is deGned as the set
supp(O) of cells of K (not necessarily pixels) that are the intersection of n-cells (pixels)
in O. Namely, 
∈ supp(O) if and only if 
=∩{�; �∈ stn(
;O)}. In particular, if 
 is
a pixel in O then 
∈ supp(O). Notice also that, among all the lower dimensional cells
of K , only those in supp(O) are directly joining pixels in O.
To ease the writing, we shall use the following notation: supp(K) = supp(celln(K));

stn(
;K)=stn(
; celln(K)) and st∗n(
;K)=st∗n(
; celln(K)). Finally, we shall write P(A)
for the family of all subsets of a given set A.

De�nition 3. Given a device model K , a weak lighting function (w.l.f.) on K is
a map f :P(celln(K)) × K → {0; 1} satisfying the following Gve axioms for all
O ∈P(celln(K)) and 
∈K :

(1) object axiom: if 
∈O then f(O; 
) = 1;
(2) support axiom: if 
 �∈ supp(O) then f(O; 
) = 0;
(3) weak monotone axiom: f(O; 
)6f(celln(K); 
);
(4) weak local axiom: f(O; 
) = f(st∗n(
;O); 
); and,
(5) complement connectivity axiom: if O′ ⊆ O ⊆ celln(K) and 
∈K are such that

stn(
;O) = stn(
;O′); f(O′; 
) = 0 and f(O; 
) = 1, then: (a) the set of
cells 
(O′;O) = {!¡
;f(O′; !) = 0; f(O;!) = 1} is not empty; (b) the set

∪{ ◦
!;!∈ 
(O′;O)} is connected in @
; and, (c) if O ⊆ PO ⊆ celln(K), then

f( PO;!) = 1 for every !∈ 
(O′;O).

If f(O; 
) = 1 we say that f lights the cell 
 for the object O.
A w.l.f. f is said to be strongly local at a cell 
∈K if f(O; 
)=f(stn(
;O); 
) for

any digital object O ⊆ celln(K), and f will be simply called a strongly local lighting
function in case it is strongly local at each cell 
∈K .

Remark 4. (1) It is readily checked that condition (b) in axiom (5) is equivalent to the
connectness of the set 
(O′;O) in the topological space (K;B) given in
Remark 1.
(2) Notice that the strong local property implies both axioms (4) and (5) above.
(3) In Example 6(2) below we deGne a w.l.f. h on the device model Rn which is

not strongly local. However, it is immediate to check that any w.l.f. on a device model
K is strongly local at each vertex and at each top dimensional cell 
∈K .

A weak lighting function f on a device model K can be regarded as a mapping that
assigns a subset {
∈K ;f(O; 
)=1} of cells of K to each digital object O ⊆ celln(K).
In this sense, lighting functions are particular examples of “face membership rules”
as introduced by Kovalevsky in [11]. Our contribution in this point are axioms (1)–
(5) in DeGnition 3. These axioms are intended for limiting the set of Kovalevsky’s
face membership rules to those that do not lead to topological properties which are
contradictory with the natural perception of digital objects (see [6]).
Before giving a brief account of the intuitive ideas underlying these axioms, we next

derive from the lighting function f an Euclidean polyhedron for any digital object
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O ⊆ celln(K), called its continuous analogue, which is used in our approach to deGne
the topological properties of both O and its complement. For this we use a Gxed, but
arbitrary, centroid-map c : K → |K | on the device model K to introduce several other
intermediate models for O as follows.
The device level of O is the subcomplex K(O) = {
∈K ; 
6 �∈O} induced by O.

Notice that K(O) can be considered as a device model itself.
The logical level of O is an undirected graph, Lf

O, whose vertices are the centroids
of n-cells in O and two of them c(�); c(�) are adjacent if there exists a common face

6 � ∩ � such that f(O; 
) = 1.
The conceptual level of O is the directed graph Cf

O whose vertices are the centroids
c(
) of all cells 
∈K with f(O; 
) = 1, and its directed edges are (c(
); c(�)) with

¡�.
The simplicial analogue of O is the order complex Af

O associated to the directed
graph Cf

O. That is, 〈c(
0); c(
1); : : : ; c(
m)〉 is an m-simplex of Af
O if c(
0); c(
1); : : : ;

c(
m) is a directed path in Cf
O; or, equivalently, if f(O; 
i)=1, for 06 i6m, and 
0 ¡


1 ¡ · · ·¡
m. That is, A
f
O is obtained by “Glling in” all the triangles, tetrahedra, etc: : :

in the conceptual level Cf
O. Finally, the continuous analogue of O is the underlying

polyhedron |Af
O| of Af

O.
For the sake of simplicity, we will usually drop “f” from the notation of the levels

of an object. Moreover, for the whole object celln(K) we will simply write LK ; CK

and AK for its levels.

Remark 5. (1) The simplicial analogue AO of any digital object O ⊆ celln(K) is, by
construction, a full subcomplex of the Grst derived subdivision K (1) of K induced by
the chosen centroid-map c. Moreover, axiom (3) in DeGnition 3 yields that AO ⊆ AK ,
and so AO is also a full subcomplex of AK .
(2) Given a locally Gnite topological T0 space X , Kong and Khalimsky construct

in [9] a polyhedral analogue |K(X )| for X . It can be checked that, for any digital
object O in a digital space (K;f), our continuous analogue |AO| coincides with the
polyhedral analogue |K(XO)| of the set XO = {
∈K ;f(O; 
) = 1} of cells which are
lighted for O endowed with the relative topology of (K;B) in Remark 1.

Example 6. (1) Every device model K �= ∅ admits the weak lighting functions fmax

and g given respectively by:

(a) fmax(O; 
) = 1 if and only if 
∈ supp(O)
(b) g(O; 
) = 1 if and only if 
∈ supp(O) and stn(
;K) ⊆ O

In Fig. 2 are shown two objects, O and cell2(R2), in the device model R2, and
their levels for these lighting functions. More precisely, Figs. 2(a) and (b) show
the 2-cells (grey squares) of the object O and the low-dimensional cells (bold edges
and vertices) that the w.l.f.’s fmax and g light, respectively, for O. As these sets,
{
∈R2;fmax(O; 
) = 1} and {
∈R2; g(O; 
) = 1}, do not agree, all the levels of O in
the digital spaces (R2; fmax) and (R2; g) are distinct, in particular |Afmax

O | �= |Ag
O|. On
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Fig. 2. Levels of the objects O and cell2(R2) for the w.l.f.’s fmax and g in Example 6(1).

the other hand,

{
∈R2;fmax(cell2(R2); 
) = 1} = {
∈R2; g(cell2(R2); 
) = 1}
(see Fig. 2(c)), and so all the levels of the object cell2(R2) are the same in these two
digital spaces.
At this point, it is worth to point out that g induces in Rn the (2n; 3n − 1)–

connectivity (see [1, DeGnition 11]); that is, the generalization to arbitrary dimen-
sion of the (4; 8)-connectivity on Z2. On the other hand, fmax induces in Rn the
(3n − 1; 2n)-connectivity (see Fig. 2).
(2) Both the w.l.f.’s fmax and g given above satisfy the strong local axiom in

DeGnition 3. Next we give an example of a non-strongly local digital space (Rn; h).
For any integer n¿ 0, the w.l.f. h is deGned on the device model Rn by h(O; 
)= 1 if
and only if: (a) dim 
 = n and 
∈O; (b) dim 
6 n − 2 and stn(
;Rn) ⊆ O; and, (c)
dim 
=n−1, 
∈ supp(O), and either st∗n(
;R

n) ⊆ O or there exist �; �∈ st∗n(
;R
n)−O

such that � ∩ �= ∅.

We devote the rest of this section to give some intuitive ideas underlying axioms (1)
–(5) in DeGnition 3.
Axiom (1) says that to display a given digital object O on a computer screen all

its pixels (n-cells in O) must be lighted. Axiom (2) implies that, in addition to these
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n-cells, only the lower dimensional cells in supp(O), but not necessarily all of them,
may be lighted in order to connect immediately adjacent pixels in O. In particular,
and according to our usual perception, this prevent two isolated pixels �; �∈O, with
� ∩ �= ∅, from being connected in |AO| by a sequence of lower dimensional cells of
K that are not faces of pixels in O. Axiom (4) as well as the strong local axiom say
that our perception of a digital object is local, and so the lighting of a cell 
 depends
on a “digital neighbourhood” of 
 in O. And axiom (3) states that a cell which is
lighted for a digital object must be also lighted for the object celln(K) consisting of all
the pixels in the digital space. This way, the continuous analogue |AO| of any digital
object is a subspace of |AK |; see Remark 5(1).

At this point it is worth pointing out that, for any two digital objects O1 ⊆ O2, axioms
(1)–(5) in DeGnition 3 do not imply |AO1 | ⊆ |AO2 |. This property is equivalent to the
following stronger version of axiom (3): a w.l.f. f is said to be strongly monotone
if f(O1; 
)6f(O2; 
) for any cell 
∈K and any pair of objects O1 ⊆ O2. This
apparently natural property is not, however, always desirable. For example, if one
wants to deal with a digital space (R3; f) such that each 18-connected digital object
has a connected continuous analogue and, moreover, the continuous analogue of each
(18; 6)-surface, as introduced by Kong and Roscoe in [10], is a surface, it is not diQcult
to check that the lighting function f cannot be strongly monotone (see [1]).
We start our comments about axiom (5) by showing in the next example that in case

any of its parts (a) or (b) fails, then the complement |AK | − |AO| of an object’s con-
tinuous analogue may not appropriately represent the connectivity of the complement
celln(K) − O of O.

Example 7. Let us consider the functions fa and fb deGned on the device model
R2 by

• fa(O; 
) = 1 i9 
∈ supp(O) for dim 
∈ {0; 2} and st∗2 (
;R
2) ⊆ O for dim 
= 1

• fb(O; 
) = 1 i9 
∈O or st∗2 (
;R
2) ⊆ O.

Fig. 3(b) and (c) show the cells lighted by fa and fb, respectively, for the object
O1 in Fig. 3(a). Notice that axioms (1)–(4) in DeGnition 3 hold for both fa and
fb. However, it is not diQcult to check that parts (a) and (b) of axiom (5) fail
for fa and fb, respectively, by using the objects O1 and cell2(R2) and the 1-cell

. The continuous analogues |Afa

O1
| and |Afb

O1
| are the polyhedra depicted (in grey

colour) in Fig. 3(d) and (e), while |Afa

R2 | = |Afb

R2 | = R2. Hence, the complements
|Afi

R2 | − |Afi
O1

|; i∈ {a; b}, have not exactly two components. However, we intuitively
perceive just two components in the complement of O1, each containing one of the
two isolated pixels in cell2(R2) − O1 = {�1; �2}.

In the general case, given a digital object O ⊆ celln(K), part (a) of axiom (5) is
a suQcient condition to prove that each component of |AK | − |AO| contains at least
the centroid c(�) of a pixel �∈ celln(K)− O; while part (b) is used to show that two
pixels �1; �2 ∈ celln(K)−O are represented in the same component of |AK | − |AO| if
and only if �1 and �2 can be connected by a sequence of cells that are faces of pixels
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Fig. 3. Axiom (5) in DeGnition 3 is required to obtain a right representation of the connectivity of the
complement of any object.

in the complement of O. On the other hand, part (c) of axiom (5) provides us with a
natural notion of digital subspace, as it is stated in the next straightforward result.

Lemma 8. For any digital object O in a digital space (K;f), the map

fO :P(celln(K(O))) × K(O) =P(O) × K(O) → {0; 1}
given by fO(O′; 
) = f(O; 
)f(O′; 
), for O′ ⊆ O and 
∈K(O), is a w.l.f. on the
device model K(O). So, we call the pair (K(O); fO) the digital subspace of (K;f)
induced by O.

Remark 9. Let (K(O); fO) be the digital subspace induced by a digital object O in a
digital space (K;f). If O′ ⊆ O, one easily checks the equality AfO

O′ =A
f
O ∩Af

O′ , since
all these are full subcomplexes of K (1) by Remark 5(1). In particular AfO

O =Af
O; that

is, the continuous analogue of an object does not change when it is considered as the
ambient digital space.

Actually, a particular class of digital subspaces (called windows) of the digital space
(Rn; g) given in Example 6 are the key that will allow us to introduce a notion of
digital fundamental group in next Section.

2. A digital fundamental group

The fundamental group of a topological space X; �1(X; x0), is usually deGned to be
the set of homotopy classes of loops based at Gxed point x0 (i.e., maps � : I=[0; 1] → X
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with �(0) = �(1) = x0), where an homotopy between two loops �1; �2 is a continuous
map H : I × I → X such that H (x; 0)=�1(x); H (x; 1)=�2(x) and H (0; t)=H (1; t)= x0
(see [14,16]).
In this section we collect the deGnitions and basic facts involved in the notion of

digital fundamental group as introduced in [4]. In particular we need suitable digital
analogues for loops and homotopies in ordinary topology. We give these notions in
a more general setting provided by digital maps, which allow us to deGne higher
dimensional digital groups in a straightforward way (see Remark 16 in [4]).
Since the device model of a digital space is a polyhedral complex, one may deGne

a digital map from a digital space (K1; f1) into another (K2; f2) as a cellular map
between the device models K1 and K2, satisfying certain restrictions. However, this
kind of deGnition is not convenient for our purposes as then the domain of such a
digital map would be the whole set of cells in K1, and not only those cells lighted by
the w.l.f. f1; that is, the cells in K1 which are relevant in the digital space. Due to
this, we deGne Grst a more suitable family of domains for our digital maps.

De�nition 10. Let S ⊆ celln(K) be a digital object in a digital space (K;f). The light
body of (K;f) shaded with S is the set of cells Lb(K=S) not lighted for the object S
but lighted for celln(K); that is

Lb(K=S) = {
∈K ;f(celln(K); 
) = 1; f(S; 
) = 0}
= {
∈K ; c(
)∈ |AK | − |AS |}:

An additional requirement for digital maps between two digital spaces (K1; f1) and
(K2; f2) is that each digital object in (K1; f1) should be naturally assigned to a digital
object in (K2; f2). These observations leads to the following:

De�nition 11. Let (K1; f1); (K2; f2) be two digital spaces, with dimKi=ni (i=1; 2), and
let S1 ⊂ celln1 (K1) and S2 ⊂ celln2 (K2) be two digital objects. A digital (S1; S2)-map
(or, simply, a d-map) RS1 ;S2 : (K1; f1) → (K2; f2) from (K1; f1) into (K2; f2) is a map
% : Lb(K1=S1) → Lb(K2=S2) satisfying the two following properties:

1. %(celln1 (K1) − S1) ⊆ celln2 (K2) − S2; and,
2. for 
; �∈Lb(K1=S1) with 
¡� then %(
)6%(�).

That is, % carries top dimensional cells in Lb(K1=S1) to top dimensional cells in
Lb(K2=S2) and preserves the face relations (although % needs not be dimension pre-
serving).

Notice that, for a given d-map RS1 ;S2 : (K1; f1) → (K2; f2), property (1) in the previous
deGnition is a necessary and suQcient condition to check that the image RS1 ;S2 (O) of
any digital object O ⊆ celln1 (K1) − S1 is a digital object in (K2; f2). Moreover, by
property (2), RS1 ;S2 is a continuous map if we consider Lb(K1=S1) and Lb(K2=S2) as
subspaces of the abstract complexes K1 and K2 topologized as in Remark 1. The
following result also holds.
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Proposition 12. Any d-map RS1 ;S2 : (K1; f1) → (K2; f2) induces a simplicial map
A(RS1 ;S2 ) :AK1 \AS1 → AK2 \AS2 , which is de;ned on the vertices c1(
) of AK1 \AS1
by A(RS1 ;S2 )(c1(
)) = c2(RS1 ;S2 (
)). Here ci is a centroid-map on the device model
Ki, for i = 1; 2.

In the previous proposition L1 \ L2 = {
∈L1; 
 ∩ |L2| = ∅} denotes the simplicial
complement of the subcomplex L2 ⊆ L1.
In order to deGne digital loops and digital homotopies as particular types of digital

maps, next deGnition provides us with a particular class of digital spaces, called win-
dows, that will play the same role as the unit interval, I , and the unit square, I × I , in
continuous homotopy. For this, we will use the following notation. Given two points
x = (x1; : : : ; xm); y = (y1; : : : ; ym)∈Rm, we write x � y if xi6yi for all 16 i6m,
while x+y will stand for the usual vector addition x+y=(x1 +y1; : : : ; xm+ym)∈Rm.

De�nition 13. Given two points r; x∈Zm, with ri¿ 0 for 16 i6m, we call a window
of size r (or r-window) of Rm based at x to the digital subspace V x

r of (Rm; g) induced
by the digital object Ox

r ={�∈ cellm(Rm); x � c(�) � x+r}, where (Rm; g) is the digital
space deGned in Example 6. For the sake of simplicity, we shall write Vr to denote
the r-window of Rm based at the point x = (0; : : : ; 0)∈Zm.

Remark 14. To ease the writing, given an r-window Vr of Rm, we will identify each
cell 
∈Lb(Vr=∅) with its centroid c(
)∈Zm (see Example 2). In particular, if Vr is an
r-window of R1, then Lb(Vr=∅)={�0; �1; : : : ; �2r−1; �2r} consists of 2r+1 cells (points
and segments) which will be identiGed with the numbers c(�i) = i=2, for 06 i6 2r.
And, similarly, for a window V(r1 ;r2) of R2, we identify each cell 
∈Lb(V(r1 ;r2)=∅) with
a pair c(
) = (i=2; j=2), where 06 i6 2r1 and 06 j6 2r2.

We are now ready to deGne digital loops and digital homotopies as follows.

De�nition 15. Let S; O ⊆ celln(K) be two disjoint digital objects in a digital space
(K;f), and �; � two n-cells in O. A S-walk in O of length r ∈Z from � to � is a
digital (∅; S)-map %r : Lb(Vr=∅) → Lb(K(O∪ S)=S) such that %r(0)=� and %r(r)= �.
A S-loop in O based at � is a S-walk %r such that %r(0) = %r(r) = �.
The juxtaposition of two given S-walks %r; %s in O, with %r(r) = %s(0), is the

S-walk %r ∗ %s : Lb(Vr+s=∅) → Lb(K(O ∪ S)=S) of length r + s given by

%r ∗ %s(i=2) =

{
%r(i=2) if 06 i6 2r;

%s(i=2 − r) if 2r6 i6 2(r + s):

Notice that a S–loop %r in O is actually a sequence (%r(i))ri=0 of adjacent pixels in O
such that each pair %r(i− 1); %r(i) of successive pixels have a common face %r(i− 1

2 )
which is not lighted for the object S. In this sense %r does not cross the obstacle S.
Similarly, a digital homotopy, as deGned below, transforms a S-loop %1 to %2 using
adjacent pixels but, in the same way, it is not allowed to cross the obstacle S.

De�nition 16. Let %1
r ; %

2
r two S-walks in O of the same length r ∈Z from � to �.
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We say that %1
r ; %

2
r are digitally homotopic (or, simply, d-homotopic) relative {�; �},

and we write %1
r �d %2

r rel: {�; �}, if there exists an (r; s)-window V(r; s) in R2 and
a (∅; S)-map H : Lb(V(r; s)=∅) → Lb(K(O ∪ S)=S), called a d-homotopy, such that
H (i=2; 0)=%1

r (i=2) and H (i=2; s)=%2
r (i=2), for 06 i6 2r, and moreover H (0; j=2)=�

and H (r; j=2) = �, for 06 j6 2s. Here we use the identiGcation H (a1; a2) = H (
),
where c(
) = (a1; a2)∈Z2 is the centroid of a cell 
∈Lb(V(r; s)=∅); see Remark 14.

De�nition 17. Let %r; %s two S-walks in O from � to � of lengths r and s respectively.
We say that %r is d-homotopic to %s relative {�; �}, %r �d %s rel: {�; �}, if there exist
constant S-loops %�

r′ and %�
s′ such that r+ r′= s+ s′ and %r ∗%�

r′ �d %s ∗%�
s′ rel: {�; �}.

The following result, whose proof can be found in [4], will be needed in the sequel.

Proposition 18. Let %r be a S-walk in O from � to �, and %�
s ; %�

s two constant
S-loops of the same length s∈Z. Then, %�

s ∗ %r �d %r ∗ %�
s rel: {�; �}.

Notice that d-homotopies induce an equivalence relation in the set of S-walks in O from
� to �. Moreover, from Proposition 18 it is not diQcult to check that the juxtaposition
is compatible with d-homotopies between S-walks. Thus, the juxtaposition of S-loops
naturally induces a product operation that endows the set of classes of S-loops in O
based at an n-cell �∈O with a group structure, for which the trivial element is the
class of constant S-loops at �, and the inverse of the class [%r] is represented by
the S-loop %−1

r obtained by traversing %r backwards; that is, %−1
r (i=2) = %r(r − i=2)

for all 06 i6 2r. So, we next introduce the notion of digital fundamental group as
follows.

De�nition 19. Let S; O be two disjoint digital objects in a digital space (K;f), and �
an n-cell in O. The digital fundamental group of O at � with obstacle at S is the
set �d

1 (O=S; �) of d-homotopy classes of S-loops in O based at � with the product
operation [%r] · [ s]=[%r ∗ s]. In case S=∅, we will simply call �d

1 (O=∅; �)=�d
1 (O; �)

the digital fundamental group of O at �.

Remark 20. DeGnition 19 provides an entire family of digital fundamental groups for
a given set of pixels O when the object S is allowed to range over the family of all
subsets of celln(K) − O. Particularly interesting are the groups �d

1 (O=∅; �) = �d
1 (O; �)

and �d
1 (O=(celln(K)−O); �) that, respectively, represents the digital fundamental group

of the object O itself and the digital fundamental group of O as the complement of
the object celln(K) − O.
These groups �d

1 (O; �) and �d
1 (O=(celln(K) − O); �) may be distinct, as it usually

happens to connectivity and other topological properties that depend on how a set of
pixels O is regarded. For example, let us consider the digital space (R2; fmax) given
in Example 6(1), and let O be a set of pixels whose complement S = cell2(R2) − O
consists of two pixels �1; �2 with dim(�1 ∩ �2) = 0. For these objects it can be readily
checked, by using Corollary 42, that �d

1 (O; �) = Z× Z while �d
1 (O=S; �) = Z.
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3. The relationship with the continuous fundamental group

In [4] we show that the digital fundamental group �d
1 (O; �) of a digital object co-

incides with the classical fundamental group of its continuous analogue |AO|. In this
Section we tackle the problem of computing the digital fundamental group �d

1 (O=S; �)
of O with a disjoint object S acting as an “obstacle” for the loops in O. The section
is divided into two parts, in Section 3.1 we deal with the general case and we produce
an epimorphism

h : �d
1 (O=S; �) → �1(|AO ∪ S | − |AS |; c(�))

onto the classical fundamental group of the complement of the obstacle’s continuous
analogue. The second part, Section 3.2, provides us with a large class of digital spaces
for which the above homomorphism yields an isomorphism.
We recall that, for a triangulated polyhedron |L|, there is an alternative deGnition of

the fundamental group �1(|L|; x0) that will be more convenient for our purposes. So
we next explain it brieNy. For this, we call an edge-walk in L from a vertex v0 to a
vertex vn to a sequence 
 of vertices (v0; v1; : : : ; vn), such that for each k = 1; 2; : : : ; n
the vertices vk−1; vk span a simplex in L (possibly vk−1 = vk). If v0 = vn; 
 is called
an edge-loop based at v0.
Given another edge-walk �=(vj)m+n

j=n whose Grst vertex is the same as the last vertex
of 
, the juxtaposition �= (vi)m+n

i=0 is deGned in the obvious way. The inverse of 
 is

−1 = (vn; vn−1; : : : ; v0).
Two edge-walks 
 and � are said to be equivalent if one can be obtained from the

other by a Gnite sequence of operations of the form:

(a) if vk−1 = vk , replace : : : ; vk−1; vk ; : : : by : : : ; vk ; : : :, or conversely replace : : : ; vk ; : : :
by : : : ; vk−1; vk ; : : :; or

(b) if vk−1; vk ; vk+1 span a simplex of L (not necessarily 2-dimensional), replace
: : : ; vk−1; vk ; vk+1; : : : by : : : ; vk−1; vk+1; : : :, or conversely.

This clearly sets up an equivalence relation between edge-walks, and the set �1(L; v0)
of equivalence classes [
] of edge-loops 
 in L, based at a vertex v0, is given the
structure of group by the operation [
]·[�]=[
∗�]. This group is called the edge-group
of L.
Each edge–walk 
 in L deGnes in an obvious way a continuous path 1(
) in the

underlying polyhedron |L|; and so, we will identify henceforth the edge-walk 
 with the
continuous path 1(
). Actually this correspondence yields an isomorphism �1(|L|; v0) ∼=
�1(L; v0). More precisely,

Theorem 21 (Maunder [13; 3.3.9]). There exists an isomorphism
U : �1(L; v0)→ �1(|L|; v0) which carries the class [
] to the class [1(
)].

Corollary 22. Let O; S be two disjoint digital objects in a digital space (K;f). Then
�1(AO ∪ S \AS ; c(�)) ∼= �1(|AO ∪ S | − |AS |; c(�)) for any �∈O.
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Proof. By Remark 5(1) we know that both AO ∪ S and AS are full subcomplexes of
AK . Then Lemma 72.2 in [14] yields that |AO ∪ S \AS | = |AO ∪ S \ (AO ∪ S ∩AS)|
is a strong deformation retract of |AO ∪ S | − |AS | = |AO ∪ S | − |AO ∪ S ∩AS | and the
result follows by Theorem 21.

Let (K;f) be an arbitrary digital space. Given two disjoint digital objects O; S ⊆
celln(K) and any n-cell �∈O we next deGne a natural homomorphism,

h : �d
1 (O=S; �) → �1(AO ∪ S \AS ; c(�)); (1)

from the digital fundamental group of O based at � and with obstacle at the object S
into the edge–group of the simplicial complex AO∪S \AS based at the centroid c(�),
as follows. Let %r be any S-loop in O. Then, we just observe that the sequence c(%r)=
(c(%r(i=2)))2ri=0 deGnes an edge-loop in AO ∪ S \AS . So that, we simply set h([%r]) =
[c(%r)]. Notice that h is the generalization to the case S �= ∅ of the homomorphism
used in [4] to show the isomorphism �d

1 (O; �) = �d
1 (O=∅; �) ∼= �1(AO; c(�)).

Remark 23. The following properties are easily checked

(1) If %r and %s are two S-loops at �, then c(%r) ∗ c(%s) = c(%r ∗ %s).
(2) If %r is a constant S-loop at � then c(%r) is a constant edge–loop at c(�).

Lemma 24. The correspondence h, given in (1) above, is well de;ned. Moreover h is
a group homomorphism.

Proof. Assume %r �d %s rel: � are two equivalent S-loops in O. Then there ex-
ist two constant S-loops %�

r′ and %�
s′ such that r + r′ = s + s′ and a d-homotopy

H :%r ∗ %�
r′ �d %s ∗ %�

s′ rel: �. That is, H is an (∅; S)-map H : (V(r+r′ ; t); g) → (K(O ∪
S); fO ∪ S), where V(r+r′ ; t) is a window in Def. 13 and (K(O∪ S); fO ∪ S) is the digital
subspace of (K;f) induced by O ∪ S; see Lemma 8. Therefore, by Proposition 12
and Remark 9 we get a simplicial map A(H) :AV(r+r′ ; t) → AO ∪ S \AS . Notice that
from the deGnition of the w.l.f. g in Example 6(1) it readily follows that AV(r+r′ ; t) is
simplicially isomorphic to a triangulation of the unit square I × I , and hence A(H)
yields a homotopy between the edge-loops c(%r ∗ %�

r′) and c(%s ∗ %�
s′). Finally, the

properties in Remark 23 and suitable equivalence transformations of type (a) yield that
c(%r ∗ %�

r′) = c(%r) ∗ c(%�
r′) is equivalent to c(%r), and similarly c(%s ∗ %�

s′) is also
equivalent to c(%s). Notice also that h is an homomorphism of groups as an immediate
consequence of property (1) in Remark 23.

3.1. The general case: epimorphism onto the classical fundamental group

This section is aimed to show that, for arbitrary disjoint digital objects O; S ⊆
celln (K) in a digital space (K;f), the homomorphism of groups

h : �d
1 (O=S; �) → �1(AO ∪ S \AS ; c(�))

is always an epimorphism. For S = ∅, we proved in [4] that the homomorphism h
above is actually an isomorphism of groups �d

1 (O=∅; �) ∼= �1(AO; c(�)). For this we
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associate to each edge-loop V in AO a family of digital representatives F(V) such
that for each digital ∅-loop %r ∈F(V) the edge-loop c(%r) is equivalent to V. In this
section we show that this procedure can be generalized to get a non-empty family
D(V) of S-loops in O of digital representatives for any edge-loop V in AO ∪ S \AS .
This immediately yields that the homomorphism h is onto with full generality. How-
ever, the construction of the family D(V) suggests that the homomorphism h need
not to be injective in general. In any case, Section 3.2 provides a large class of dig-
ital spaces, including those often used in image processing, for which h is in fact an
isomorphism.
In order to deGne the family D(V) we start generalizing the notion of irreducible

edge-loop introduced in [4].

De�nition 25. A vertex c(�i), of and edge-walk V= (c(�i))ti=0 in AO ∪ S \AS , is said
to be reducible in V if i¿ 0 and one of the following properties holds

(1) �i−1 = �i
(2) there exists a vertex c(�k) with i¡ k6 t such that �k �= �i and either �i−1 ¡�i ¡�j

or �i−1 ¿�i ¿�j, where j =min{k; i¡ k6 t; �i �= �k}.

An edge-walk is said to be reducible if it contains a reducible vertex; otherwise we
say that V is irreducible.

The proof of the next lemma is similar to that of Lemma 4.7 in [4] with the obvious
changes.

Lemma 26. Any edge-walk V in AO ∪ S \AS is equivalent to an irreducible edge-walk,
PV = (c( P�i))ki=0, obtained by deleting all reducible vertices in V.

Remark 27. (a) If V = (c(�i))ti=0 is an irreducible edge-walk in AO ∪ S \ AS then
either �i−1 ¡�i ¿�i+1 or �i−1 ¿�i ¡�i+1 for all 0¡i¡ t. Moreover, in case both
�0 and �t are n-cells in O then the length of V is an even number, t = 2r, and so
�2i−2 ¿�2i−1 ¡�2i, for 16 i6 r. In particular, this property holds for any edge-loop
V in AO ∪ S \AS which is based at a vertex c(�) with �∈O.
(b) Notice also that for an arbitrary edge-walk V = (c(�i))ti=0 in AO ∪ S \AS the

vertex c(�0) is never reducible. And, if PV = (c( P�i))ki=0 is the irreducible edge-walk
obtained from V by deleting all its reducible vertices, then �t = P�k .
(c) Let c(%r) = (c(%r(i=2)))2ri=0 be the edge-loop deGned by a given S-loop %r in

O. It is not diQcult to show that the irreducible edge-loop c(%r) is, in fact, c( s) for
some S-loop  s (s6 r) d-homotopic to %r .

For arbitrary digital spaces it may happen, for a cell 
∈K with c(
)∈AO ∪ S \AS ,
that the set stn(
;O)=∅ is empty. This fact makes the search of digital representatives
for an arbitrary edge-loop V in AO ∪ S \AS much more intricate than the case S = ∅
in [4]. In order to obtain such digital representatives for the edge-loop V we Grst set
the following.
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De�nition 28. Let O; S ⊆ celln(K) be two disjoint digital objects in a digital space
(K;f). We say that a cell 
∈K is a singular cell for the pair (O; S), or simply an
(O; S)-singular cell, if c(
)∈AO ∪ S \AS but stn(
;O)=∅ (or, equivalently, stn(
; S)=
stn(
;O ∪ S)). Otherwise, if c(
)∈AO ∪ S \ AS and stn(
;O) �= ∅; 
 is called an
(O; S)-regular cell.

We will also call (O; S)-regular to any edge-loop W=(c(!i))ti=0 in AO ∪ S\AS whose
vertices correspond to (O; S)-regular cells; that is, !i is (O; S)-regular for 06 i6 t.

Remark 29. (a) Notice that all cells 
∈O are (O; S)-regular for any digital object S
such that O ∩ S = ∅. And, similarly, if 
 is a vertex of K such c(
)∈AO ∪ S \AS ,
then 
 is (O; S)-regular by Remark 4(3).
(b) If 
 is an (O; S)-singular cell then axiom (5) in the deGnition of w.l.f. applies.

So, the set 
(S;O ∪ S) = {�¡
; c(�)∈AO ∪ S \AS} is not empty and connected in
@
. Moreover, from Lemma 4.5 in [3] it is derived the existence of (O; S)-regular cells
in the set 
(S;O ∪ S).

Despite the diQculties above, it is still not hard to deGne the digital representatives
for the family of irreducible (O; S)-regular edge-loops in AO∪S \AS . We proceed as
follows.

De�nition 30. Let W = (c(!i))2ri=0 be an irreducible (O; S)-regular edge-loop in
AO ∪ S \ AS based at c(�), with �∈O. The set D(W) of digital representatives of
W consists of all S-loops %r in O for which %r(0)=%r(r)= �, %r(i − 1

2 )=!2i−1, and
%r(i)∈ stn(!2i;O), for 16 i6 r.

Remark 31. For any S-loop %r in O, the edge-loop c(%r) = (c(%r(i=2)))2ri=0 is (O; S)-
regular since %r(i)∈O, for 06 i6 r, and %r(i=2 − 1)6%r(i), for 16 i6 r. In
addition, c(%r) is irreducible in case %r(i − 1

2 ) �= %r(i), for 16 i6 2r, and thus
D(c(%r)) = {%r}.

Next we state the crucial property of the digital representatives of an irreducible
(O; S)-regular edge-loop in relation with the homomorphism
h : �d

1 (O=S; �) → �1(AO ∪ S \AS ; c(�)) above; compare with Proposition 4.12 in [4].

Proposition 32. Let W = (c(!i))2ti=0 be any irreducible (O; S)-regular edge-loop in
AO ∪ S \ AS based at c(�), with �∈O. For any S-loop %t ∈D(W) the equality
h([%t]) = [W] holds. Moreover, any two S-loops in D(W) are d-homotopic.

Proof. First we show that the edge-loop c(%t)=(c(%t(i=2)))2ti=0 deGned by %t is equiv-
alent to W. For this, let PD(W) be the set of edge-loops X=(c(3i))2ti=0 at c(�) such that
30 = 32t = �; 32i−1 = !2i−1 for 16 i6 t, and 32i ∈ stn(!2i;O) ∪ {!2i} for 1¡i¡ t.
Notice that PD(W) contains the set of edge-loops {c(%t);%t ∈D(W)} ∪ {W}. Moreover,
any X∈ PD(W) is equivalent to W. This will be proved by induction on the number k(X)
of vertices c(32i) in X for which 32i �= !2i. For k(X) = 0 we get X = W. Assume that
all X∈ PD(W) are equivalent to W for k(X)6 k − 1, and let X be any edge-loop with
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k = k(X). Given any vertex c(32i) in X with 32i �= !2i (notice that 0 �= i �= t) we get
!2i−1; !2i+1 ¡!2i ¡ 32i since W is irreducible. Therefore we obtain a new edge–loop
X̃∈ PD(W), with k(X̃) = k − 1, by setting c(3̃j) = c(3j) for j �= 2i, and c(3̃2i) = c(!2i).
Moreover, X̃ is equivalent to X (by two equivalence transformations of type (b)) and
hence X is equivalent to W by the induction hypothesis.
For the second property, we simply observe that the S-loops %1

t ; %
2
t ∈D(W) are

d-homotopic rel. � by the (∅; S)-map H : Lb(V(r;1)=∅) → Lb(K(O ∪ S)=S) given by
H (i=2; 0)=%1

t (i=2); H (i=2; 1)=%2
t (i=2) and H (i=2; 1=2)=!i, for 06 i6 2t. Here, we

are using the identiGcation of a cell 
∈Lb(V(r;1)=∅) with its centroid c(
)=(a1; a2)∈Z2

(see Remark 14).

In order to obtain a family D(V) of digital representatives for an arbitrary edge-loop V,
we construct an auxiliary family pre2D(V) of irreducible (O; S)-regular edge-loops. For
this we shall use of another family of edge-loops preD(V). This two-step process starts
at the irreducible edge-loop PV=(c( P�i))2ri=0 obtained from V by deleting all its reducible
vertices; see Lemma 26. Then, the edge-loops in preD(V) are chosen by diverting
PV o9 the vertices c( P�2i−1), with an odd index, corresponding to (O; S)-singular cells.
And pre2D(V) consists of the edge-loops obtained from each Z=(c(42i))2ti=0 ∈ preD(V)
bypassing each vertex c(42i), with 42i an (O; S)-singular cell, along a new edge-walk
whose vertices correspond to (O; S)-regular cells in @42i.
Indeed, the elements in preD(V) are the family of edge-loops Z = (c(4i))2ri=0 in

AO ∪ S \AS with the same length as PV and such that 42i = P�2i, for 06 i6 r. More-
over, 42i−1 = P�2i−1 whenever P�2i−1 is an (O; S)-regular cell; and, otherwise, we choose
42i−1 ∈ {
¡ P�2i−1; 
 is an (O; S)-regular cell}, which is a non-empty set by Remark
29(b).
Notice that any Z∈ preD(V) is irreducible. Moreover, the following lemma is im-

mediate

Lemma 33. Any Z∈ preD(V) is equivalent to PV, and hence to V.

Proof. Just observe that the substitution of any cell P�2i−1 by one of its faces induces
two equivalence transformations of type (b) between PV and Z.

If we write preD(V)={Zk}k∈JV , a new family of irreducible edge-loops pre2D(Zk) is
deGned for each Zk = (c(4i))2ri=0 as follows. An irreducible edge-loop W∈ pre2D(Zk)
is obtained by removing the reducible vertices from the juxtaposition of edge-walks
W=W0∗W1∗· · ·∗Wr , where W0=(c(40); c(41)); Wr=(c(42r−1); c(42r)) and the component
Wj, for 16 j6 r − 1, is the constant edge-loop Wj = (c(42j−1)) if 42j−1 = 42j+1.
Otherwise, if 42j is an (O; S)-regular cell, in particular if 42j ∈O (see Remark 29(a)),
then Wj = (c(42j−1); c(42j); c(42j+1)). Finally, if 42j is an (O; S)-singular cell we pick
Wj out the edge-walks obtained from the following lemma for the (O; S)-regular cells
�1 = 42j−1 and �2 = 42j+1.

Lemma 34 (cf. Lemma 4.8 in Ayala et al. [3]). Let O; S ⊆ celln(K) be two disjoint
digital objects in a digital space (K;f), and let 
∈K be an (O; S)-singular cell. Then,
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for any two distinct (O; S)-regular cells

�1; �2 ∈ 
(S;O ∪ S) = {�¡
;f(O ∪ S; �) = 1; f(S; �) = 0}
there exist irreducible edge-walks U= (c(1i))mi=0 in AO ∪ S \AS from c(�1) to c(�2)
such that

(1) for 06 i6m; 1i ¡
 and it is an (O; S)-regular cell; and,
(2) U is equivalent to the edge-walk (c(�1); c(
); c(�2)).

Proof. By axiom (5) in DeGnition 3 we know that the set 
(S;O ∪ S) is connected
and so we can choose an edge-walk R = (c(%i))ti=0 in 
(S;O ∪ S) from c(�1) to
c(�2). By deleting the reducible vertices we can assume that R is irreducible (see
Lemma 26). Notice that R need not have an even length since �1 and �2 may have
arbitrary dimensions. In any case, it is obvious that R is equivalent to the edge-walk
(c(�1); c(
); c(�2)).
We derive the walk U from R as follows. First we observe that dim 
¿ 2 by Remark

4(3) and axiom (5) in DeGnition 3. Then we argue inductively on l=dim 
. For l=2
we have necessarily dim%i6 1. Moreover, if dim%i=0 then %i is an (O; S)-regular cell
by Remark 29(a). If dim%i =1 with 0¡i¡ t, the cells %i−1 and %i+1 are necessarily
vertices of the edge %i ∈K . If, in addition, %i−1 �= %i+1 it follows that %i is also an
(O; S)-regular cell by axiom (5) in DeGnition 3. Otherwise, if %i−1 = %i+1, then we
can delete the vertices c(%i) and c(%i+1) from R to get a new irreducible edge-walk
from c(�1) to c(�2) which is equivalent to R by two equivalence transformations of
type (b). By deleting all the pairs (c(%i); c(%i+1)), for which %i is an edge in K and
%i−1 = %i+1, we obtain the desired edge-walk U.
Assume now that U can be derived from R for any cell 
 with dim 
¡l, and let

dim 
=l. If %0=�1 ¡%1 we proceed as in the construction of the family preD(V) to de-
Gne an auxiliary edge-walk R′=(c(%′

i))
t
i=0, and then U, as follows (for %0=�1 ¿%1 the

construction is similar but interchanging the roles played by cells with odd and even in-
dices). The edge-walk R′ is deGned by %′

2j−1=%2j−1 and also %′
2j=%2j, for 06 2j6 t,

if %2j is an (O; S)-regular cell. Otherwise we choose %′
2j ∈ {
¡%2j; 
 is (O; S)-regular}.

It is easily checked that R′ is an irreducible edge-walk equivalent to R with its same
length. Moreover, dim%′

2j−1 ¡ dim 
, for 06 2j − 16 t, and %′
0 = �1 and %′

t = �2.
We deGne U by the juxtaposition U=U1 ∗ · · · ∗Uk deGned as follows. The index k

is the largest integer with 2k − 16 t, and the edge-walks Uj, for 16 j6 k, are given
by the next conditions:

1. Uj = (c(%′
2j−2)) if %′

2j−2 = %′
2j;

2. Uj = (c(%′
2j−2); c(%

′
2j−1); c(%

′
2j)) if %′

2j−2 �= %′
2j and %′

2j−1 is (O; S)-regular;
3. Uj is any of the edge-walks given by the induction hypothesis applied to %′

2j−1 and
its faces %′

2j−2; %
′
2j whenever %′

2j−2 �= %′
2j and %′

2j−1 is an (O; S)-singular cell.

By construction one readily checks that U satisGes properties (1) and (2) in the lemma.
Moreover, after deleting the reducible vertices (if any) in U we can assume that U is
also an irreducible edge-walk.
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Remark 35. Observe that, given Z∈ preD(V), any edge-loop W∈ pre2D(Z) is, by
construction, equivalent to Z, and hence to V by Lemma 33. Moreover, it is irreducible
and (O; S)-regular.

Finally, we deGne the family D(V) of digital representatives of V as follows

De�nition 36. Let V be an arbitrary edge-loop in AO ∪ S \ AS based at c(�), with
�∈O. We deGne the set D(V) of digital representatives of V by

D(V) =
⋃

Z∈preD(V)


 ⋃

W∈pre2D(Z)

D(W)


 :

Remark 37. (1) Let ∇ be and edge-loop in AO ∪ S \AS obtained by removing from
V any of its reducible vertices. Then P∇ = PV and hence D(V) = D(∇). In particular,
D(V) =D( PV), where PV is the irreducible edge-loop obtained from V by removing all
its reducible vertices.
(2) If V is an (O; S)-regular edge-loop in AO ∪ S \AS then the irreducible edge-loop

PV is also (O; S)-regular. Thus, pre2D(V) = { PV}, and all the digital representatives in
D(V) are d-homotopic by Proposition 32.
(3) If %r is a S-loop in O, the family D(c(%r)) of digital representatives of the

(O; S)-regular edge-loop c(%r)= (c(%r(i=2)))2ri=0 consists of a single element  s, where
s6 r, by Remark 31. Moreover,  s and %r are d-homotopic by Remark 27(c).

We are now ready to prove

Theorem 38. Let (K;f) be an arbitrary digital space. For any two disjoint digital
objects O; S ⊆ celln(K) the homomorphism

h : �d
1 (O=S; �) → �1(AO ∪ S \AS ; c(�))

is onto.

Proof. Given any edge-loop V in AO ∪ S\AS based at c(�), we consider any edge-loop
W∈ pre2D(V) which is equivalent to V by Remark 35. Then the result follows from
Proposition 32.

Remark 39. To show that the homomorphism h is injective it is required, as a nec-
essary condition, that %1 �d %2 rel: � for any pair %1; %2 ∈D(V) of digital repre-
sentatives of an arbitrary edge-loop V in AO ∪ S \AS (see Proposition 32). The con-
struction of the family D(V) suggests that this fact may not be true in general. The
main problem is that, from the available data, we cannot derive a d-homotopy between
%1 ∈D(W1) and %2 ∈D(W2) whenever W1 �= W2 in pre2D(V). However, we conjec-
ture that this d-homotopy will be found if, for each (O; S)-singular cell 
, the set
∪{ ◦

!;!∈ 
(S;O ∪ S)} is required to be simply connected instead of just connected as
we require in DeGnition 3(5b). The results in next Section also suggest that, for the
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set of axioms considered in this paper, the search of a digital space (Rn; f) for which
h is not an isomorphism should be carried out for n¿ 4.

3.2. A case of isomorphism

For important cases, the family of digital representatives D(V) in DeGnition 36
is dramatically simpliGed. Recall that, in general, the family D(V) is obtained by a
three-steps procedure that involves the deGnition of two auxiliary families of edge-loops
preD(V) and pre2D(V). In this Section we will give a large class of digital spaces
(K;f) for which the families preD(V) and pre2D(V) are reduced to singletons; so
that, the diQculties pointed out in Remark 39 vanish. This will allow us to show that
the epimorphism h in Theorem 38 is an isomorphism for a large class of digital spaces,
which includes those most used in image processing. Namely, we will prove below

Theorem 40. Let (K;f) be any digital space which is strongly local except
possibly in 1-cells; that is, for any digital object O ⊆ celln(K) and any cell

∈K with dim 
 �= 1; f(O; 
) = f(stn(
;O); 
). Then the homomorphism
h : �d

1 (O=S; �) → �1(AO ∪ S \ AS ; c(�)) is an isomorphism for any pair of disjoint
objects O; S ⊆ celln(K).

Corollary 41. Let (K;f) be a strongly local digital space. For disjoint digital objects
O; S ⊆ celln(K) the homomorphism h is an isomorphism.

Recall that a digital space (K;f) is said to be strongly local if f(O; 
)=f(stn(
;O); 
)
for all 
∈K and O ⊆ celln(K); see DeGnition 3. For each pair (p; q) �= (6; 6), with
p; q∈ {6; 18; 26}, it can be found a strongly local lighting function fp;q on the device
model R3 such that the digital space (R3; fp;q) represents the (p; q)-connectivity on
the grid Z3; and, moreover, all the (p; q)-surfaces, as deGned by Kong and Roscoe
in [10], are digital surfaces in (R3; fp;q); see Theorem 13 in [1]. Notice also that, for
an arbitrary device model K , the digital spaces (K;fmax) and (K; g) given in Example
6(1) are strongly local. Hence, for these relevant examples, Corollary 41 holds.
Moreover, as an immediate consequence of Remark 4(3), we have also

Corollary 42. The homomorphism h is an isomorphism for digital spaces (K;f) with
dimK6 2.

For non strongly local three-dimensional digital spaces we have the following

Lemma 43. Let (R3; f) be any digital space with R3 the standard cubical decomposi-
tion of the Euclidean space R3. Moreover, assume |AR3 |=R3. Then the two following
statements are equivalent.

(i) For each O ⊆ cell3(R3) and 
∈R3 with dim 
 = 2; f(O; 
) = 1 if and only if

∈ supp(O).

(ii) (R3; f) is strongly local except possibly for 1-cells.



R. Ayala et al. / Discrete Applied Mathematics 139 (2004) 5–30 25

Proof. (i) implies (ii). It is clear that 
∈ supp(O) if and only if 
∈ supp(st3(
;O)).
Therefore, for dim 
=2 and 
∈ supp(O) we have f(O; 
)=f(st3(
;O); 
)=1 by (i).
Otherwise, in case 
 �∈ supp(O), then f(O; 
)=0 and f(st3(
;O); 
)=0 by axiom (2)
in DeGnition 3. For cells 
∈R3 with dim 
∈ {0; 3} the result follows from Remark
4(3).
(ii) implies (i). For any object O ⊆ cell3(R3) and any 2-dimensional cell 
∈R3 one

easily checks that 
∈ supp(O) if and only if st3(
;O) = st3(
;R3). Hence f(O; 
) = 0
whenever 
 �∈ supp(O) by axiom (2) in DeGnition 3 while f(O; 
)=f(st3(
;R3); 
)=
f(cell3(R3); 
) = 1 if 
∈ supp(O). Here we use that |AR3 | = R3.

Then, we easily derive from Theorem 40 and Lemma 43 the following:

Theorem 44. The homomorphism h is an isomorphism for the non strongly local
digital space (R3; fBM ) given in [3].

We point out that the digital surfaces in (R3; fBM ) coincide with the strong 26-
surfaces deGned by Malgouyres and Bertrand [12].
The rest of this section is devoted to the proof of Theorem 40. We start with the

following result, whose proof is immediate from deGnitions.

Lemma 45. Let (K;f) be a digital space which is strongly local at the cell 
∈K .
Then this cell is (O; S)-regular for any pair of disjoint digital objects O; S ⊆ celln(K)
for which c(
)∈AO ∪ S \AS .

Lemma 46. Let (K;f) be any digital space which is strongly local except possibly
in 1-cells, and let O; S be two disjoint digital objects in (K;f). For any edge-loop
V in AO ∪ S \ AS based at a vertex c(�), with �∈O, the set pre2D(V) = {WV} is
a singleton. In particular, all the digital representatives of V are d-homotopic by
Proposition 32.

Proof. Notice that any cell 
∈K with c(
)∈AO ∪ S \AS and dim 
 �= 1 is (O; S)-
regular by Lemma 45. So, the construction of the family D(V) is determined by the
vertices c(
) with dim 
=1. More explicitly, if PV=(c( P�i))2ri=0 is the irreducible edge-loop
in Lemma 26 then the family preD(V) = {ZV} consists of a unique (irreducible)
edge-loop ZV=(c(4i))2ri=0 obtained by setting 42i=P�2i and replacing each vertex c( P�2i−1),
with P�2i−1 an (O; S)-singular 1-cell, by c(42i−1) where 42i−1 ¡ P�2i−1 is the unique
vertex of P�2i−1 with c(42i−1)∈AO ∪ S \AS or, equivalently, which is an (O; S)-regular
cell. Here we use axiom (5) in DeGnition 3. Moreover, pre2D(V)=pre2D(ZV)={WV}
is also a singleton since, for any vertex c(42i) in ZV, with 0¡i¡r, such that 42i= P�2i
is an (O; S)-singular 1-cell, axiom (5) in DeGnition 3 yields 42i−1 = 42i+1. Hence WV

is determined by replacing the edge-walk (c(42i−1); c(42i); c(42i+1)) by the constant
edge-walk (c(42i−1)).

Lemma 47. Let (K;f) be a digital space which is strongly local except possibly in
1-cells, and let O; S be two disjoint digital objects in (K;f). Then any edge-loop
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V = (c(�i))ki=0 in AO ∪ S \ AS based at a c(�), with �∈O, is equivalent to an
(O; S)-regular edge-loop V∗=(c(�∗

i ))
k
i=0 called the regularization of V. Moreover, if 9

is another edge-loop obtained from V by removing a vertex c(�i0 ) via an equivalence
transformation of type (a) or (b), then the regularization of 9; 9∗, can be derived
from V∗ after an equivalence transformation of the same type.

Proof. We construct the edge-loop V∗ as follows. If �i is (O; S)-regular we set �∗
i =�i.

Otherwise, dim �i=1 by Lemma 45 and we take �∗
i to be the unique vertex �∗

i ¡ �i such
that c(�∗

i )∈AO ∪ S \AS or, equivalently, which is (O; S)-regular. Here we use Axiom
5 in DeGnition 3. In order to show that V∗ = (c(�∗

i ))
k
i=0 is an edge-loop equivalent to

V we consider the set Reg(V) consisting of Gnite sequences X = (c(3i))ki=0 such that
3i=�i if �i is (O; S)-regular and 3i ∈ {�i; �∗

i } otherwise. Notice that {V;V∗} ⊆ Reg(V).
Next we show inductively that each X∈Reg(V) is an edge-loop in AO ∪ S \AS based
at c(�) which is equivalent to V. For this, let t(X) be the number of vertices c(3i)
with 3i �= �i. If t(X) = 0 then X = V and the result is obvious. Assume the result
holds for t(X)6 t − 1 and take X∈Reg(V) with t(X)= t. Given any vertex c(3i)∈X
with 3i = �∗

i ¡ �i we consider the sequence X̃∈Reg(V) with 3̃j = 3j if j �= i and
3̃i= �i. Notice that 0¡i¡n since �0 = �k =�=30 =3k ∈O is an (O; S)-regular cell by
Remark 29(a). By the induction hypothesis X̃ is an edge-loop in AO ∪ S \AS based at
c(�) which is equivalent to V. Moreover, we have the following possible face relations
between 3̃j = 3j (j = i − 1; i + 1) and 3̃i = �i: (1) 3̃j ¡ 3̃i, or (2) 3̃j¿ 3̃i. In the Grst
case we have that 3j = �∗

i = 3i, while in the second 3j¿ �i ¿ �∗
i = 3i. In any case, X

is an edge-loop equivalent to X̃, and hence to V, via two transformations of type (b).
Let us now assume that c(�i0 ) can be removed from V by an equivalence transfor-

mation. Then one of the following cases necessarily occurs:

1. 0¡i0 ¡t; �i0−1 ¡�i0 ¿�i0+1,
2. 0¡i0 ¡t; �i0−1 ¿�i0 ¡�i0+1,
3. �i0−1 = �i0 ,
4. �i0−1 ¡�i0 ¡�i0+1,
5. �i0−1 ¿�i0 ¿�i0+1,
6. �i0 = �i0+1.

Let (1)∗ : : : (6)∗ denote the corresponding statements for the vertices in V∗. The reader
can easily check that (i) ⇒ (i)∗ if no (O; S)-singular cell is involved. In case �i0−1

is singular then both (2) and (5) yield (3)∗, and for the rest of statements we get
(i) ⇒ (i)∗. If �i0 is singular then (1) yields �∗

i0−1 = �∗
i = �∗

i0+1, while (4) ⇒ (3)∗ and
(5) ⇒ (6)∗, and (i) ⇒ (i)∗ for the other cases. Finally if �i0+1 is singular we derive
(6)∗ from both (2) and (4), while for the remaining cases (i) ⇒ (i)∗. From this,
and analyzing all the possible cases, it is not diQcult to show that c(�∗

i0 ) can also be
removed from V∗ by an equivalence trasformation.

Proof of Theorem 40. We already know that h is onto by Theorem 38. So, it will
suQce to prove that any two S-loops, %;  , in O deGne the same element in �d

1 (O=S; �)
provided h([%]) = [c(%)] = [c( )] = h([ ]).
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Since c(%) and c( ) are equivalent edge-loops, there exists a sequence 
0; 
1; : : : ; 
k

of edge-loops in AO ∪ S \AS such that 
0 = c(%); 
k = c( ) and 
i−1; 
i are related
by an equivalence transformation of type (a) or (b). Moreover, by Remark 31, c(%)
and c( ) are (O; S)-regular, and the regularized edge-loops c(%)=
∗

0 ; 

∗
1 ; : : : ; 


∗
k = c( )

deGne also a sequence of equivalent edge-loops by Lemma 47. Then, Remark 37(2)
and Lemma 48 below yields that every S-loop in ∪k

i=0D(
∗
i ) deGnes the same element

in �d
1 (O=S; �). Hence % and  are d-homotopic by Remark 37(3).

Next lemma is an extension of Lemma 4.14 in [4] which corresponds to the special
case S = ∅.

Lemma 48. Let O; S ⊆ celln(K) be two disjoint digital objects in an arbitrary digital
space (K;f), and let V = (c(�i))ti=0 be an (O; S)-regular edge-loop in AO ∪ S \ AS

based at c(�), with �∈O. Assume that an edge-loop 9 is obtained by removing a
vertex c(�i0 ) from V after an equivalence transformation of type (a) or (b). Then, for
each S-loop %∈D(V) there exist a digital representative  ∈D(9) and a d-homotopy
% �d  rel: �.

Proof. The hypothesis leads to one of the following cases:

(1) 0¡i0 ¡t, the centroids c(�i0−1); c(�i0 ); c(�i0+1) span a simplex in AO ∪ S \ AS

and �i0−1 ¡�i0 ¿�i0+1.
(2) 0¡i0 ¡t, the centroids c(�i0−1); c(�i0 ); c(�i0+1) span a simplex in AO ∪ S \ AS

and �i0−1 ¿�i0 ¡�i0+1.
(3) c(�i0 ) is a reducible vertex in �.
(4) �i0 = �i0+1, and hence the vertex c(�i0+1) is reducible.

In cases (3) and (4) the edge-loop 9 is obtained by dropping a reducible vertex
from V, so D(V)=D(9) by Remark 37(1) and the result follows from Remark 37(2).
Therefore we concentrate our e9orts in proving the lemma for the case (1) since case
(2) is settled in a similar way.
We start by considering the number n(V) of reducible vertices of V in the set

VV = {c(�j); 06 j6 i0 − 2} ∪ {c(�j); i0 + 26 j6 t}:
Since any reducible vertex in VV is also a reducible vertex of 9 we can remove all of
them from both V and 9. This way we replace V and 9 by two new edge-loops V′ and
9′ respectively such that n(V′) = 0. Moreover, by Remark 37(1), D(V) =D(V′) and
D(9) = D(9′). Hence, by Remark 37(2), there is no loss of generality in assuming
V = V′ and 9= 9′.
Next we consider all possible face relations among the pairs of cells (�i0−2; �i0−1);

(�i0+1; �i0+2) and (�i0−1; �i0+1). Notice that the two elements in each pair may be equal,
and in case (2) it is also possible that i0 =1 or i0 = t−1. The proof requires in general
the four steps below whatever be the face relations we consider. For illustrating the
proof we give a detailed account of these steps for the case (1) and the face relations

�i0−2 ¿�i0−1 ¡�i0 ¿�i0+1 ¡�i0+2 (I)
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Fig. 4.

and

�i0−1 ¡�i0+1: (II)

Step A. Describe the irreducible edge-loops PV and P9.

The face relations (I) and (II) yield that V has not reducible vertices, so that V = PV
is an edge-loop of even length t = 2r by Remark 27(a) and, moreover, i0 is an even
number too. In addition, the irreducible edge-loop P9 associated to 9 is

P9= (c(�0); : : : ; c(�i0−2); c(�i0−1); c(�i0+2); : : : ; c(�2r))

since c(�i0+1) is reducible in 9 by the face relations (I) and (II); see Fig. 4. Therefore,
any digital representative of V is an S-loop of length r, while digital representatives
of 9 have length r − 1.
Notice that under a di9erent set of face relations V and PV may be distinct. In any

case, the length of PV is always greater than or equal to the length of P9, and the same
happens for the digital representatives of V and 9.

Step B. Given a digital representative %∈D(V) of V, derive a digital representative
 ∈D(9) of 9.

Given %=%r ∈D(V), it is not diQcult to check from Step A that the S-loop  = r−1,
given by  r−1(j=2) = %r(j=2), for 06 j6 i0 − 1, and  r−1(j=2) = %r(j=2 + 1), for
i06 j6 2r − 2, is a digital representative of the edge-loop 9.

Step C. Obtain a new S-loop  ̃ d-homotopic to  and such that  ̃ and % have the
same length.

By DeGnition 17, the S-loops  =  r−1 and  r−1 ∗  �
1 are d-homotopic, where  �

1 is
the constant S-loop of length 1 at � =  r−1(0) =  r−1(r − 1). Then, Proposition 18
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yields the following d-homotopy

 r−1 ∗  �
1 �d  i0=2 ∗  �

1 ∗  r−1−i0=2 =  ̃ r ;

where  i0=2 and  r−1−i0=2 are the S-walks in O given by  i0=2(j=2) =  r−1(j=2), for
06 j6 i0 and  r−1−i0=2(j=2) =  r−1((j+ i0)=2), for 06 j6 2r − i0 − 2, respectively,
and moreover  �

1 is the constant S-loop of length 1 at �=  r−1(i0=2).
In general, di9erent constant S-loops may be required for other sets of face rela-

tions. Notice also that this step could be not necessary in case the original digital
representatives % and  have the same length.

Step D. Describe a d-homotopy between % and  ̃ , and then the lemma follows.
From the face relations (I) and (II) it is not diQcult to show that the d-map given

by

H
(

j
2
;
k
2

)
=




%r(j=2) if k = 0 and 06 j6 2r;

%r(j=2) if k = 1 and 06 j6 i0 − 1 or i0 + 16 j6 2r;

�i0+1 if k = 1 and j = i0;

 ̃ r(j=2) if k = 2 and 06 j6 2r

is a d-homotopy between %r and the S-loop P r �d  r−1.

Other sets of face relations lead to possibly di9erent d-homotopies although all are
of the same nature.

4. Further remarks

As it was mentioned in the Introduction, Khalismky [7] (see also [5]) has considered
a di9erent approach to discrete loops and homotopies leading to an alternative deGnition
of digital fundamental group �Kh

1 . Our group �d
1 in DeGnition 13 is closely related to

Khalimsky’s group. More explicitly, recall that the group �Kh
1 is constructed within the

class of locally Gnite T0 topological spaces (here Khalimsky’s spaces) where “intervals”
and “rectangles” are suitably deGned. By Remark 1, any device model K , and more
generally a subset of its cells, yields a locally Gnite T0 space in such a way that 1-
and 2-dimensional windows in DeGnition 13 correspond to “intervals” and “rectangles”,
respectively. In this way, digital loops and homotopies deGned in Section 2 can be
regarded as loops and homotopies in Khalimsky’s setting. In the former, however, one
can check that they are d-maps satisfying condition (2) in DeGnition 11 but need not
satisfy condition (1); that is, they preserve the face realitionship but the top dimensional
cells in windows (open points in the corresponding Khalimsky’s space) may be mapped
to arbitrary cells of the device model (arbitrary points in the associated Khalimsky’s
space). This way Khalimsky considers a larger class of loops and homotopies than us in
order to deGne his digital fundamental group. Nevertheless, these additional loops seem
not be very appropriate from a digital point of view since they may entirely consist of
lower dimensional cells. In contrast, the loops in DeGnition 15 are forced, by condition
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11(1), to pass from a pixel to another one through a common face. This keeps close
our group �d

1 to Kong’s graph-theoretical approach to the digital fundamental group
[8] in which no others than adjacent pixels form a discrete loop.
For two disjoint digital objects O and S in a digital space (K;f), we conjecture

that the group �Kh
1 of the space associated to the light body Lb(K(O∪ S)=S) is always

isomorphic to the ordinary fundamental group of the di9erence of continuous analogues
|AO ∪ S | − |AS |, even in case the function f only satisGes Axiom (1) in DeGnition
3. If this conjecture holds, for well-behaved digital spaces (i.e., satisfying all the Gve
axioms in DeGnition 3), Theorem 23 in [4] would give an isomorphism between our
group �d

1 and Khalimsky’s group �Kh
1 for S = ∅. And, more generally, Theorem 40

above would extend this result when S �= ∅ for a large class of digital spaces including
those often used in image processing (see Section 3.2). Of course, these conjectures
must be carefully analyzed as well as other relations among the di9erent notions of
digital fundamental groups in the literature. In particular, the digital fundamental groups
introduced by Kong for digital objects and their complements should be compared with
our groups �d

1 (O; �) and �d
1 (O=(celln(K) − O); �). We expect to take over this task in

a future paper.
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