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I. Introduction 

It was shown by STEYN (1956) that for u=t2 the series F1(a; b1, b2 ; c; t, u) 
which is well known as Appell's F 1 series, is a probability generating 
function generating interesting probability functions of factorial trino
mial types. The same idea was used by STEYN (1957) to show that the 
series F (a; bv b2, b3 ; c; tv t2, t3) generates for t1 = t, t2 = u and t3 = tu a system 
of probability functions of fourfold type. In the present paper attention 
will first be drawn to the system of trivariate probability functions which 
is generated by the hypergeometric series. 

(1) 

where t1 =t, t2 =u, t3 =v, t4 =tu, t5 =uv, t6 =vt and t7 =tuv. A few examples 
of eightfold types will then be given. 

2. The Moment Generating Function 

The series (1) is absolutely convergent for It I< 1, lui< 1, lvl < 1, and 
7 

converges for t= 1, u= 1, v= 1 when c-a- ! bi>O (STEYN, 1955). 
1 

The trivariate probability function f(x, y, z), given as the coefficient of 
Fuvv•intheexpansionof0-Fwhere0-1 =F(a; bv ... ,b7 ; c; 1, ... , 1)= 

7 

=F(p,; !bi; c; 1), will now be considered by using the properties of 
1 

the series (1). The moment generating function M =M(iX, {3, y) is obtained 
from (1) by substituting t=e"', u=ef!, v=eY in 0-F. It is well-known that 
the moments follow from the moment generating function by differen
tiating and putting iX = {3 = y = 0. Using ( 1) and remembering that 
t,(i=1, ... , 7) are now functions of IX, {3 andy it follows that, 

(2) 
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(3) 
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so that 
7 

F(a-\-1;_Ibi-\-1; c-\-1; 1)a(b1 -\-b4 -\-b6 -\-b7) 

fl~oo = [()~ M l_ - -o = ----:7::--1~-----------
fJ l' R(a;_Ibi;c;l)c 

1 

a(b1 -\-b4 -\-b6 -\-b7 ) 

7 
c-a- ,Ibi-1 

1 

Similarly, 

The second order moments can be obtained in the same way but will 
rather be derived independently when examples are considered in 
section 6. 

3. The Regression Equation 

It will now be shown that the regression equation of x on y and z 
will only be linear if a certain condition between ~he parameters exists. 

Writing F 0 for [F]cx~o=F(a; bv b2 +b4, b3 +b6, b5 +b7 ; c; 1, ef1, eY, ef1+Y) 
and showing each time only those parameters in F 0 which are altered, 
it follows that 

(4) 

) 
[ 1 () J . a(b3 + b6 ) 
0 ()y M cx-0 = --c-- Fo(a+ 1, ba+b6+ 1, c+ 1)eY + 

(5) 
+ a(b•:b7 ) F 0(a+ 1, b5 +b7 + 1, c + 1)ef1+r. 

Remembering that the first term on the r.h.s. of (3) has been obtained 
as in (2) after differentiation of (1) w.r.t. t1 and that lX = 0 implies t1 = 1, 
and using the differential equation for the series (1) (STEYN, 1955, eq. 7) 
it clearly follows that, 

ab1 F 0(a+ l,b1 + 1, c+ 1) = b\ 1 {a(b2 + b4) F 0(a+ 1,b2 +b4 + 1,c+ 1) ef1+ 
c c-a- 1 - c 

+ a(ba:b6) F0(a+ 1, b3 +b6+ 1, c+ 1)eY + 

+ a(b.:b7 ) F 0(a+ 1, b5 + b7 + 1, c+ 1) ef1+Y +a F 0) 
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so that on substituting in (3) from (4) and (5), 

(B) ~ [o~ M 1-o = {c-a~bl-1 + b2~bJ [o~ M 1-o + 
f +{ b1 +~}·[~M] + ab1 [M] · C-a-bl-1 ba+ba oy <X-0 C-a-bl-1 <X=O 

when the coefficient of ef+r F 0 ( a+ l, b5 + b7 + l, c + 1) is zero i.e. 

(7) 

Excluding the cases where one of the parameters a or bv ... , b7 is 
zero i.e. excluding also b5 + b7 = 0 since this would imply that b7 = 0, this 
condition for linear regression becomes 

d==~+~--b_?_+ bl = 0 
b2 +b4 b3 +b6 b5 +b7 c-a-b1 -l · 

Under this condition the regression equation of x on y and z follows 
from the theorem proved by STEYN (1957) as 

(8) 

The condition (7) is also necessary for a linear regression equation of 
x on y and z, for if the regression is linear then using the theorem referred 
to above it must follow from the expressions (3) to (5) that 

(9) 

Assuming (9) to be an identity in f3 andy, and thus in efland er, equations 
in k1, k2 and k3, can be written down by considering: 

(i) the constant term i.e. 

ab k3 F(a, b1 ; c; l) = - 1 F(a+ 1, b1 + l; c + 1; 1); F(a, b; c; l) 
' c 

being an ordinary hypergeometric series so that 

k - abl . . 
3 - c-a-b1 -l' 

(ii) the coefficient of efl i.e. 

k a(b2 +b4 ) F(a+ 1 b . c+ I· I)+ ab1 • a(b2 +b4). 

1 c ' 1 ' ' c-a-b1 -1 c 

· F(a+ l; b1 ; c+ 1; I)= 

=ab1 (a+l)(b2 +b4)F(a+2 b+1·c+2·1)+ab4 F(a' I b·c' I·I) 
C c+1 ' 1 ' ' C T ' 1' T ' 

so that 
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(iii) the coefficient of eY which gives 

k = bl +~ 
2 c-a- b1 -1 b3 + b6 • 

The coefficients kv k2 and k3 obtained in (i), (ii) and (iii) are the same 
as the coefficients in (6). Hence, if and only if the relation (6) exists can 
the regression be linear. 

The condition (7) is therefore a necessary as well as a sufficient condition 
for the regression of x on y and z to be linear. 

4. Marginal Distributions 

Remembering that the p.g.f. of ! ! f(x, y, z) follows from (1) by 
"' 11 

writing t = 1, u = 1 and noting that 

j F(a; bvb2,b3,b4,b5,b6,b7 ; c; 1, 1,v, 1,v,v,v) 
(10) =F(a; b1 +b2 +b4, b3 +b6 +b5 +b7 ; c; 1, v) 

, =0' F(a; b3 +b5 +b6 +b7 ; c-b1 -b2 -b4 ; v) 

where 0' is a constant, it is clear that the marginal distributions are 
hypergeometric distributions. 

5. Limiting form of the probability function for large absolute values of 
the parameters 

7 
Let the absolute values of the parameters a, bv ... , b7, c, c-a- _L bi 

1 

all be large but of the same order in these parameters, say O(a). In section 
2 it was already shown that the first order moments which are equal 
to the first order cumulants are all of O(a). From (10) in the previous 
section it can easily be shown (cf. STEYN, 1951) that the variances of 
the marginal distributions a~, a~ and a; are also of O(a). It will now be 
shown that also the cumulant generating function 

L(IX, {J, y) = ,U~oo IX+ ,U~1o fJ + ,U~o1 Y +a~~+ .. · 
is of O(a). 

The function F in (1) is (apart from a constant factor) a probability 
generating function and for 0 < ti < 1 all the terms in the expansion of F 
will be positive, so that, 

7 

1,;;;;F,;;;;F(a; bvb2 , ... ,b7 ; c; 1, 1, ... , 1)=F(a; _Lbi; c; 1) 
1 

and for -oo<IX,{J,y,;;;;O, 
7 

1,;;;;F(a; bvb2 , ... ,b7 ; c; e",ef3, ... ,e"+f3+Y),;;;;F(a; _Lbi; c; 1). 
1 

For c not a negative integer, 
7 

7 T(c) T(c-a- I bi) 

F(a;! bi; c; 1) = ~ 
T(c-a) T(c- l:bi) 

1 
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Using the well-known asymptotic formulae for the Gamma function it 
now follows immediately that when the parameters are all of O(a), then 

L(cx, {J, y)=log M(cx, {J, y)= 
7 

log F(a; bv b2, ... , b7 ; o; e"', efJ, ... , erx+fJ+")-log F(a; I bi; o; 1) 
1 

will be of O(a). 
Foro a negative integer, it is assumed that a is also a negative integer 

such that the series terminates i.e. o= -n, a= -m where n>m>O. 
Clearly then, since b > 0, 

so that, 

7 · ( b +m-1)m F(a; I bi; o; 1) < 1 + n-m-1 , 
1 

7 
log F(a; I b,; o; 1) is again O(a). 

1 

Hence all cumulants will be of O(a). In standard units, therefore, the 
cumulant generating function will change to 

L(cx, {J, y) = l{cx2 + {J2 +y2 + 2e"'~~cx{J + 2ev.fJY + 2 e • .,y(X} + O(a-i), 

so that for large absolute values of the parameters the probability function 
will be approximately given by the trivariate normal probability function. 

6. Examples 

(i) The Eightfold Hypergeometrio or Eightfold Factorial-Binomial 

Consider the case of a finite population of N individuals which are 
initially divided in the proportions Pnv P110, p101, Pow P1oo• Polo• Pool• Pooo, 
possessing respectively the characteristics EFG, EFG, EFG, EFG, EFG, 
EFG, EFG, EFG, (where E means not E). From this population a sample 
of n individuals is drawn without replacement and x, y and z are the 
total number of successes of E, F and G respectively. 

P = P111 + Pno + P1o1 + Ploo• p' = P111 + Pno + Pon + Po1o• 
p'' = P111 + P1o1 + Pou +Pool 

are the total probabilities for E, F and G respectively. 
It is easy to see that the probability generating function is in this case 

given by 

_1_ I n! (NPooo)lrooo(NPloo)!r, ..... (NPtu)!rmtru•'vr" 
N!n .z:rllk-" 1'ooo! 1'too! ... 1'111! 

(where r; r' and r" are defined similar to the p, p' and p" above) 

) 
(NPooo)'" F( . N N N N N (ll) = N!n -n, - P1oo• - Polo• - Poov - Pno• - Pow 

, .-NplOl> -Np111 ; Np000 -n+ 1; t, u, v, tu, uv, tv, tuv). 
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From (6) above follows that the regression equation of x on y and z is 
linear when 

P1u Pno P1o1 + Ptoo = 0. 
Ptu + Pon Puo + Po1o P1o1 +Pool Ptoo + Pooo 

The marginal distribution ~ ~ f(x, y, z) is clearly the well-known hyper-
'" 'II 

geometric probability function and, by (10), is generated by, 

Constant · F( -n; -Np"; Nq" -n+ 1; v). 

The moments follow from the moment generating function by differ
entiation but also directly from the factorial moment generating function 
obtained from (11) by substituting t= 1 +~X, u= 1 +{3 and v= 1 +y thereby 
obtaining the series 

whence it follows, using brackets to indicate factorial moments obtained 
from the first and second degree coefficients in this expansion, that 
p,'!lOO> (or x, the mean of x)=np. Similarly 'fj=np', z=nj/'. Also p,'!'tro>' the 
coefficient of tX2 reduces to 

so that 

n12(Np)l2 
N12 

a! = f.l[2oo> + P[lOo) - p,[foo> 
(N-n) 

= N-1 npq, 

a;= (~ =~) np'q' and a!= (~ =~) np"q". 

From p,'!11o> the coe.fticient of tX{3, it follows after some simplification that 
the product moment about the mean, 

Similarly 

f.luo = f.l[no> - f.l[lOo> P,[oto> 
(N-n) , 

= N -1 n (Pm +Puo-PP ), giving 

(! _ f.'uo 
'"'II - V f.'soo f.'o2o 

Pu1 + Puo- PP' 

Vpqp'q' 

+ I H + H 
n =Put Pou-P P and n =Put Ptot-PP 
<:"'liZ Vp'q'p'q" 1::"11>: Vpqp .. q' 

Under cdndition (7) and similar condition for y and z the regression 
equation can be written down from (8) but also in the standard form 
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(ii) The Eightfold Negative Factorial-Binomial 

If in the population of example (i) the sampling is stopped after 
obtaining (m+ I) failures (i.e. ElNJ.), including the last trial, the probability 
generating function is given by 

(N )I (m+ll N -~,., "" (m+ s)! (NPJoo)!rm (NPoJo)lr.,, ... (NP1u)!rm . t' rl r" = 
Pooo .C. .C. m 1 r 1 r 1 r 1 U V 

s-o l:rilk=s · 100 • 010 • "· 111· 

(l 2) (where r, r', r" are defined as previously) 

_ (NPooo)t(m+l> . N N N N 
- N!(m+l> F(m+ I' - P10o' - Po1o' - Poov - Pno' -NPow-

-Np10v -Np111 ; -N +m+ I; t, u, v, tu, uv, tv, tuv). 

In this example the regression equation of x on y and z will be linear 
(and can be written down from (8)), if, 

Similar conditions hold for the other regression equations. 
The marginal distribution ! ! f(x, y, z) are again by (IO) generated by 

X 1J 

Const. F(m+ 1; -Np"; -Np" -Np000 +m+ 1; v) 

and is therefore an univariable negative factorial binomial distribution 
(STEYN, 1955) arising from a finite population containing Np" individuals 
which produce successes and N p000 individuals which produce the m + I 
failures. Hence the name eightfold negative factorial binomial for this 
example. 

Again, from the factorial moment generating function obtained from 
(12) by substituting t=l+IX, u=l+{J, v=l+y it follows that, 

_ 1 (m+1)Np _ (m+1)Np' _ (m+1)Np" 
X == #(lOOl = Np + 1 ' y = Np + 1 ' z = Np + 1 • 

000 000 000 

Also, #'('llXJl the coefficient of 1X2 follows after some simplification as 

so that 

I (m+2)12(Np)12 
#(200) = (NPooo + 2)12 

a~ = fl;2oo> + fl;1oo>- (fl~oo)2 
(m+1) Np (Np+NPooo+1) (NPooo-m) 

(NPooo+ 2)12 (NPooo+ 1) 

and similarly for a; and a; by changing p to p' and p" respectively. The 
coefficient of lX{3, 1-l'mm, reduces to 

fl;uo> = (N~:o7:~)12 {(m+2)N2PP' -(NPm +NPno) + 

+ (Npm+NPno) (NPooo+2)}, 
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so that the product moments about the mean follow as 

flno = tt[no> - ft[loo> tt[olo) 

_ (m+I) (NPooo-m) {N2 '+ (N +N ) (N + 1)} 
- (Np00~+2)12(Np000 +I) PP Pm Pno Pooo · · 

By cyclic interchanging of the indices similar expressions for flou and 
ft!o1 are obtained. The correlation coefficients are given by 

NpNp' + (Npm + NPuo) (NPooo + 1) 

l!rxv = VNpNp' (Np+Np000 +l) (Np' +NPooo+l) 

and similar expressions for l!vz and l!rxz· 

(iii) Eightfold distributions of Eggenberger and Polya types 

It is easily seen that, if after each trial giving an individual with a 
certain characteristic, L1(>0), individuals possessing that characteristic 
are added to the population, then in the above two examples of the 
positive and negative factorial eightfolds the only change will be that 

Np-r factors of the form N _ 8 will have to be replaced by 

Np+r 
Np+rLl Ll 
N + sLl = --y;;r-

"]"+s 

thereby replacing -N by NfL1 in the expressions obtained in example 
(i) and (ii) above. 

(iv) Limiting forms 

When in the examples (i) and (ii) above the size of the population is 
much larger than the size of the sample, the distributions derived in 
these examples will tend to those obtained from a constant population, 
i.e. to distributions obtained by sampling with replacement. 

(a) The Eightfold Binomial 

The limiting form of the probability generating function (ll) when 
sampling is done from an infinite population (or with replacement from 
a finite population) is clearly given by 

l ~ n! Pooo100'Ptoo1' 00 ... Pu{mtrur' vr" 
(13) :z:114k=n rooolrloo! ... ru1! 

= (Pooo + Pwot + Po10U + Po01V + Puotu + PouUV + P101tv + Pmtuv)", 

with binomial marginal distributions "0"' p"' qn-rx, no 11p'v q'"- 11 and no, p"• q"n-• 
respectively. 

The condition for linear regression is the same as that obtained for 
example (i). This condition can also be derived directly from (13) by 
substituting t = e'X, u = eP and v = eY, and differentiating the moment 
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generating function thus obtained once with respect to tx, then w.r.t. f3 
and w.r.t. y and writing down the condition for a linear relationship 
between 

(J (J (J 
CJ()I.M, (J{JM and (JyM when tx = 0. 

Also for this eightfold binomial, 

x = np, y = np', z = np", a;= npq, 

a;= np'q' and a;= np"q" while (!<W, r;11• and e., 
remain the same as for the eightfold factorial binomial. 

(b) The Eightfold Negative Binomial 

The limiting form of the probability function (12) when sampling is 
done from an infinite population (or with replacement from a finite 
population) is clearly given by 

m+l ~ ~ (m+a)! P1oor100 Po1or010 ••• Pu{mtrur' v•" _ 
Pooo k k m' r 'r ' r ' -s=O 14-ldk_, • 100• 010· "• 111· 

= P/ll,!1 { 1- (Pioot+ Po1ou+ Poo1v+ Pnotu+ Pouuv+ P1o1tv+ Pmtuv)} ~m-I 

with negative binomial marginal distributions. 
The regression equation of x on y and z will be linear when 

Pu1 P1oo Puo P1o1 = 0 
P111 + Pon - 1-P1oo - Puo + Polo P101 +Pool 

and the moments are given as 

x = (m+ 1) pfp000 , y = (m+ 1) p' fp000 , z = (m+ 1) p"fp000 , 

a;= (m+ 1) P(P+Pooo)/#ooo• a;= (m+ 1) p'(p' +Pooo)/rooo 

a~= (m+ 1) p"(p" +Pooo)/#ooo, (!<W = pp'+PoooPm+PoooPuo 
V pp' (p + Pooo) (p' + Pooo) 

and similar expressions for (!11., (!.,. 

7. Generalisations 

In this article the writers have studied general eightfold types. It is, 
however, very clear that also 2k-fold probability distributions can be 
considered by considering a generalised hypergeometric series such as 

(1) in t._, ... , ~1:_1, where 

l:..="Ut, f.s=Us, ... , t,.=uk, tk+l='Ut"Us, ... , t~-t="Ut'Us •. ... , uk 

as the generating function. In the extension of the various examples it 
will mean that the associated probabilities are Pii ... 1 where each of 
the k suffixes is either 0 or 1. The marginal distributions will then be 
factorial binomial types and negative factorial-binomial types. Further 
hk-fold probability distributions can be considered by using generating 
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functions of multivariate hypergeometric type, which in the extensions 
of the special examples considered above, will give rise to multivariate 
distributions with factorial multinomials and negative factorial multi
nomials (STEYN, 1956) as marginal distributions. 

The probability function of example (1) and its extensions were studied 
in further details in an unpublished thesis by STEYN (1947). 

This paper is published with the permission of the South African 
Council for Scientific and Industrial Research. 
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