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Abstract

In this paper, we establish a three-term theta function identity using the complex variable
theory of elliptic functions. This simple identity in form turns out to be quite useful and it is a
common origin of many important theta function identities. From which the quintuple product
identity and one general theta function identity related to the modular equations of the fifth order
and many other interesting theta function identities are derived. We also give a new proof of
the addition theorem for the Weierstrass elliptic functipn An identity involving the products
of four theta functions is given and from which one theta function identity by McCullough
and Shen is derived. The quintuple product identity is used to derive some Eisenstein series
identities found in Ramanujan’s lost notebook and our approach is different from that of Berndt
and Yee. The proofs are self contained and elementary.
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1. Introduction

We suppose throughout this paper that exp(2nit), wheret has positive imaginary
part. We will use the familiar notation

o0
@ @)oo = [ [X—2¢", (1.1)
n=0
and sometimes write
(a,b,c,...; ¢ 00 = (a;Q)oo(b; @)oo (C; Qoo - - - - (1.2)

To carry out our study, we need some basic facts about the Jacobi theta function
01(z|t) which is defined as

o
Hl(Z|T) — _lq1/8 Z (_1)nqn(n+l)/26(2n+1)iz

n=—00
oo

— 248 Z(_l)nqn(n+1)/2 sin(2n + 1)z (1.3)
n=0

(see, for example]25, p. 463). From this we readily find that
01z 4+ n|1) = —01(zl)  and 01(z + nt|t) = —¢~ 272201 (z|0). (1.4)

Using the well-known Jacobi triple product identity

o]

(@:2.9/7 Doo = Y, (=1)"q" " D/2" (1.5)

n=—0o0

(see[2, pp. 21-225, p. 35 12,13), we can deduce the infinite product representation
for 01(z|t), namely,

01(z|7) = 2¢Y8(sinz)(q, ge?*, qe™%%; @)oo

= igYBemi7(q, e%7, ge™%7; ¢) oo (1.6)

(see, for example[25, p. 469). In this paper, we usé;(z|t) to denote the partial
derivative of61(z|t) with respect toz. Differentiating (L.6) with respect toz and then
putting z = 0 we have

1010 = 2¢Y8(q; ¢)3.. (1.7)
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In [15], we use the complex variable theory of elliptic functions to establish a general
theta function identity. We then derive some remarkable theta function identities related
to the modular equations of degree 5; in particular, we give new proofs of the two
fundamental identities satisfied by the Rogers—Ramanujan continued fractighz]In
we set up a general theta function identity with four parameters in the same way and
this identity plays a central role to the cubic theta function identities. In this paper, we
establish the following three-term theta function identity in the same spirit. This simple
theta function identity in form turns out to be a fundamental theta function identity.
From which, with a little calculus, we can derive the quintuple product identity and
many other interesting theta function identities.

Theorem 1. Supposef (z) is an entire function satisfying the functional equations
fle+m)=f@) and f@z+m1)=q 2" ¥ f(2). (1.8)

Then there is a constant C independent of z such that
f(@) — f(=2) = COL(2|7). (1.9)

The rest of the paper are organized as follows. In Section 2, we prove Theorem
with the classical theory of elliptic functions. In Section 3, we first prove the following
theorem using Theorerh.

Theorem 2. Supposé:(z) is an entire function satisfying the functional equations
h(z4m) = —h(z) and h(z+n1) = —q 72 5n(z). (1.10)

Then we have

01(2z|7)

h(z) +h(=z) = 0110)

h(0). (1.11)

Then we derive the quintuple product identity and some other interesting theta func-
tion identities from this theorem. In Section 4, we study some Eisenstein series identities
in Ramanujan’s lost notebook and our approach is different from that of Berndt and
Yee [8]. In Section 5, we establish the following general theta function identity using
Theorem1.

Theorem 3. If f1(z) and fa2(z) are two different entire functions satisfying the func-
tional equations

f@4+m=—f@) and  f(z+m)=—q 2% 0 f(y), (1.12)
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Then there is a constant C independent of z such that

CO1(z|0)01(22]71) = f2(0)(f1(2) + f1(=2)) = f1(0)(f2(2) + f2(—2)). (1.13)

This is the main result if15], but the proof of this paper is much simpler than that
of [15]. In Section 6, we provide a new proof of the addition theorem for Weierstrass
g function. In Section 7, we prove the following identity using Theorém

Theorem 4. We have

01(z + x1)1)01(z + x2|1)01(z + x3|7)01(z — x1 — X2 — x3|7)
—01(z — x1|1)01(z — x2]7)01(z — x3]71)01(2 + x1 + x2 + x3|7)

= —01(x1 + x2|1)01(x1 + x3]7) 01(x2 + x3]|7)01(22] 7). (1.14)

From this we deduce the following identity by McCullough and Shen, which has
been used to study the Sezgd kernel of an annfdl9§

Theorem 5. We have

/ / / /

0 0 0 0
La]o) + L e2lt) + -2 (xalt) — -2 (1 4 x2 4 x3]7)
91 91 01 61

01(x1 + x2|7)01(x1 + x3|7)01(x2 + x3]7)

= 0,0/t .
1000 G Ceal )01 (el 01 (ral ) 02 e + 2 + x3l)

(1.15)

2. The proof of Theorem 1

To prove the theorem, we require the following Lemfind_ emmal is a fundamental
theorem of elliptic functions and can be found[i p. 6] or [10, p. 22] Recently, in
[15-18] we have used Lemma to set up some important theta function identities.

Lemma 1. The sum of the residues of an elliptic functions at its poles in any period
parallelogram is zero

Now we begin to prove Theorem 1 by using Lemma 1.

Proof. Suppose thaf (1) is the given function satisfying the functional equatiohs),
Then we consider the function

S )

gw) = 01(u — y10)01(u + y|1)01(u — z|1)01(u + 2]7)”

2.1)
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Here we temporarily assume that<0 y,z < © be two distinct parameters different
from the zero points off («). Using the functional equations irl.4), we can verify
that g(u + n) = g(u) and g(u + nt) = g(u). Henceg(u) is an elliptic function with
periodst and nz. It is obvious thaty, m—y, z, t—z are its only poles and all its poles
are simple poles.

In this paper we use rég, o) to denote the residue @f at «. Then Lemmal gives
resig; y) +resg; m — y) +resg; z) + refg; n — z) = 0. (2.2)
Now we begin to compute the residues. By L'Hopital's rule, we have
resg; y) = Ji@y(u — g (u)

lim f x lim —2 =Y
u—=y O01(u + y|1)01(u — z|7)01(u + 2|7) u=y O1(u — y|7)

_— F ) . 2.3)
1(011)012y|1)01(y — z|1)01(y + z|7)

Replacingy with 7—y and then using the relations(r—y) = f(—y), 01(2r—2y|7) =
—01(2y|1), O1(y—m—z|1) = —01(y+2|1), 01(y —7+z|1) = —01(y —z|7) in the resulting
equation, we find that

— AS)) . (2.4)
0101101 (2y[1)01(y — z|)01(y + z|7)

refg;m—y) =

We note thatg(x) is symmetric iny andz and so we interchanggandz in (2.3) and
(2.4), respectively, we arrive at

f@
o , 2.5
resg: 2 L 01001(22[0)01(y — 2|0 01(y + 2ID) -
een f(=2) (2.6)

= 001001 2y10)01(y — 21001(y + 2]7)

We substitute Z.9—(2.6) into (2.2) and then cancel out the factd¥ (0|t)01(y —
z|t)01(y + z|7) to obtain

J@—f(=2) _ fO) = f(=y)
= . 2.7
01(2z|7) 01(2y|7) @)

This identity indicate that f(z) — f(—z))/01(2z|7) is independent o and so it must
be a constant, saZ. Thus we obtain X.6). By analytic continuation, we know that
(1.6) holds for any complex and so this completes the proof of Theordm [
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3. The proof of Theorem 2 and the quintuple product identity

In this section we first prove Theoreghand then discuss its applications.
Proof of Theorem 2. The functionh(z) satisfies the functional equations it.10
and 61(z|7) satisfies the functional equations ih.4). Thus we know that(z)01(z|7)

satisfies the functional equations ih.§). So we can takef (z) = h(z)01(z|7) in (1.9
to obtain

01(z[0)(h(2) + h(=2)) = CO1(2z]7). (3.1

Dividing both sides byd1(z|t) we have

01(2z|7)

h(z) +h(-2)=C TR

3.2)
We setz = 0 in this equation to find tha€ = & (0). SubstitutingC = h(0) back to
(3.2 we arrive at {.11) and this completes the proof of Theoréim [J

Next we prove the following identity by employing TheoreZn

Theorem 6. We have

01(2
(q;q)oo 1( ZIT)

Z (—1)"q @4m/2 cogen 4 1)z. (3.3)

Proof. We can verify thate??0;(3z 4 nt|37) satisfies 1.10 by using (.4), so we can
take h(z) = ¢%201(3z + nt|37) in (1.17). Using the infinite product representation for
01(z|t) and a direct computation, we find(0) = 01(nt|37) = ig8(g; ¢)no. Hence
we have

01(2 < .
iqil/s( ; q)m% = e%%01(3z + nt|31) — e72’Z91(3z — 77| 37). (3.4)

Using the series expansion féi(z|t) in (1.3) we infer that

o0
%701 (37 4 17|37) = l-q—l/8 Z (_1)nq(3n2+n)/2e—(6n+1)zi_ (3.5)

n=—oo
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Replacingz by —z we have

o
H01(3 — mef3r) = —ig B Y (—1ytg /2Bt bai, (3.6)

n=—0oo
Using the Euler identity 2 cas= ¢’ + ¢~* we readily find
e%201(3z + nt|3t) — e 220,(37 — 77| 37)

o0
=2ig Y8 3 (~1'¢®* /2 cogbn + 1)z (3.7)

n=—oo

We substitute 3.7) into the right-hand side of3(4) and cancel out the factay /8
to get B.3). Thus we complete the proof of Theoretn [

Using the infinite product representation for(z|7) in the left-hand side of3.3) and
then making the substitution @?? to —z, we derive the quintuple product identity.

Theorem 7. We have

o
(4.2, 9/% oo (224, 4/2% P oo = Z I (e e (3.8)

n=—oo

For an interesting account of the quintuple product identity, one may cofsutt
83].

Using (L.4), it is easy to verify thaB1(z + x|1)01(z + y|7)01(z — x — y|7) satisfies
the conditions of Theorer2. We takeh(z) = 01(z + x|t)01(z + y|7)01(z — x — y|7) in
Theorem?2 to obtain

Theorem 8. We have

01(z + x|1)01(z + y[1)01(z — x — y|1)
—01(z — x[1)01(z — y|D)01(z + x + y|7)

01(2z|7)

= —01(x|1)01(y|1)01(x + y|7) 01(z|7)

. (3.9)

We can check thaf (z) = 9§(z+’—3[|r) satisfies all the conditions of TheoreZnand it
is easy to see that (§|1) = v/3¢Y/8(¢%; ¢®)os using the infinite product representation
for 01(z|t). Thus we get the following identity.
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Theorem 9. We have

3 B3 (2= Tie) = 38, 3. 33 01(22|0)
01 (Z—i— 3Ir) 07 (z 3lr) = 3v3¢%8(¢% ¢33, DR (3.10)

4. Some Eisenstein series identities in Ramanujan’s lost notebook

For brevity we use% (z|7) to denote the logarithmic derivative 6f(z|t) with respect
to z. We begin with the following lemma

Lemma 2. Let 01(z|7) be the Jacobi theta function defined (b.3). Then we have

22k Boy

! Eg (1)z2% 71, (4.1)

o =2 +i< bk
—(zZ|T) = — —
01 2 =
Here B; are the Bernoulli numbers defined as the coefficients in the power series

X 2 xk
ex—lzkzoBkE’ x| < 2n (4.2)

and Ex(t) are the normalized Eisenstein series defined by

Ak Sl I/l2k71qn

Ex(t)=1— — ) (4.3)
By = 1-¢q"
It is easy to show thaBy; 1 = 0 for k>1, and the first few values aB; are
Bo=1 B = ! By = 1 By = !
0 - Y l - 2’ 2 - 65 4 - 307
1 1 5 691
Bs = G Bg = Y Bip= s — T SAA 4.4
©T 42 BT 730 %76 T 72730 (4.4)
and the first fewEo, (1) are
o0 }’lqn
Ep(t) = 1-24)  -— 2 (4.5)
n=1
0 n3qn
E4(t) = 1+240) Tog (4.6)

n=1
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)’l

Eg(t) = 1— 5042 4.7)
n= l
Proof of Lemma 2. The Laurent series expansion for gcaboutz = 0 is
cotz = A
¢T3 45 945
1 & 2%k By,
== B 4.8
—+ ;;( o ¢ (4.8)
and the Taylor expansion for sinis
g 2 L2%-1
sinz = 1 4.9
inz = Z( ) @O (4.9)

The trigonometric series expansion for the logarithmic derivativé6f|7) [25, p. 489]
is

—sin 2uz. (4.10)

—(z|r) = cotz + 42

n= l

Substituting ¢.8) and @.9) into (4.10 and inverting the order of summation, we arrive
at (4.1). Thus we complete the proof of Lemnza [

Now we state the main result of this section.
Theorem 10. Let Ty, () be defined as

o0
To(t) = Y (=1)"(6n+ g Gr+D/2, (4.11)

n=—oo

and let B; be the Bernoulli numbers anHy,(t) the normalized Eisenstein series. Then
we have

" (2m — 1)12% (2% — 1) By,
Ton(0) =) Ez () Tom—2k(7). (4.12)
Pt (2k)!(2m — 2k)!
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Proof. The Taylor expansion for casis

cosz = Z(

Zk

k
Vo (k)"

Using this expansion we readily find that

oo
n=—0oo

Therefore 8.3) can be rewritten as

o0

2k
3 (~17g® 2 cogbn + Dz = Y (- DF ~ T (0).

k=0 (2!

01(2
(5 oo 221D _ Z( D2 ),

Or(zlo)

(2k)!

We differentiate this equation with respectzdo get

01(2z|7)

(q: @)oo 0110

{ —L(2z]7) — —(zlf)}

Z

k
_22( i) | — =D T (7).

Using Lemma2 we can find that
0, 03 >
2g0(22]0) = gzl = > (=1

k=1

Combining 4.15—(4.17) we immediate

(2222 — 1) By
(2k)!

ly have

{Z( 1)ka2k<r)}

k=1

= Y (k=
kgl( "G

(2)!

00 2k (02k
X{Z(—l)"—z @ DBZ"EZk(r)zZ"—l}

2k—1

%= 1)!T2k('f)~

Ezk(r)ZZkfl.

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
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Equating the coefficient 0of?"~1 in this equation we arrive at4(12. This completes
the proof of TheoremlO. [

From @.12 we readily find that

Ta(t) = E2(7)To(1), (4.19)
T4(t) = 3E2(1)T2(1) — 2E4(1) To(7), (4.20)
To(t) = 5E2(1)T4(t) — 20E4(7)T2(7) + 16E6(1) To(1), (4.21)
Tg(r) = TE2(1)Te(t) — 7T0E4(7) Ta(7) + 330E6(7) T2(T)

— 272Eg(1) To (), (4.22)

T10(t) = 9E2(1)Tg(t) — 168E4(1) T16(7) + 2016E6(7) T4(T)
—9792Eg(1)T2(t) + 7936E10(7) To(T), (4.23)
T12(v) = 11E2(7)T1o(t) — 330E4(7) Te(1) + 7392E6(7) T6(T)
— 8976QEg(1)T4(7) + 43648 10(7) T2(7)
—35379%12(1) To(7). (4.24)
We note thatTo(t) = (¢;9)e by letting z = 0 in (4.195. Next we will denote
E2(7), E4(t), and Eg(tr) by P(zr) := P,Q(tr) := Q, and R(z) := R respectively.

Now we begin to represerity(t) in terms of P, O, andR for k = 1,2,3,4,5,6
using the above equations. The identity fi9) can be written as

Lo _p (4.25)
(45 @)oo
Substituting this into 4.20 we find that
L0 _gp2_ 0. (4.26)
(45 @)oo

Substituting 4.25 and @.26) into (4.21) we obtain

T
6D _ 15p3 _30P0 + 16R. (4.27)
(4 9o
In the same way we find that
Tg(7) 4 2 2
2~ — 105P* — 420P?Q + 448PR — 13202, (4.28)

(45 9o
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T
109 _ 945p5 _ 6300P%0 + 10080P2R
(45 9)oo
—5940P 02 + 12160R, (4.29)
T
112D _ 103956 _ 1039504 + 22176(P3R
(45 @)oo

—196020P2 Q% + 80256P QR — 271203 — 9728R%.  (4.30)

These identities can be found on page 188 of Ramanujan’s lost notebook. Berndt and
Yee [8] have proved these identities using Ramanujan’s famous differential equations.

Our approach is different from that ¢8].

5. The proof of Theorem 3

In this section, we first prove Theore® using Theoreml and then discuss its
applications. Some results of this section have appeardd5h but the proofs given
here are more compact and attractive.

Proof of Theorem 3. We assume thafi(z) and f>(z) satisfy the functional equations
(2.12. Then {f2(0) f1(z) — f1(0) f2(z)}/01(z|7) satisfies the functional equations in
(1.8). And so we can takef(z) = {f2(0) f1(z) — f1(0) f2(z)}/01(z|t) in Theorem1
and @.9) in Theoreml becomes 1.13 in Theorem3. This completes the proof of
Theorem3. O

We can derive many remarkable theta function identities by employing idetit$)(
We take f1(2) = BED01(z—x|0)01(z+x7) and fo(z) = FH2D01(z— y1)01(z+y17)
in Theorem3 and then cancel out the fact8i(2z|7) in the resulting equation to obtain

CO3(z|7) = 03(x|1)01(z — y|D)01(z + y|7) — O2(y|1)01(z — x|[1)01(z + x|1).  (5.1)

Taking z = x we find thatC = 01(x — y|t)01(x + y|t). We substitute this back t& (1)
to obtain

Theorem 11. We have

03 (z11)01(x — yD)01(x + yI0)
= 03(x|1)01(z — y|0)01(z + y|71) — 03(y|1)01(z — x|D)01(z + x[7).  (5.2)
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This identity plays a fundamental role in the pap&6]. Differentiating the above
equation with respect ta, twice, using the method of logarithmic differentiation and
then settingz = 0, we obtain

Theorem 12. Let 01(z|t) be defined as ir{1.3). Then we have

(%) (xle) - (%) Ol = By 02 A DR 210, (53)
1 1

01(x[7)201(y|7)?
This is a fundamental identity in the theory of elliptic functions (see, for example,
[25, p. 325, Eq. (1.7)]

Taking f1(z) = €%201(5z 4+ nt|57) and fo(z) = €%201(5z + 2nt|57) in (1.13, we
have

CO1(z|1)01(2z|7)
= 01(2n7|57){€%%01(5z + nt|57) — e~ %20,(5z — nt|57)}
— 01(wt|57){€¥201(57 + 2nt|51) — e ¥201(57z — 27t|510)). (5.4)

Settingz = ¢ we have

Coy ( |r) 01 <—|r) =2 (cos% — cos—) 01(7t|57) 04 (2n7|50). (5.5)

Using the infinite product representation fér(z|t), we find that

01(n7|57) = iq1/8<q- 7250 (0% 4°)00(4% ¢®) 0, (5.6)
01(2nt157) = iqg*3(q% 4°)00(@% 400 (@ ¢°)o (5.7)

It follows that
01(n7/57)01(277150) = —¢ (4 )0 (q°; %) (5.8)

Similarly we have
T 2n 1
01 (—Ir) 01( =lt) = V539(q: 900 (@’ 4°)co- (5.9)
5 5
Substituting these two equations int8.%) and then using the fact

An 2r /5
— —C0S— = — 1
cos z cos 3 > (5.10)
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we conclude that
C=iqg Y2 (5.11)
Theorem 13. We have

iq Y201(z|1)01(22|7)
= 01(2n7|57){€%%01(5z + m1|57) — e~ %%0,(5z — nt|57)}
— 01(n7|50){€¥201(5z + 2nt|57) — e~ *201(5z — 2nt|57)). (5.12)

Hirschhorn[12] first proved an equivalent form of the identity i6.142 using only
the Jacobi triple product identity and Farkas and IKtd] rediscovered it using the
theory of theta functions with rational characteristics.

Replacingt by 5t, settingz = =t in the resulting equation and then using.g
gives

U e e . @°.4%% 4™ _ (@D (5.13)
(¢, 4%% 4% @9 4% 9% 00 9% %)

Applying the imaginary transformation t®.l2 we obtain

Theorem 14. We have

561(z|57)01(2z|57)
=01 <—|T> {91 (Z + gw) -0 (z — glr)}
-0 (glf) {01 (Z—i—%lr) — 01 (z— 2_571"1)}' (5.14)

Differentiating both sides of the above twice with respect samd then setting = 0,

we find that
/7 /7 2 / 2
0( ‘) ﬁ<n1>_&. (5.15)
01\ 5 01(Z10)01(%E |0)
Applying (1.7) and 6.9) to the left-hand side we have
01 01 ( > g /59" 47
) 5.16
(5’ ) 01 (@ oo (540
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Using the infinite product representation and the method of logarithmic differentiation
and the partial differential equation

%0, 26,
S gt 5.17
72 1% (5.17)

we can readily find

I’l

(5.18)

—(zlq) —1+162 - cos&z—i-BZ

) nl q

(see, for example[23]).

Replacingz by ¢ and %" in the above, respectively, and then subtracting the two
resulting equations and finally using the following elementary trigonometric function
identities:

T 2n 4 nmn dnt /5 /n
cs@é-—csé—=— and COS— —COS— = —— (= 5.19
5 5 5 5 5~ 2 (5) (5.19)

we can find that
01 01
01 ( ’T> 01 (

where(3) denote the Legendre symbol. Comparigle and 6.20 we conclude that

n

) i( )(1 et (5.20)

i( ) q" - _4@%a*% (5.21)
o (1—-4q" (@: @)oo
Takingx = ¢ andy = 2—” in (5.3 and then usingH.9 in the resulting equation we
obtain
0, "in 0, "r2n 4 (q:9)2
—= —|t)—| = =—— 22
(91> (5‘1) <91> ( 5 T) V5(4% ¥ (5.22)

From @.10 and 6.19 we find that

() G- (B) =G0 %) o=
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Comparing the above two equations we conclude that

}’l

(@ D
1— 52( ) o _(q%;fﬁ)oo' (5.24)

The Ramanujan identitie$21) and 6.24 were recorded by Ramanujan in his lost
notebook[21, pp. 139-140Q] There are several proofs of these two identities in the
literature. The first proof was given by Bailey by using Bi¥s summation formula
[3,4]. Raghavarj20] proved them using the theory of modular forms. Cl@nutilized
the Hecke correspondence between Dirichlet series and Fourier expansions of modular
forms to show that they are equivalent.

Taking f1(z) = 03(z + Z|7) and f2(z) = 03(z + %|7) in Theorem3, we find that

CO01(z|1)01(22|7)

o () [ 2) ke )
— 6 (gu) {ei <z + 2—5”|r> — 63 (Z - 2—5”|r)}. (5.25)

Differentiating both sides of the above equation twice with respect smd then
settingz = 0, we find that

2c0’1(0|f)2 _ 8C#: 9
0303210 125V59(4% ¢%)5,

0’1/(71’) 0] (2n
—_— _T —_——
01 \5 01\ 5
2
_4<9_/1> <2_”
01 5

Using the simple differential identity

(02/01)7 = 07/01 — (03/01) (5.27)

)+a() (39

‘c) . (5.26)

we can write 5.26) as

2C010[2 8C(q: 9o

503(E1003(Z | 125/54(q5; ¢)5,

A 0y
:5{ (5) 9_i<2_;

ol
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Using 6.16 and 6.22 in the above equation we find that

5. 5,10
C =2507(q; )%, (¢ 4% + 312@2—(61 4 )o0

. 5.29
(q; D% (5.29)

Thus we have
Theorem 15. Let C be defined as i(6.28. Then we have

C01(z|1)01(2z|7)
:9?(% r) {0?<z+ g‘r) —Hi(z— g‘r)}
—Hi’(g‘r) {HE(z—i-%n r) —9?(1— 2—;

Applying the imaginary transformation t®.30 we obtain

T) } . (5.30)

Theorem 16. We have

C01(z]51)01(2z|57)

= 0§(2m|5‘c) {eZiZQ?(Z + 7t|57) — 6_2”9?(2 — m‘|5€)]

— 63(nt|51) {e‘”zei(z + 2n1|57) — e~ 4205z — 2nr|5‘5)} . (5.31)
where
(45 93
4%2C = 109(q: )% (4% g% + T (5.32)
(@ 9%

Taking z = it in (5.31) we find that

12 4% 9% @.9%4>3% (@9

—yq _ ,
(q,9% q®3% @%.9% 4% a(q%q>%

(5.33)

The identities in $.13 and 6.33 are well-known Ramanujan identities about the
Rogers—Ramanujan continued fraction, which can be found in Ramanujan’'s second
notebook[22, pp. 265-267Jand were first proved by Watsdi4]. They were used

by Berndt et al.[6] in deriving general formulas for the explicit evaluation of the
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Rogers—Ramanujan continued fraction. They were also used by Liu and [#}ito
provide simpler proofs of two Lambert series identities of Ramanujan.

6. The addition theorem for Weierstrass g function

We first prove the following lemma using Theoréhand the technique of logarithmic
differentiation.

Lemma 3. We have

A A A 2
{H—l(ﬂ‘f) + 6—1(Y|‘C) - 0—1(x +)’|‘C)}

L o0 nqn B 0_& / B 6_& / B 0_& !
- 1+2421_qn <01> (x]7) (91) 64k2) <91> (x +y|1). (6.1)

n=1

Proof. We write identity 3.9) in Theorem6 in the form

f1@2) = f2(2) = =01 (x|D)01(y|0)01(x + y[7) f3(2), (6.2)
where
f1(@) = 01(z + x[1)01(z + y|D)01(z — x — y|1), (6.3)
f2(2) = 01(z — x|0)01(z — y|D)01(z + x + y[1), (6.4)
_ 91(22|‘E)
f3(2) = e (6.5)

Differentiating 6.2) with respect toz, twice, and then setting = 0, we have
10 = £ (0) = =01(x|0)01(y[0)01(x + y|7) f3(0). (6.6)

Now we begin to compute;’(0), f,'(0), and f;'(0). Differentiating f1(z) with respect
to z, twice, using the method of logarithmic differentiation, we readily find that

@ =A@ {92+ 0}, (6.7)
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where

/ / /

0 0 0
$@) = gr@+xID)+ @+ ¥+ 5 —x =y, (6.8)
1 01 01

It follows that
f1(0) = —01(x|1)01(y|1)01(x + y|7)

X (9—/1(|)+9—/1(|)—6—/1( + I))2
Glxr Glyr elx ylt

0.\ 0\ 0\
+ < ) (XIT)+( ) (ylf)+< ) (X+ylf)} (6.9)
By a direct computation, we find that
20 =~ f{0. (6.10)

We proceed as in6(7) to obtain

/ _91<22|f> O oy~ O a (2% e - B
f3() = D) l(ZHl(Zzlr) 01(z|1)> +(291(22|r) Ql(zlr))}. (6.11)

From @.1) we find that
/ /

2%(2z|r) - ﬁ(z|r) = —Ex(1)z 4 0(2>). (6.12)
1 01

Hence we have
15(0) = —E2(1). (6.13)

We substitute §.9), (6.10, and 6.13 into (6.6) and cancel out the factor01(x|7)
01(y|7)01(x + y|7) to obtain 6.1). This completes the proof of Lemnta O

We will use g (z|]7) to represent the Weierstrags function of periodsz and =r.
Then we have the following addition formula fgr(z|7) (see, for example10, p. 34,

Eq. (4.1)).
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Theorem 17. We have

p%ﬂn—p%ﬂn)?

1
P&+ +ex+yln)= 4 < P x|t —p Q)

Proof. It is well known that[25, p. 460]

® (z|7)

2 >, ng" 1
csc¢ —8 cCosiz — —E
;1_6]” 2 - zE2()

EZ(C) / /( |[)

201(x + y|1)01(x — y|7)
02(x|7)02(y|7)

o (x|1) — o (yl1) = —01(0l7)

Writing X asx + z andy asy + z we obtain

(x —y|l0)01(x +y + 2z|7)

/ 01
o +2zl1) — (v +2]1) = —01(0]0)
! Gf(x +Z|‘L’)9%()’+Z|‘L’)

Logarithmic differentiation about gives

' (x +zlt) — ' (y +zl7)
px+zlt) —p @ +z]D)

0 0 0"
=224z + 2O+ — S +y+2201) ).
01 01 01

Settingz = 0 the equation reduces to

' (x]t) — 0’ (y|1) 0, 0, 0, )
= —2 —— _4 _ 71 .
@D — o]0 (m@m+m@m PO

In light of (6.15), identity in (6.1) can be written as

A A A 2
{B—l(XIT) + Q—l(ylf) - 9_1(x + ylf)}

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)
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E>(1) Qi/(l) 9/1/(|) Hi,(+|)
= — ) — | — ) — | = ) — | — T
2 0,) 0,) 0,) 7
=p D)+ Q)+ e+ y). (6.20)

Combining the above equations we arrive @tlé). This completes the proof of the
Theorem. [

7. The proofs of Theorems 4 and 5
We first prove Theorend using Theoremil.

Proof of Theorem 4. The functionf1(u + x1|1)01(u + x2|7)01(u + x3|7)01 (0 — x1 —
x2 — x3|t) satisfies the functional equations ih.§ and so we can take

fu) = 01(u + x1|0)01(u + x2|1)01(u + x3]7)01(u — x1 — x2 — x3|7) (7.1)
in (1.9 to obtain

01(z 4+ x1|7)01(z + x2|71)01(z + x3|1)01(z — x1 — x2 — x3|7)
—01(z — x1]1)01(z — x2|71)01(z — x3|7)01(2 + x1 + x2 + x3]7)
— COL2z|0). (7.2)

Settingz = x1 and using the fact1(0jr) = 0 we find that
—01(2x1]7)01(x1 + x2|7)01(x1 + x3]|71)01(x2 + x3|7) = CO1(2x1]|7). (7.3)
Hence we have
C = —01(x1 + x2|1)01(x1 + x3]1)01(x2 + x3]7). (7.4)

Combining this with 7.1) we arrive at {.14). This completes the proof of Theorefn
O

Now we come to prove Theored using Theoren? and the method of logarithmic
differentiation. The identity in{.14 can be written in the form

Proof of Theorem 5.

f(@) = f(=2) = C01(Z|0), (7.5)
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where f(z) andC are defined byq{.1) and (7.4), respectively. Differentiating the above
equation with respect ta and then setting = 0 we conclude that

f'(0) = COL(0l0). (7.6)

Using the method of logarithmic differentiation we find that

, 01 0
f@ = fQ@ 9—(Z+x1|1)+0—(z+x2|7~')
1 1
0 0
+ —=(z+x3]t) + —(2—x1—x2—x3|7) ¢ . (7.7)
01 01
It follows that
, 04 01 01 01
f(0) = f(0) 9—(X1|7:) + 9—(le1) + 0—(xslr) - 6_(x1 +x2+x307) ¢ - (7.8)
1 1 1 1

From (7.1 we immediately have
f(0) = —01(x1|1)01(x2]7)01(x3]7) 01(x1 + x2 + x3|7). (7.9

Combining 7.4), (7.6), (7.8), and .9 we arrive at {.14). We complete the proof of
Theorem5. [
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