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Abstract

In this paper, we establish a three-term theta function identity using the complex variable
theory of elliptic functions. This simple identity in form turns out to be quite useful and it is a
common origin of many important theta function identities. From which the quintuple product
identity and one general theta function identity related to the modular equations of the fifth order
and many other interesting theta function identities are derived. We also give a new proof of
the addition theorem for the Weierstrass elliptic function℘. An identity involving the products
of four theta functions is given and from which one theta function identity by McCullough
and Shen is derived. The quintuple product identity is used to derive some Eisenstein series
identities found in Ramanujan’s lost notebook and our approach is different from that of Berndt
and Yee. The proofs are self contained and elementary.
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1. Introduction

We suppose throughout this paper thatq = exp(2�i�), where� has positive imaginary
part. We will use the familiar notation

(z; q)∞ =
∞∏
n=0

(1− zqn), (1.1)

and sometimes write

(a, b, c, . . . ; q)∞ = (a; q)∞(b; q)∞(c; q)∞ . . . . (1.2)

To carry out our study, we need some basic facts about the Jacobi theta function
�1(z|�) which is defined as

�1(z|�) = −iq1/8
∞∑

n=−∞
(−1)nqn(n+1)/2e(2n+1)iz

= 2q1/8
∞∑
n=0

(−1)nqn(n+1)/2 sin(2n+ 1)z (1.3)

(see, for example,[25, p. 463]). From this we readily find that

�1(z+ �|�) = −�1(z|�) and �1(z+ ��|�) = −q−1/2e−2iz�1(z|�). (1.4)

Using the well-known Jacobi triple product identity

(q, z, q/z; q)∞ =
∞∑

n=−∞
(−1)nqn(n−1)/2zn (1.5)

(see[2, pp. 21–22; 5, p. 35; 12,13]), we can deduce the infinite product representation
for �1(z|�), namely,

�1(z|�) = 2q1/8(sinz)(q, qe2iz, qe−2iz; q)∞
= iq1/8e−iz(q, e2iz, qe−2iz; q)∞ (1.6)

(see, for example,[25, p. 469]). In this paper, we use�′
1(z|�) to denote the partial

derivative of�1(z|�) with respect toz. Differentiating (1.6) with respect toz and then
putting z = 0 we have

�′
1(0|�) = 2q1/8(q; q)3∞. (1.7)
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In [15], we use the complex variable theory of elliptic functions to establish a general
theta function identity. We then derive some remarkable theta function identities related
to the modular equations of degree 5; in particular, we give new proofs of the two
fundamental identities satisfied by the Rogers–Ramanujan continued fraction. In[17],
we set up a general theta function identity with four parameters in the same way and
this identity plays a central role to the cubic theta function identities. In this paper, we
establish the following three-term theta function identity in the same spirit. This simple
theta function identity in form turns out to be a fundamental theta function identity.
From which, with a little calculus, we can derive the quintuple product identity and
many other interesting theta function identities.

Theorem 1. Supposef (z) is an entire function satisfying the functional equations

f (z+ �) = f (z) and f (z+ ��) = q−2e−8izf (z). (1.8)

Then there is a constant C independent of z such that

f (z)− f (−z) = C�1(2z|�). (1.9)

The rest of the paper are organized as follows. In Section 2, we prove Theorem1
with the classical theory of elliptic functions. In Section 3, we first prove the following
theorem using Theorem1.

Theorem 2. Supposeh(z) is an entire function satisfying the functional equations

h(z+ �) = −h(z) and h(z+ ��) = −q−3/2e−6izh(z). (1.10)

Then we have

h(z)+ h(−z) = �1(2z|�)
�1(z|�) h(0). (1.11)

Then we derive the quintuple product identity and some other interesting theta func-
tion identities from this theorem. In Section 4, we study some Eisenstein series identities
in Ramanujan’s lost notebook and our approach is different from that of Berndt and
Yee [8]. In Section 5, we establish the following general theta function identity using
Theorem1.

Theorem 3. If f1(z) and f2(z) are two different entire functions satisfying the func-
tional equations

f (z+ �) = −f (z) and f (z+ ��) = −q−5/2e−10izf (z), (1.12)
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Then there is a constant C independent of z such that

C�1(z|�)�1(2z|�) = f2(0)(f1(z)+ f1(−z))− f1(0)(f2(z)+ f2(−z)). (1.13)

This is the main result in[15], but the proof of this paper is much simpler than that
of [15]. In Section 6, we provide a new proof of the addition theorem for Weierstrass
℘ function. In Section 7, we prove the following identity using Theorem1.

Theorem 4.We have

�1(z+ x1|�)�1(z+ x2|�)�1(z+ x3|�)�1(z− x1 − x2 − x3|�)
− �1(z− x1|�)�1(z− x2|�)�1(z− x3|�)�1(z+ x1 + x2 + x3|�)

= −�1(x1 + x2|�)�1(x1 + x3|�)�1(x2 + x3|�)�1(2z|�). (1.14)

From this we deduce the following identity by McCullough and Shen, which has
been used to study the Sezgö kernel of an annulus[19].

Theorem 5.We have

�′
1

�1
(x1|�)+ �′

1

�1
(x2|�)+ �′

1

�1
(x3|�)− �′

1

�1
(x1 + x2 + x3|�)

= �′
1(0|�)

�1(x1 + x2|�)�1(x1 + x3|�)�1(x2 + x3|�)
�1(x1|�)�1(x2|�)�1(x3|�)�1(x1 + x2 + x3|�) . (1.15)

2. The proof of Theorem 1

To prove the theorem, we require the following Lemma1. Lemma1 is a fundamental
theorem of elliptic functions and can be found in[1, p. 6] or [10, p. 22]. Recently, in
[15–18], we have used Lemma1 to set up some important theta function identities.

Lemma 1. The sum of the residues of an elliptic functions at its poles in any period
parallelogram is zero.

Now we begin to prove Theorem 1 by using Lemma 1.

Proof. Suppose thatf (u) is the given function satisfying the functional equations (1.8).
Then we consider the function

g(u) = f (u)

�1(u− y|�)�1(u+ y|�)�1(u− z|�)�1(u+ z|�) . (2.1)
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Here we temporarily assume that 0< y, z < � be two distinct parameters different
from the zero points off (u). Using the functional equations in (1.4), we can verify
that g(u + �) = g(u) and g(u + ��) = g(u). Henceg(u) is an elliptic function with
periods� and��. It is obvious thaty,�−y, z,�−z are its only poles and all its poles
are simple poles.

In this paper we use res(g; �) to denote the residue ofg at �. Then Lemma1 gives

res(g; y)+ res(g;� − y)+ res(g; z)+ res(g;� − z) = 0. (2.2)

Now we begin to compute the residues. By L’Hopital’s rule, we have

res(g; y) = lim
u→y

(u− y)g(u)

= lim
u→y

f (u)

�1(u+ y|�)�1(u− z|�)�1(u+ z|�) × lim
u→y

u− y
�1(u− y|�)

= f (y)

�′
1(0|�)�1(2y|�)�1(y − z|�)�1(y + z|�) . (2.3)

Replacingy with �−y and then using the relationsf (�−y) = f (−y), �1(2�−2y|�) =
−�1(2y|�), �1(y−�−z|�) = −�1(y+z|�), �1(y−�+z|�) = −�1(y−z|�) in the resulting
equation, we find that

res(g;� − y) = − f (−y)
�′
1(0|�)�1(2y|�)�1(y − z|�)�1(y + z|�) . (2.4)

We note thatg(u) is symmetric iny andz and so we interchangey andz in (2.3) and
(2.4), respectively, we arrive at

res(g; z) = − f (z)

�′
1(0|�)�1(2z|�)�1(y − z|�)�1(y + z|�) , (2.5)

res(g;� − z) = f (−z)
�′
1(0|�)�1(2y|�)�1(y − z|�)�1(y + z|�) . (2.6)

We substitute (2.3)–(2.6) into (2.2) and then cancel out the factor�′
1(0|�)�1(y −

z|�)�1(y + z|�) to obtain

f (z)− f (−z)
�1(2z|�) = f (y)− f (−y)

�1(2y|�) . (2.7)

This identity indicate that(f (z)− f (−z))/�1(2z|�) is independent ofz and so it must
be a constant, sayC. Thus we obtain (1.6). By analytic continuation, we know that
(1.6) holds for any complexz and so this completes the proof of Theorem1. �
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3. The proof of Theorem 2 and the quintuple product identity

In this section we first prove Theorem2 and then discuss its applications.

Proof of Theorem 2. The function h(z) satisfies the functional equations in (1.10)
and �1(z|�) satisfies the functional equations in (1.4). Thus we know thath(z)�1(z|�)
satisfies the functional equations in (1.8). So we can takef (z) = h(z)�1(z|�) in (1.9)
to obtain

�1(z|�)(h(z)+ h(−z)) = C�1(2z|�). (3.1)

Dividing both sides by�1(z|�) we have

h(z)+ h(−z) = C �1(2z|�)
�1(z|�) . (3.2)

We setz = 0 in this equation to find thatC = h(0). SubstitutingC = h(0) back to
(3.2) we arrive at (1.11) and this completes the proof of Theorem2. �

Next we prove the following identity by employing Theorem2.

Theorem 6.We have

(q; q)∞ �1(2z|�)
�1(z|�) = 2

∞∑
n=−∞

(−1)nq(3n
2+n)/2 cos(6n+ 1)z. (3.3)

Proof. We can verify thate2iz�1(3z+ ��|3�) satisfies (1.10) by using (1.4), so we can
take h(z) = e2iz�1(3z + ��|3�) in (1.11). Using the infinite product representation for
�1(z|�) and a direct computation, we findh(0) = �1(��|3�) = iq−1/8(q; q)∞. Hence
we have

iq−1/8(q; q)∞ �1(2z|�)
�1(z|�) = e2iz�1(3z+ ��|3�)− e−2iz�1(3z− ��|3�). (3.4)

Using the series expansion for�1(z|�) in (1.3) we infer that

e2iz�1(3z+ ��|3�) = iq−1/8
∞∑

n=−∞
(−1)nq(3n

2+n)/2e−(6n+1)zi . (3.5)
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Replacingz by −z we have

e−2iz�1(3z− ��|3�) = −iq−1/8
∞∑

n=−∞
(−1)nq(3n

2+n)/2e(6n+1)zi . (3.6)

Using the Euler identity 2 cosz = eiz + e−iz we readily find

e2iz�1(3z+ ��|3�)− e−2iz�1(3z− ��|3�)

= 2iq−1/8
∞∑

n=−∞
(−1)nq(3n

2+n)/2 cos(6n+ 1)z. (3.7)

We substitute (3.7) into the right-hand side of (3.4) and cancel out the factoriq−1/8

to get (3.3). Thus we complete the proof of Theorem6. �

Using the infinite product representation for�1(z|�) in the left-hand side of (3.3) and
then making the substitution ofe2iz to −z, we derive the quintuple product identity.

Theorem 7.We have

(q, z, q/z; q)∞(z2q, q/z2; q2)∞ =
∞∑

n=−∞
qn(3n+1)/2(z−3n − z3n+1). (3.8)

For an interesting account of the quintuple product identity, one may consult[5, p.
83].
Using (1.4), it is easy to verify that�1(z + x|�)�1(z + y|�)�1(z − x − y|�) satisfies

the conditions of Theorem2. We takeh(z) = �1(z+ x|�)�1(z+ y|�)�1(z− x − y|�) in
Theorem2 to obtain

Theorem 8.We have

�1(z+ x|�)�1(z+ y|�)�1(z− x − y|�)
− �1(z− x|�)�1(z− y|�)�1(z+ x + y|�)

= −�1(x|�)�1(y|�)�1(x + y|�)�1(2z|�)
�1(z|�) . (3.9)

We can check thatf (z) = �31(z+ �
3 |�) satisfies all the conditions of Theorem2; and it

is easy to see that�1(�3 |�) = √
3q1/8(q3; q3)∞ using the infinite product representation

for �1(z|�). Thus we get the following identity.
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Theorem 9.We have

�31
(
z+ �

3
|�

)
− �31

(
z− �

3
|�

)
= 3

√
3q3/8(q3; q3)3∞

�1(2z|�)
�1(z|�) . (3.10)

4. Some Eisenstein series identities in Ramanujan’s lost notebook

For brevity we use�
′
1

�1
(z|�) to denote the logarithmic derivative of�1(z|�) with respect

to z. We begin with the following lemma

Lemma 2. Let �1(z|�) be the Jacobi theta function defined in(1.3). Then we have

�′
1

�1
(z|�) = 1

z
+

∞∑
k=1

(−1)k
22kB2k

(2k)! E2k(�)z2k−1. (4.1)

HereBk are the Bernoulli numbers defined as the coefficients in the power series

x

ex − 1
=

∞∑
k=0

Bk
xk

k! , |x| < 2� (4.2)

andE2k(�) are the normalized Eisenstein series defined by

E2k(�) = 1− 4k

B2k

∞∑
n=1

n2k−1qn

1− qn . (4.3)

It is easy to show thatB2k+1 = 0 for k�1, and the first few values ofBk are

B0 = 1, B1 = −1

2
, B2 = 1

6
, B4 = − 1

30
,

B6 = 1

42
, B8 = − 1

30
, B10 = 5

66
, B12 = − 691

2730
; (4.4)

and the first fewE2k(�) are

E2(�) = 1− 24
∞∑
n=1

nqn

1− qn , (4.5)

E4(�) = 1+ 240
∞∑
n=1

n3qn

1− qn , (4.6)
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E6(�) = 1− 504
∞∑
n=1

n5qn

1− qn . (4.7)

Proof of Lemma 2. The Laurent series expansion for cotz aboutz = 0 is

cotz = 1

z
− z

3
− z3

45
− 2z5

945
− · · ·

= 1

z
+

∞∑
k=1

(−1)k
22kB2k

(2k)! z
2k−1 (4.8)

and the Taylor expansion for sinz is

sinz =
∞∑
k=1

(−1)k−1 z2k−1

(2k − 1)! . (4.9)

The trigonometric series expansion for the logarithmic derivative of�1(z|�) [25, p. 489]
is

�′
1

�1
(z|�) = cotz+ 4

∞∑
n=1

qn

1− qn sin 2nz. (4.10)

Substituting (4.8) and (4.9) into (4.10) and inverting the order of summation, we arrive
at (4.1). Thus we complete the proof of Lemma2. �

Now we state the main result of this section.

Theorem 10. Let T2k(�) be defined as

T2k(�) =
∞∑

n=−∞
(−1)n(6n+ 1)2kqn(3n+1)/2, (4.11)

and letBk be the Bernoulli numbers andE2k(�) the normalized Eisenstein series. Then
we have

T2m(�) =
m∑
k=1

(2m− 1)!22k(22k − 1)B2k

(2k)!(2m− 2k)! E2k(�)T2m−2k(�). (4.12)



10 Z.-G. Liu /Advances in Mathematics 195 (2005) 1–23

Proof. The Taylor expansion for cosz is

cosz =
∞∑
k=0

(−1)k
z2k

(2k)! . (4.13)

Using this expansion we readily find that

∞∑
n=−∞

(−1)nq(3n
2+n)/2 cos(6n+ 1)z =

∞∑
k=0

(−1)k
z2k

(2k)!T2k(�). (4.14)

Therefore (3.3) can be rewritten as

(q; q)∞ �1(2z|�)
�1(z|�) = 2

∞∑
k=0

(−1)k
z2k

(2k)!T2k(�). (4.15)

We differentiate this equation with respect toz to get

(q; q)∞ �1(2z|�)
�1(z|�)

{
2
�′
1

�1
(2z|�)− �′

1

�1
(z|�)

}

= 2
∞∑
k=1

(−1)k
z2k−1

(2k − 1)!T2k(�). (4.16)

Using Lemma2 we can find that

2
�′
1

�1
(2z|�)− �′

1

�1
(z|�) =

∞∑
k=1

(−1)k
22k(22k − 1)B2k

(2k)! E2k(�)z2k−1. (4.17)

Combining (4.15)–(4.17) we immediately have

{ ∞∑
k=0

(−1)k
z2k

(2k)!T2k(�)
}

×
{ ∞∑
k=1

(−1)k
22k(22k − 1)B2k

(2k)! E2k(�)z2k−1

}

=
∞∑
k=1

(−1)k
z2k−1

(2k − 1)!T2k(�). (4.18)



Z.-G. Liu /Advances in Mathematics 195 (2005) 1–23 11

Equating the coefficient ofz2m−1 in this equation we arrive at (4.12). This completes
the proof of Theorem10. �

From (4.12) we readily find that

T2(�) = E2(�)T0(�), (4.19)

T4(�) = 3E2(�)T2(�)− 2E4(�)T0(�), (4.20)

T6(�) = 5E2(�)T4(�)− 20E4(�)T2(�)+ 16E6(�)T0(�), (4.21)

T8(�) = 7E2(�)T6(�)− 70E4(�)T4(�)+ 330E6(�)T2(�)

−272E8(�)T0(�), (4.22)

T10(�) = 9E2(�)T8(�)− 168E4(�)T16(�)+ 2016E6(�)T4(�)

−9792E8(�)T2(�)+ 7936E10(�)T0(�), (4.23)

T12(�) = 11E2(�)T10(�)− 330E4(�)T8(�)+ 7392E6(�)T6(�)

−89760E8(�)T4(�)+ 436480E10(�)T2(�)

−353792E12(�)T0(�). (4.24)

We note thatT0(�) = (q; q)∞ by letting z = 0 in (4.15). Next we will denote
E2(�), E4(�), and E6(�) by P(�) := P,Q(�) := Q, and R(�) := R respectively.
Now we begin to representT2k(�) in terms of P,Q, and R for k = 1,2,3,4,5,6
using the above equations. The identity in (4.9) can be written as

T2(�)
(q; q)∞ = P. (4.25)

Substituting this into (4.20) we find that

T4(�)
(q; q)∞ = 3P 2 − 2Q. (4.26)

Substituting (4.25) and (4.26) into (4.21) we obtain

T6(�)
(q; q)∞ = 15P 3 − 30PQ+ 16R. (4.27)

In the same way we find that

T8(�)
(q; q)∞ = 105P 4 − 420P 2Q+ 448PR − 132Q2, (4.28)
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T10(�)
(q; q)∞ = 945P 5 − 6300P 3Q+ 10080P 2R

−5940PQ2 + 1216QR, (4.29)

T12(�)
(q; q)∞ = 10395P 6 − 103950P 4Q+ 221760P 3R

−196020P 2Q2 + 80256PQR − 2712Q3 − 9728R2. (4.30)

These identities can be found on page 188 of Ramanujan’s lost notebook. Berndt and
Yee [8] have proved these identities using Ramanujan’s famous differential equations.
Our approach is different from that of[8].

5. The proof of Theorem 3

In this section, we first prove Theorem3 using Theorem1 and then discuss its
applications. Some results of this section have appeared in[15], but the proofs given
here are more compact and attractive.

Proof of Theorem 3.We assume thatf1(z) andf2(z) satisfy the functional equations
(1.12). Then {f2(0)f1(z) − f1(0)f2(z)}/�1(z|�) satisfies the functional equations in
(1.8). And so we can takef (z) = {f2(0)f1(z) − f1(0)f2(z)}/�1(z|�) in Theorem1
and (1.9) in Theorem1 becomes (1.13) in Theorem3. This completes the proof of
Theorem3. �

We can derive many remarkable theta function identities by employing identity (1.13).
We takef1(z) = �1(2z|�)

4�1(z|�)�1(z−x|�)�1(z+x|�) andf2(z) = �1(2z|�)
4�1(z|�)�1(z−y|�)�1(z+y|�)

in Theorem3 and then cancel out the factor�1(2z|�) in the resulting equation to obtain

C�21(z|�) = �21(x|�)�1(z− y|�)�1(z+ y|�)− �21(y|�)�1(z− x|�)�1(z+ x|�). (5.1)

Taking z = x we find thatC = �1(x−y|�)�1(x+y|�). We substitute this back to (5.1)
to obtain

Theorem 11.We have

�21(z|�)�1(x − y|�)�1(x + y|�)
= �21(x|�)�1(z− y|�)�1(z+ y|�)− �21(y|�)�1(z− x|�)�1(z+ x|�). (5.2)



Z.-G. Liu /Advances in Mathematics 195 (2005) 1–23 13

This identity plays a fundamental role in the paper[16]. Differentiating the above
equation with respect toz, twice, using the method of logarithmic differentiation and
then settingz = 0, we obtain

Theorem 12. Let �1(z|�) be defined as in(1.3). Then we have

(
�′
1

�1

)′
(x|�)−

(
�′
1

�1

)′
(y|�) = �′

1(0|�)2
�1(x − y|�)�1(x + y|�)

�1(x|�)2�1(y|�)2 . (5.3)

This is a fundamental identity in the theory of elliptic functions (see, for example,
[25, p. 325, Eq. (1.7)]).
Taking f1(z) = e2iz�1(5z + ��|5�) and f2(z) = e4iz�1(5z + 2��|5�) in (1.13), we

have

C�1(z|�)�1(2z|�)
= �1(2��|5�){e2iz�1(5z+ ��|5�)− e−2iz�1(5z− ��|5�)}

− �1(��|5�){e4iz�1(5z+ 2��|5�)− e−4iz�1(5z− 2��|5�)}. (5.4)

Settingz = �
5 we have

C�1
(�
5
|�

)
�1

(
2�
5

|�
)

= 2i

(
cos

4�
5

− cos
2�
5

)
�1(��|5�)�1(2��|5�). (5.5)

Using the infinite product representation for�1(z|�), we find that

�1(��|5�) = iq1/8(q; q5)∞(q4; q5)∞(q5; q5)∞, (5.6)

�1(2��|5�) = iq−3/8(q2; q5)∞(q3; q5)∞(q5; q5)∞. (5.7)

It follows that

�1(��|5�)�1(2��|5�) = −q−1/4(q; q)∞(q5; q5)∞. (5.8)

Similarly we have

�1
(�
5
|�

)
�1

(
2�
5

|�
)

= √
5q

1
4 (q; q)∞(q5; q5)∞. (5.9)

Substituting these two equations into (5.5) and then using the fact

cos
4�
5

− cos
2�
5

=
√
5

2
(5.10)



14 Z.-G. Liu /Advances in Mathematics 195 (2005) 1–23

we conclude that

C = iq−1/2. (5.11)

Theorem 13.We have

iq−1/2�1(z|�)�1(2z|�)
= �1(2��|5�){e2iz�1(5z+ ��|5�)− e−2iz�1(5z− ��|5�)}

− �1(��|5�){e4iz�1(5z+ 2��|5�)− e−4iz�1(5z− 2��|5�)}. (5.12)

Hirschhorn[12] first proved an equivalent form of the identity in (5.12) using only
the Jacobi triple product identity and Farkas and Kra[11] rediscovered it using the
theory of theta functions with rational characteristics.
Replacing� by 5�, setting z = �� in the resulting equation and then using (5.8)

gives

q−1 (q
10, q15; q25)∞
(q5, q20; q25)∞ − q (q

5, q20; q25)∞
(q10, q15; q25)∞ = (q; q)∞

q(q25; q25)∞ . (5.13)

Applying the imaginary transformation to (5.12) we obtain

Theorem 14.We have

5�1(z|5�)�1(2z|5�)

= �1

(
2�
5

|�
) {

�1
(
z+ �

5
|�

)
− �1

(
z− �

5
|�

)}

− �1
(�
5
|�

) {
�1

(
z+ 2�

5
|�

)
− �1

(
z− 2�

5
|�

)}
. (5.14)

Differentiating both sides of the above twice with respect toz and then settingz = 0,
we find that

�′′
1

�1

( �
5

∣∣∣ �) − �′′
1

�1

(
2�
5

∣∣∣∣ �
)

= 10�′
1(0|5�)2

�1(�5 |�)�1(2�5 |�) . (5.15)

Applying (1.7) and (5.9) to the left-hand side we have

�′′
1

�1

( �
5

∣∣∣ �) − �′′
1

�1

(
2�
5

∣∣∣∣ �
)

= 8
√
5
q(q5; q5)5∞
(q; q)∞ . (5.16)
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Using the infinite product representation and the method of logarithmic differentiation
and the partial differential equation

�2�1
�z2

= −8q
��1
�q

(5.17)

we can readily find

�′′
1

�1
(z|q) = −1+ 16

∞∑
n=1

qn

(1− qn)2 cos 2nz+ 8
∞∑
n=1

nqn

1− qn (5.18)

(see, for example,[23]).
Replacingz by �

5 and 2�
5 in the above, respectively, and then subtracting the two

resulting equations and finally using the following elementary trigonometric function
identities:

csc2
�
5

− csc2
2�
5

= 4√
5

and cos
2n�
5

− cos
4n�
5

=
√
5

2

(n
5

)
(5.19)

we can find that

�′′
1

�1

( �
5

∣∣∣ �) − �′′
1

�1

(
2�
5

∣∣∣∣ �
)

= 8
√
5

∞∑
n=1

(n
5

) qn

(1− qn)2 , (5.20)

where( n5) denote the Legendre symbol. Comparing (5.16) and (5.20) we conclude that

∞∑
n=1

(n
5

) qn

(1− qn)2 = q(q5; q5)5∞
(q; q)∞ . (5.21)

Taking x = �
5 and y = 2�

5 in (5.3) and then using (5.9) in the resulting equation we
obtain

(
�′
1

�1

)′ ( �
5

∣∣∣ �) −
(

�′
1

�1

)′ ( 2�
5

∣∣∣∣ �
)

= − 4√
5

(q; q)5∞
(q5; q5)∞ . (5.22)

From (4.10) and (5.19) we find that

(
�′
1

�1

)′ ( �
5

∣∣∣ �) −
(

�′
1

�1

)′ ( 2�
5

∣∣∣∣ �
)

= − 4√
5

{
1− 5

∞∑
n=1

(n
5

) nqn

1− qn
}
. (5.23)
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Comparing the above two equations we conclude that

1− 5
∞∑
n=1

(n
5

) nqn

1− qn = (q; q)5∞
(q5; q5)∞ . (5.24)

The Ramanujan identities (5.21) and (5.24) were recorded by Ramanujan in his lost
notebook[21, pp. 139–140]. There are several proofs of these two identities in the
literature. The first proof was given by Bailey by using his6�6 summation formula
[3,4]. Raghavan[20] proved them using the theory of modular forms. Chan[9] utilized
the Hecke correspondence between Dirichlet series and Fourier expansions of modular
forms to show that they are equivalent.
Taking f1(z) = �51(z+ �

5 |�) and f2(z) = �51(z+ 2�
5 |�) in Theorem3, we find that

C�1(z|�)�1(2z|�)

= �51

(
2�
5

|�
) {

�51
(
z+ �

5
|�

)
− �51

(
z− �

5
|�

)}

− �51
(�
5
|�

) {
�51

(
z+ 2�

5
|�

)
− �51

(
z− 2�

5
|�

)}
. (5.25)

Differentiating both sides of the above equation twice with respect toz and then
settingz = 0, we find that

2C�′
1(0|�)2

5�51(
�
5 |�)�51(2�5 |�) = 8C(q; q)∞

125
√
5q(q5; q5)5∞

= �′′
1

�1

( �
5

∣∣∣ �) − �′′
1

�1

(
2�
5

∣∣∣∣ �
)

+ 4

(
�′
1

�1

)2 ( �
5

∣∣∣ �)

−4

(
�′
1

�1

)2(
2�
5

∣∣∣∣ �
)
. (5.26)

Using the simple differential identity

(
�′
1/�1

)2 = �′′
1/�1 − (

�′
1/�1

)′ (5.27)

we can write (5.26) as

2C�′
1(0|�)2

5�51(
�
5 |�)�51(2�5 |�) = 8C(q; q)∞

125
√
5q(q5; q5)5∞

= 5

{
�′′
1

�1

( �
5

∣∣∣ �) − �′′
1

�1

(
2�
5

∣∣∣∣ �
)}
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−4

{(
�′
1

�1

)′ ( �
5

∣∣∣ �) −
(

�′
1

�1

)′ ( 2�
5

∣∣∣∣ �
)}
. (5.28)

Using (5.16) and (5.22) in the above equation we find that

C = 250q(q; q)4∞(q5; q5)4∞ + 3125q2
(q5; q5)10∞
(q; q)2∞

. (5.29)

Thus we have

Theorem 15. Let C be defined as in(5.28). Then we have

C�1(z|�)�1(2z|�)

= �51

(
2�
5

∣∣∣∣ �
) {

�51
(
z+ �

5

∣∣∣ �) − �51
(
z− �

5

∣∣∣ �)}

− �51
( �
5

∣∣∣ �) {
�51

(
z+ 2�

5

∣∣∣∣ �
)

− �51

(
z− 2�

5

∣∣∣∣ �
)}
. (5.30)

Applying the imaginary transformation to (5.30) we obtain

Theorem 16.We have

C�1(z|5�)�1(2z|5�)
= �51(2��|5�)

{
e2iz�51(z+ ��|5�)− e−2iz�51(z− ��|5�)

}
− �51(��|5�)

{
e4iz�51(z+ 2��|5�)− e−4iz�51(z− 2��|5�)

}
, (5.31)

where

q5/2C = 10q(q; q)4∞(q5; q5)4∞ + (q; q)10∞
(q5; q5)2∞

. (5.32)

Taking z = �� in (5.31) we find that

q−1 (q
2, q3; q5)5∞
(q, q4; q5)5∞

− 11− q (q, q
4; q5)5∞

(q2, q3; q5)5∞
= (q; q)6∞
q(q5; q5)6∞

. (5.33)

The identities in (5.13) and (5.33) are well-known Ramanujan identities about the
Rogers–Ramanujan continued fraction, which can be found in Ramanujan’s second
notebook[22, pp. 265–267]and were first proved by Watson[24]. They were used
by Berndt et al.[6] in deriving general formulas for the explicit evaluation of the
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Rogers–Ramanujan continued fraction. They were also used by Liu and Lewis[14] to
provide simpler proofs of two Lambert series identities of Ramanujan.

6. The addition theorem for Weierstrass℘ function

We first prove the following lemma using Theorem8 and the technique of logarithmic
differentiation.

Lemma 3. We have

{
�′
1

�1
(x|�)+ �′

1

�1
(y|�)− �′

1

�1
(x + y|�)

}2

= −1+ 24
∞∑
n=1

nqn

1− qn −
(

�′
1

�1

)′
(x|�)−

(
�′
1

�1

)′
(y|�)−

(
�′
1

�1

)′
(x + y|�). (6.1)

Proof. We write identity (3.9) in Theorem6 in the form

f1(z)− f2(z) = −�1(x|�)�1(y|�)�1(x + y|�)f3(z), (6.2)

where

f1(z) = �1(z+ x|�)�1(z+ y|�)�1(z− x − y|�), (6.3)

f2(z) = �1(z− x|�)�1(z− y|�)�1(z+ x + y|�), (6.4)

f3(z) = �1(2z|�)
�1(z|�) . (6.5)

Differentiating (6.2) with respect toz, twice, and then settingz = 0, we have

f ′′
1 (0)− f ′′

2 (0) = −�1(x|�)�1(y|�)�1(x + y|�)f ′′
3 (0). (6.6)

Now we begin to computef ′′
1 (0), f

′′
2 (0), andf

′′
3 (0). Differentiatingf1(z) with respect

to z, twice, using the method of logarithmic differentiation, we readily find that

f ′′
1 (z) = f1(z)

{
�(z)2 + �′(z)

}
, (6.7)
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where

�(z) = �′
1

�1
(z+ x|�)+ �′

1

�1
(z+ y|�)+ �′

1

�1
(z− x − y|�). (6.8)

It follows that

f ′′
1 (0) = −�1(x|�)�1(y|�)�1(x + y|�)

×
{(

�′
1

�1
(x|�)+ �′

1

�1
(y|�)− �′

1

�1
(x + y|�)

)2

+
(

�′
1

�1

)′
(x|�)+

(
�′
1

�1

)′
(y|�)+

(
�′
1

�1

)′
(x + y|�)

}
. (6.9)

By a direct computation, we find that

f ′′
2 (0) = −f ′′

1 (0). (6.10)

We proceed as in (6.7) to obtain

f ′′
3 (z) = �1(2z|�)

�1(z|�)

{(
2
�′
1

�1
(2z|�)− �′

1

�1
(z|�)

)2

+
(
2
�′
1

�1
(2z|�)− �′

1

�1
(z|�)

)′}
. (6.11)

From (4.1) we find that

2
�′
1

�1
(2z|�)− �′

1

�1
(z|�) = −E2(�)z+O(z3). (6.12)

Hence we have

f ′′
3 (0) = −E2(�). (6.13)

We substitute (6.9), (6.10), and (6.13) into (6.6) and cancel out the factor−�1(x|�)
�1(y|�)�1(x + y|�) to obtain (6.1). This completes the proof of Lemma3. �

We will use ℘(z|�) to represent the Weierstrass℘ function of periods� and ��.
Then we have the following addition formula for℘(z|�) (see, for example,[10, p. 34,
Eq. (4.1)]).
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Theorem 17.We have

℘(x|�)+ ℘(y|�)+ ℘(x + y|�) = 1

4

(
℘′(x|�)− ℘′(y|�)
℘ (x|�)− ℘(y|�)

)2

. (6.14)

Proof. It is well known that[25, p. 460]

℘ (z|�) = csc2−8
∞∑
n=1

nqn

1− qn cos 2nz− 1

3
E2(�)

= −1

3
E2(�)−

(
�′
1

�1

)′
(z|�) (6.15)

and so (5.3) can be rewritten as

℘(x|�)− ℘(y|�) = −�′
1(0|�)2

�1(x + y|�)�1(x − y|�)
�21(x|�)�21(y|�)

. (6.16)

Writing x as x + z and y as y + z we obtain

℘(x + z|�)− ℘(y + z|�) = −�′
1(0|�)2

�1(x − y|�)�1(x + y + 2z|�)
�21(x + z|�)�21(y + z|�) . (6.17)

Logarithmic differentiation aboutz gives

℘′(x + z|�)− ℘′(y + z|�)
℘ (x + z|�)− ℘(y + z|�)

= −2

(
�′
1

�1
(x + z|�)+ �′

1

�1
(y + z|�)− �′

1

�1
(x + y + 2z|�)

)
. (6.18)

Settingz = 0 the equation reduces to

℘′(x|�)− ℘′(y|�)
℘ (x|�)− ℘(y|�) = −2

(
�′
1

�1
(x|�)+ �′

1

�1
(y|�)− �′

1

�1
(x + y|�)

)
. (6.19)

In light of (6.15), identity in (6.1) can be written as

{
�′
1

�1
(x|�)+ �′

1

�1
(y|�)− �′

1

�1
(x + y|�)

}2
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= −E2(�)−
(

�′
1

�1

)′
(x|�)−

(
�′
1

�1

)′
(y|�)−

(
�′
1

�1

)′
(x + y|�)

= ℘(x|�)+ ℘(y|�)+ ℘(x + y|�). (6.20)

Combining the above equations we arrive at (6.14). This completes the proof of the
Theorem. �

7. The proofs of Theorems 4 and 5

We first prove Theorem4 using Theorem1.

Proof of Theorem 4. The function�1(u + x1|�)�1(u + x2|�)�1(u + x3|�)�1(u − x1 −
x2 − x3|�) satisfies the functional equations in (1.8) and so we can take

f (u) = �1(u+ x1|�)�1(u+ x2|�)�1(u+ x3|�)�1(u− x1 − x2 − x3|�) (7.1)

in (1.9) to obtain

�1(z+ x1|�)�1(z+ x2|�)�1(z+ x3|�)�1(z− x1 − x2 − x3|�)
−�1(z− x1|�)�1(z− x2|�)�1(z− x3|�)�1(z+ x1 + x2 + x3|�)

= C�1(2z|�). (7.2)

Settingz = x1 and using the fact�1(0|�) = 0 we find that

−�1(2x1|�)�1(x1 + x2|�)�1(x1 + x3|�)�1(x2 + x3|�) = C�1(2x1|�). (7.3)

Hence we have

C = −�1(x1 + x2|�)�1(x1 + x3|�)�1(x2 + x3|�). (7.4)

Combining this with (7.1) we arrive at (1.14). This completes the proof of Theorem4.
�

Now we come to prove Theorem5 using Theorem4 and the method of logarithmic
differentiation. The identity in (1.14) can be written in the form

Proof of Theorem 5.

f (z)− f (−z) = C�1(2z|�), (7.5)
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wheref (z) andC are defined by (7.1) and (7.4), respectively. Differentiating the above
equation with respect toz and then settingz = 0 we conclude that

f ′(0) = C�′
1(0|�). (7.6)

Using the method of logarithmic differentiation we find that

f ′(z) = f (z)

{
�′
1

�1
(z+ x1|�)+ �′

1

�1
(z+ x2|�)

+ �′
1

�1
(z+ x3|�)+ �′

1

�1
(z− x1 − x2 − x3|�)

}
. (7.7)

It follows that

f ′(0) = f (0)
{

�′
1

�1
(x1|�)+ �′

1

�1
(x2|�)+ �′

1

�1
(x3|�)− �′

1

�1
(x1 + x2 + x3|�)

}
. (7.8)

From (7.1) we immediately have

f (0) = −�1(x1|�)�1(x2|�)�1(x3|�)�1(x1 + x2 + x3|�). (7.9)

Combining (7.4), (7.6), (7.8), and (7.9) we arrive at (1.14). We complete the proof of
Theorem5. �
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