-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Elsevier - Publisher Connector

@ Available online at www.sciencedirect.com

ScienceDirect
CrossMark SOftwareX
ELSEE SoftwareX 3-4 (2015) 6-12

www.elsevier.com/locate/softx

Skinware 2.0: A real-time middleware for robot skin

S. Youssefi*, S. Denei, F. Mastrogiovanni, G. Cannata

Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via Opera Pia 13, 16145, Genoa, Italy
Received 4 June 2015; received in revised form 24 September 2015; accepted 30 September 2015

Abstract

Robot skins have emerged recently as products of research from various institutes worldwide. Each robot skin is designed with different
applications in mind. As a result, they differ in many aspects from transduction technology and structure to communication protocols and timing
requirements. These differences create a barrier for researchers interested in developing tactile processing algorithms for robots using the sense
of touch; supporting multiple robot skin technologies is non-trivial and committing to a single technology is not as useful, especially as the field
is still in its infancy. The Skinware middleware has been created to mitigate these issues by providing abstractions and real-time acquisition
mechanisms. This article describes the second revision of Skinware, discussing the differences with respect to the first version.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/
by/4.0/).

Keywords: Robot skin; Tactile; Middleware; Skinware; Software; Framework

Code metadata

Current code version Git tag v2.0.0

Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-15-00026

Legal Code License GPLv2.0+

Code versioning system used git

Software code languages, tools, and services used C, C++, Python

Compilation requirements, operating environments & Linux, gcc, autotools

dependencies

If available Link to developer documentation/manual https://github.com/maclab/skinware/tree/v2.0.0/doc and
https://github.com/maclab/skinware/wiki

Support email for questions https://github.com/maclab/skinware/issues, https://groups.google.com/d/forum/skinware and

info@cyskin.com

1. Motivation and significance realizing such a system: issues such as scalability [4], confor-

mance to curved surfaces [5] and communication networks [6]
among others. Nevertheless, many examples of robot skin sys-
tems have been presented such as those in [7,8,5,9—12].

A wide variety of tactile sensors have been subject of
active research for more than three decades [1,2]. Deploying

such sensors on a large robot surface, in the form of a))))
robot skin, however, has only recently been the subject of Each robot skin technology, often independently investi-

considerable research [3]. The majority of the effort in this dire- gE}ted as par‘F of Ongoing .research efforts by labora'tories world-
ction addresses the various technological issues that arise when ~ Wide, is realized with a different structure, uses a different com-

munication network and provides data with different timing and
significance [3]. In Fig. 1, three such technologies are visible.

* Corresponding author. These differences manifest themselves at the presentation level
i . shahb: ssefi@unice.i
. E-mail addresses: shahbaz.youssefi@unige it (S. Youssefi), in the form of various software APIs with conflicting semantics.
simone.denei @unige.it (S. Denei), fulvio.mastrogiovanni @unige.it . . .
(F. Mastrogiovanni), giorgio.cannata@unige.it (G. Cannata). As a result, algorithms developed for any particular robot skin

http://dx.doi.org/10.1016/j.s0ftx.2015.09.001
2352-7110/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://core.ac.uk/display/81115086?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2015.09.001&domain=pdf
http://www.elsevier.com/locate/softx
http://dx.doi.org/10.1016/j.softx.2015.09.001
http://www.elsevier.com/locate/softx
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00026
https://github.com/maclab/skinware/tree/v2.0.0/doc
https://github.com/maclab/skinware/wiki
https://github.com/maclab/skinware/issues
https://groups.google.com/d/forum/skinware
mailto:info@cyskin.com
mailto:shahbaz.youssefi@unige.it
mailto:simone.denei@unige.it
mailto:fulvio.mastrogiovanni@unige.it
mailto:giorgio.cannata@unige.it
http://dx.doi.org/10.1016/j.softx.2015.09.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

S. Youssefi et al. / SoftwareX 3—4 (2015) 6-12 7

Fig. 1. Different robot skin technologies in [14] (left), [12] (middle) and [8] (right). In the left image, capacitive transducers are used to provide tactile feedback,
and are placed on flexible PCB. In the middle image, rigid but small multi-modal modules sense touch, temperature and vibration. In the right image, touch sensors

are placed on foldable modules.

technology are potentially difficult to translate to other robot
skin technologies. Even more difficult is the implementation of
those algorithms.

It is therefore necessary to be able to acquire robot skin
data and present them with abstract semantics, independently
of both the particular technological and system-level solutions.
This can be realized through a middleware. One such middle-
ware, and the only one to the best of the authors’ knowledge,
is Skinware [13]. This article introduces Skinware 2.0 with sig-
nificant improvements to the software architecture. However,
much of the terminology and algorithms are adopted from Skin-
ware 1.0. The reader is referred to the work in [13] for a detailed
description of such concepts as sensor, module, patch, sensor
type, sensor layer, region, writer, reader, driver, service and
user.

Skinware 2.0, similar to the previous version, provides real-
time robot skin data acquisition and presents the data from
heterogeneous technologies to user applications uniformly and
through abstract structures. This middleware is tailored specifi-
cally for robot skin technologies, while general purpose robotic
middleware such as OROCOS [15], YARP [16] or ROS [17]
could use Skinware and propagate the robot skin data to other
respective modules in the network.

This article highlights the improvements to Skinware 1.0 and
discusses their effect on Skinware’s performance as well as how
they facilitate development of tactile-based robot applications.
Section 2 describes the architecture of Skinware 2.0 and its
functionalities. Illustrative examples in Section 3 clarify the
scenarios in which Skinware is useful. Section 4 discusses
the aforementioned improvements and their impact, along with
experimental tests to verify these improvements.

2. Software description
2.1. Terminology

As with Skinware 1.0 [13], the following entities are present
in Skinware 2.0.

e Sensor. A sensor is a sensing element of the robot skin,
e.g., it may be a tactile, temperature or vibration trans-
ducer [12].

e Module. A set of physically close sensors, often viewed as
the building block of the robot skin. Non-modular robot
skins can be viewed as having one module per sensor.

e Patch. A patch of the robot skin is a set of modules often
controlled by the same microcontroller. Patches are interest-
ing to hardware specific tasks, e.g., to monitor malfunctions.

e Sensor type. Knowing the types of the sensors, the applica-
tions can better interpret their values based on the semantics
associated with each sensor type.

e Driver. A driver is a program that knows the specific details
of the robot skin hardware, and is responsible for acquir-
ing skin data and providing them to Skinware. With drivers,
Skinware separates the hardware-specific acquisition tasks
and the higher-level data propagation.

e User. A user is any application that receives robot skin data
from Skinware.

e Service. A service is a part of a program that provides pro-
cessed data to other applications. With services, Skinware
reduces duplication of code, execution time and memory us-
age of applications by allowing them to share their results.

e Writer. A real-time thread responsible for writing data to in-
ternal Skinware buffers.

e Reader. A real-time thread that synchronizes with a corre-
sponding writer thread to acquire coherent data from shared
buffers.

Skinware 1.0 included the concepts of sensor layers and
regions. Sensor layers are (possibly virtual) divisions of skin
sensors based on their type, which allows an application to
selectively acquire data from sensors of interest. Robot skin
regions are sets of sensors that represent various areas of
interest on the robot body, such as the palm or forearm. On the
contrary, Skinware 2.0 does not enforce such divisions of the
robot skin, as explained in the following.

With regards to sensor layers, experience has shown that
this artificial division of sensor data unnecessarily increases the
complexity of both the driver and the user programs. The driver
becomes more complicated as it is required to provide data from
various sensor types that are often received collectively, through
unrelated writer threads. The user applications that require to
interpolate those data also become more complicated as they
receive them through unrelated reader threads. Skinware 2.0
thus removes any notion of layers, allowing a driver to provide

8 S. Youssefi et al. / SoftwareX 3—4 (2015) 6-12

[Application

Skinware

R R LR S e
\s\\ie* \\‘.\ N\ e%é“ §§§§§v

\\\ RS DY SN Y 3
‘\\\\ S98S, \\\\sts S sx?s%“sxs&“ §

SRS TR
SAARSTRNSINRNENRS

SIRLSMRUSTRNESRRS

SRRSRRRSRRRERRS

Skin Hardware

Fig. 2. The layered architecture of Skinware 2.0. The service layer provides
means for real-time transfer of arbitrary data. The driver layer provides the
structure of the robot skin while using the service layer to transfer sensor data.
In this figure, services are provided through writer threads, and their data are
retrieved by reader threads, synchronizing with the writer threads with locks.
Drivers use services to transfer dynamic data while the structure of the robot
skin is shared with applications separately. Skinware in the application side,
creates indices over the complete robot skin structure for efficient access to
data.

data from all sensor types it handles through the same writer
thread.

While the idea of robot skin regions of interest are useful to
certain applications, particularly higher level behavioral algo-
rithms, they are not necessarily interesting for all user applica-
tions. Imposing this structure on the robot skin does not intro-
duce performance penalties [13], but nevertheless increases the
complexity of initialization. Therefore, the concept of regions
is removed from the core of Skinware 2.0, although an organi-
zation in regions is still possible through services.

The main motivation for the change in the architecture of
Skinware is that drivers and services are similar in many ways;
they both provide data through buffers, taking care of synchro-
nization. Skinware 1.0 had separate implementations for drivers
and services, with a simpler implementation for services that
was overlooked in [13]. Skinware 2.0 implements services as
the core of communication, and implements drivers as special-
ized services. As a result, services are greatly empowered, am-
plifying their benefits. Furthermore, the mechanism that allows
services to be introduced post-initialization now enables the
same for the drivers, allowing a sort of hot-plugging for robot
skins.

2.2. Skinware architecture

Remark: this section solely presents modifications to the
architecture of Skinware 1.0. The arguments regarding the

decisions made for other aspects of the architecture as well
as the benefits of those decisions remain sound as discussed
in [13].

Skinware 2.0 has a layered architecture (Fig. 2). At its core,
Skinware provides a real-time inter-process data transfer mech-
anism, by means of writer and reader threads, shared mem-
ory and shared synchronization locks. The details of the data
transfer mechanism have been discussed in [13]. This mecha-
nism is encapsulated in Skinware services, and the service layer
handles creation, removal, attachment to and detachment from
named services.

Service writers can be either periodic or sporadic, i.e., they
either provide data periodically or upon request by a reader.
The service readers themselves are either periodic, sporadic
or ASAP, similar to readers in Skinware 1.0. The algorithms
for periodic writers and their corresponding readers have been
presented in [13]. The algorithms for sporadic writers and
their corresponding readers can be trivially derived and are not
presented here for brevity.

Each driver of Skinware 2.0 contains a service that handles
the task of transferring sensor measurements. The structure of
the robot skin, which is fixed as long as the driver is attached to
Skinware, is provided separately through shared memory. On
the user application end, Skinware constructs a unified view
of the robot skin, piecing together the structures from various
drivers. As a result, a user application may inspect the whole
robot skin without knowing exactly how it is divided among
drivers, although that information is present for the interested
user application. To allow for efficient traversal of sensors of a
specific type, for example by a user application only interested
in tactile sensors, an index over the sensors of each type is
created.

In the architecture of Skinware 2.0, corresponding to each
driver there is a service and thus a writer thread. This is in
contrast with Skinware 1.0 where a driver could handle multiple
sensor layers and consequently was assigned multiple writer
threads. This greatly simplifies the task of a driver that acquires
all sensor data from hardware collectively, as it does not need
to separate those data and provide them through different writer
threads. On the other hand, if the driver process acquires
hardware data through separate means of communication, and
thus would prefer to provide them through multiple writer
threads, it is easily able to do so by providing multiple drivers
to Skinware.

Similar to Skinware 1.0, for each user, one reader is created
corresponding to each writer and takes upon the task of
synchronization with the writer to acquire data from multiple
shared buffers, possibly at a different rate from the writer. With
readers corresponding to driver writers, Skinware by default
copies sensor data in the user application’s local replica of
the robot skin. With all readers, Skinware allows the user
application to inspect and possibly copy the data if necessary.

2.3. Software functionalities

Skinware, as a software library, provides the means for
real-time inter-process data transfer. This functionality is

S. Youssefi et al. / SoftwareX 3—4 (2015) 6-12 9

primarily used for periodically transferring sensor data to user
applications, in a concurrent, consistent and coherent manner.
It is also used for sharing processed data among those user
applications. In this section as well, only the differences in
functionality with respect to Skinware 1.0 are presented.

In contrast to Skinware 1.0 that was developed for
RTAI [18], Skinware 2.0 uses an abstraction layer over real-
time systems (URT: Unified Real-Time interface') to increase
its portability and facilitate development and testing. For exam-
ple, a Skinware driver could be implemented and tested using
the POSIX back-end of URT and not in real-time, for exam-
ple under Linux, where debugging is easy and tools such as
valgrind’ are available. Once developed, the driver could be
recompiled and used with the RTAI back-end of URT for real-
time behavior.

Skinware 1.0 had a static view of the attached robot skin.
While drivers were allowed to detach from and reattach to
Skinware at runtime, they were required to be representing the
same piece of robot skin. This property holds for many robots,
where the robot skin is static, but it does not necessarily hold for
more modern robot skins. It is quite possible for a skin module
to adapt the number and precision of its sensors based on such
phenomena as focus, i.e., reducing the number of sensors for
energy saving when there is no activity in that area of robot
skin, and increasing again once activity is detected, similar
to biological systems [19]. Such behavior would have been
impossible, or cumbersome at best, to achieve with Skinware
1.0. With Skinware 2.0, it is possible for a driver to present a
different robot skin upon reattachment, given that all users have
detached from it. Once done, users may reattach to the driver.
With the static view of skin as in Skinware 1.0, hot-plugging
would have also been impossible.

Spatial calibration, the act of identifying the precise posi-
tions and orientation of each sensor [20], is removed from the
core of Skinware 2.0 and changed to a service. In Skinware
1.0, spatial calibration was an initialization step, which con-
tributed to the rigidity of Skinware’s view of the skin. Further-
more, while most applications would benefit from knowing the
precise position and orientation of every sensor, this may not
necessarily be true for all applications. For example, a force
control application reading sensor data from the finger tips may
only be interested in the average sensor value to control the fin-
ger motors, rather than the precise force vectors derived from
the sensors’ poses. Other examples include the calibration soft-
ware itself, hardware configuration and quality inspection tools
as well as machine learning algorithms [21]. A high level be-
havioral algorithm may also be interested solely in regions of
the robot skin, rather than the detailed sensor locations.

3. Illustrative examples

Three target Skinware user classes are considered; end-
users, creators and algorithm-developers of robot skins.

! Unified Real-Time interface is available at
https://github.com/ShabbyX/URT. At the time of this writing, URT supports
POSIX systems as well as RTAI (both in user and kernel spaces).

2 http://www.valgrind.org/.

Research teams interested in using available robot skin
technologies, evaluate and identify the technology that fulfills
the requirements of the tasks at hand. It is possible that multiple
technologies are identified, each suitable for a particular area
on the robot body. Using Skinware, the research team is
able to select the appropriate robot skin technologies without
such considerations as software libraries and interoperability of
components. As a result, there would be no compromises due to
availability of software for any particular robot skin technology.

For the creators of a new robot skin technology, a typical
scenario is as follows. The research team that develops a new
robot skin technology has expert knowledge of all peculiarities
regarding the communication network and data acquisition
from their robot skin. For this team, it is enough to provide a
Skinware driver and immediately all software and processing
libraries written for other robot skin technologies through
Skinware, would become available to them as well.

The developers of tactile-based robot behaviors are able to
provide their software and processing libraries to a wide variety
of robot skin technologies through Skinware. Furthermore,
they develop algorithms with an abstract view of the robot
skin, without considerations for peculiarities of the hardware
implementation.

4. Impact

From a researcher’s point of view. The use of Skinware has
multiple advantages. First, the development of robot skin re-
quires a heterogeneous design expertise involving computer and
electronics engineering, material science and systems engineer-
ing: Skinware allows for abstracting from the technological pe-
culiarities associated with all of these fields. Then, Skinware en-
ables researchers to focus on specific algorithmic aspects, there-
fore enforcing new research activities: as soon as new technolo-
gies are available, they become immediately available, as long
as Skinware supports them.

Compared with Skinware 1.0, Skinware 2.0 improves the
quality of developed programs through a cleaner API and facil-
itates software management by providing loosely coupled mod-
ules. Furthermore, the view of the robot skin is more dynamic
in Skinware 2.0, allowing online restructuring, addition and re-
moval of robot skin patches, which significantly eases debug-
ging and identifying malfunctioning sensors.

Skinware is a new software framework that is gaining
traction as do robot skin technologies. As such, it is difficult to
predict how exactly Skinware would be able to fulfill its role. It
has nevertheless been extensively used internally by the authors
during the development and deployment of the revisions of
their robot skin system® to great success, and adopted in the
European FP7 projects ROBOSKIN and CloPeMa.*

In the following paragraphs, the results of certain perfor-
mance tests on Skinware 2.0 are presented to further emphasize
its useability in diverse configurations.

3 CySkin: http://www.cyskin.com.
4 See acknowledgments.

https://github.com/ShabbyX/URT
http://www.valgrind.org/
http://www.cyskin.com

10 S. Youssefi et al. / SoftwareX 3—4 (2015) 6-12

g

0.8

execution time (ns,
NS
: T
SIS

number of drivers

Fig. 3. Worst-case total execution time of writers (left)

Experimental tests on the implementation of Skinware 2.0
have been performed in a way similar to those discussed in [13]
on the same workstation, but with upgraded software.

e Operating System: Ubuntu 14.04 using the Linux kernel
3.8.1 patched with modified RTAI 4.0,

e Processor: Intel Core 2 Duo E8200 @2.66 GHz,

e Motherboard: FUJITSU SIEMENS D2581-Al,

e RAM: Four 1 GB 48 spaces DIMM DDR2 Synchronous
667 MHz,

e Compiler: gcc and g++ version 4.8.2 with -O2 optimization
level.

The tests performed on Skinware 2.0 focus on the behavior
of Skinware under heavy load and show the impact of
number of drivers, number of user applications and number of
communication buffers on the total execution time of writer
and reader threads. In these tests, data from 30,848 sensors
are acquired corresponding to 1m? of robot skin with the
ROBOSKIN technology [14], using virtual drivers similar to
what those discussed in [13]. As the writer and reader threads
operate on the sensor data only, details of the sensor structuring
such as patches and modules, or other properties such as the
sensor types are irrelevant to the performance of these threads.

The whole robot skin with 30,848 sensors is equally divided
among a configurable number of virtual drivers in the range
1-8, and the data transfer is done through a configurable num-
ber of buffers in the range 2-8. In each configuration, mea-
surements have been performed in the presence of a number of
user applications in the range 1-15. The thread worst execution
times have been sampled after a 60 s execution period. The test
for each configuration has been performed 4 times, resulting in
a total of 3360 tests. In each test, writer threads are created in
periodic mode with a random period between 30 and 50 Hz and
reader threads are created in periodic mode with a random pe-
riod between 10 and 100 Hz. This implies that the worst thread
execution times in each test configuration are themselves values

5 One such modification is to extend RTAI with the ability to measure precise
execution times. The modified RTAI with which the tests have been performed
can be found at https://github.com/Shabby X/RTAI/.

x10°

execution time (ns)

0.8 - 1

06

04r

number of drivers

and readers (right) with number of drivers in the range 1-8.

calculated over 1800-3000 sample points for writer threads and
600-6000 sample points for reader threads.

Remark: as in [13], acquisition rates have been chosen ran-
domly to test Skinware under unlikely conditions and edge
cases as well as increase the chances for swap skips. In prac-
tice, where the task frequencies of writers and readers are har-
monious, Skinware could only be more performant. The defini-
tion of swap skips, where a writer is unable to swap its working
buffer, and the algorithms used to prevent such a situation are
present in [13]. In all the tests discussed in this section, the mea-
sured number of swap skips have been a constant zero.

4.1. Effects of drivers

In this analysis, the effect of distributing robot skin sensors
over a number of drivers is studied. Fig. 3 shows the box plots
of the worst-case execution times of the writer and the reader
threads, in presence of a varying number of drivers. Each entry
in these box plots corresponds to measurements for varying
numbers of user applications and communication buffers.

It can be observed that increasing the number of drivers
increases the worst-case execution time of writers and readers.
With a higher number of drivers, there is a higher number
of pairs of writers and readers. As a result, the cost of
synchronization is multiplied.

4.2. Effects of user applications

The effect of increasing the number of user applications can
be viewed in Fig. 4 for the writer and the reader threads. In this
figure, the box plots of the worst-case execution times of these
threads in the presence of a varying number of user applications
are presented. Measurements for varying numbers of drivers
and communication buffers are present in each entry of these
box plots.

It is apparent that the execution time of both the writer
and the reader threads grow slowly with the number of user
applications. A higher number of threads results in a greater
cost of scheduler context switches. This affects the writer and
the reader threads differently because writer threads have higher
priority and are smaller in number with respect to readers. (With

https://github.com/ShabbyX/RTAI/

S. Youssefi et al. / SoftwareX 3—4 (2015) 6-12 11

2r T IR
T — ! | | | | | |
| ! T T | | |
18r T | ! | : : | : | | :’
n | : | ! | | | | | | | |
T | | ! | | | |
16r T | : | : | ! | : : | ! 1
—_ I I
@ I
—= 14r) ! H | +
@ | I !
£ |
c 121 4
8
=1
8 r ! ! .
5 T
0.8 ; ! : : | \ i : \ :,
| | | | | | : : | | : I
| I I |
08FT L LR oL
: | I I oL 1 1 1
0.4k 1 ‘L L 1 L 4
1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

number of users

x10°

execution time (ns)
R

0.8

et = [| - 4+

st = [-4
s — [} - -
e - = [} -4

el e
- TF-4+ =+
- —

e — = [-+

0.6

+«D}4+
FF -
b T

0.4

w T i
- T -+

02 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
number of users

Fig. 4. Worst-case total execution time of writers (left) and readers (right) with number of user applications in the range 1-15.

x 10
ol - —_ —_ — - 4
T | | | | .
| | | | I | |
18- 1 I | | | ! [
I I I I | | I
| | | | \ | |
16F I | | | ! [
I I I I | | I
@ ! | | | I | |
< 14} 1
[}
£
= 12r 1
Ks}
x
[}
08 ! | | | | j | b
! | | | | | |
! | ! | | | |
06 ! | | | | i LA
: | ! | | | |
| | | |
0.4 i . -+ . . - -
2 3 4 5 6 7 8

number of buffers

6

execution time (ns)

08 1

0.6 4

041

0.2p]

number of buffers

Fig. 5. Worst-case total execution time of writers (left) and readers (right) with number of communication buffers in the range 2-8.

D drivers and U users, there are D writer threads and U x D
reader threads.)

4.3. Effects of communication buffers

Finally, the effect of the number of communication buffers
on the performance of Skinware is demonstrated. In Fig. 5, this
effect is shown for the writer and the reader threads, with box
plots of the worst-case execution times of these threads against
the number of communication buffers. Each entry of these
box plots corresponds to measurements for varying numbers of
drivers and user applications.

It is observed that changes to the number of communication
buffers does not particularly affect the worst-case performance
of either writers or readers. For writer threads, a higher number
of buffers means a higher chance to find a free buffer to swap.
However, the execution time of the writer is unaffected because
it consists mainly of sleeping, i.e., it does not contribute to the
measurement of the execution time. For reader threads, they
wait on the buffer being currently filled, regardless of how many
other buffers are present.

It can be concluded from the results of these tests that het-
erogeneous robot skin technologies can be handled by Skinware
through different drivers albeit with minor performance penalty.

Users in Skinware can grow as necessary without a consider-
able penalty as well. Finally, the number of buffers may be in-
creased with no penalty to eliminate the remotest chances of
swap skips from happening.

5. Conclusions

Through Skinware, developed behaviors based on robot
skins are made portable to all current and (in principle)
future robot skin technologies. This allows new robot skins to
thrive and be benchmarked against well-known robot skins, at
the same time allowing researchers to move from one robot
skin technology to a more suitable one, without concerns
for software compatibility. Skinware 2.0 improves upon the
first revision by reducing complexity of the already simple
drivers, empowering services, providing a cleaner API and
being considerably more portable.

Acknowledgment

The research leading to these results has received
funding from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under Grant 231500 (project
ROBOSKIN) and Grant 288553 (project CloPeMa).

12 S. Youssefi et al. / SoftwareX 3—4 (2015) 6-12

References

[1] Lee M, Nicholls H. Tactile sensing for mechatronics—a state of the art
survey. Mechatronics 1999;9:1-31.

[2] Lumelsky V, Shur M, Wagner S. Sensitive skin. IEEE Sens J 2001;1:
41-51.

[3] Dahiya R, Mittendorfer P, Valle M, Cheng G, Lumelsky V. Directions
toward effective utilization of tactile skin: A review. IEEE Sens J 2013;
13:4121-38.

[4] Schmitz A, Maiolino P, Maggial M, Natale L, Cannata G, Metta G.
Methods and technologies for the implementation of large-scale robot

tactile sensors. IEEE Trans Robot 2011;27:389-400.
[5] G Cannata, M Maggiali, G Metta, G Sandini, An embedded artificial skin

for humanoid robots. In: Multisensor fusion and integration for intelligent
systems. MFI 2008. IEEE international conference on. 2008. p. 434.

[6] E Baglini, S Youssefi, F Mastrogiovanni, G Cannata, A real-time
distributed architecture for large-scale tactile sensing. In: Intelligent
robots and systems, 2014 IEEE/RSJ international conference on. 2014.
p. 1663-9.

[71 O Kerpa, K Weiss, H Worn, Development of a flexible tactile sensor
system for a humanoid robot. In: Intelligent robots and systems.
Proceedings. 2003 IEEE/RS]J international conference on, vol. 1. 2003.
p.- 1.

[8] Y Ohmura, Y Kuniyoshi, A Nagakubo, Conformable and scalable tactile
sensor skin for curved surfaces. In: Robotics and automation. Proceedings
2006 IEEE international conference on. 2006. p. 1348.

[9] J Ulmen, M Cutkosky, A robust, low-cost and low-noise artificial skin
for human-friendly robots. In: Robotics and automation. 2010 IEEE
international conference on. 2010. p. 4836-41.

[10] E Baglini, G Gannata, F Mastrogiovanni, Design of an embedded
networking infrastructure for whole-body tactile sensing in humanoid
robots. In: Humanoid robots (Humanoids), 2010 10th IEEE-RAS
international conference on. 2010. p. 671.

[11] D Tawil, D Rye, M Velonaki, Touch modality interpretation for an EIT-
based sensitive skin. In: Proceedings of the 2011 IEEE international
conference on robotics and automation. (Shanghai, China); 2011.

[12] Mittendorfer P, Cheng G. Humanoid multimodal tactile-sensing modules.

IEEE Trans Robot 2011;27:401-10.

[13] Youssefi S, Denei S, Mastrogiovanni F, Cannata G. A real-time data
acquisition and processing framework for large-scale robot skin. Robot
Auton Syst 2015;68:86-103.

[14] Billard A, Bonfiglio A, Cannata G, Cosseddu P, Dahl T, Dautenhahn K,
F M, Metta G, Natale L, Robins B, Seminara L, Valle M. The ROBOSKIN

project: Challenges and results, vol. 544. 2013. p. 351-8.
[15] H Bruyninckx, Open robot control software: the OROCOS project.

In: Robotics and automation, 2001. Proceedings 2001 ICRA. IEEE
international conference on, vol. 3. 2001. p. 2523-8.
[16] Metta G, Fitzpatrick P, Natale L. YARP: Yet another robotic platform. Int

J Adv Robot Syst 2006;3.
[17] M Quigley, B Gerkey, K Conley, J Faust, T Foote, J Leibs, E Berger,

R Wheeler, A Ng, ROS: an Open-source robot operating system.
In: Proceedings of the IEEE international conference on robotics and
automation (ICRA) workshop on open source robotics (Kobe, Japan);
20009.

[18] Mantegazza P, Dozio E, Papacharalambous S. RTAIL: Real time
application interface. Linux J 2000;2000.

[19] Frings C, Bader R, Spence C. Selection in touch: Negative priming with
tactile stimuli. Percept & Psychophysics 2008;70:516-23.

[20] Denei S, Mastrogiovanni F, Cannata G. Towards the creation of tactile
maps for robots and their use in robot contact motion control. Robot Auton

Syst 2015;63:293-308.
[21] J N, P Byrnes-preston, R Salleh, C Sammut, Texture recognition by tactile

sensing. In: Australasian conference on robotics and automation. (Sydney,
N.S.W., Australia); 2009.

http://refhub.elsevier.com/S2352-7110(15)00010-2/sbref1
http://refhub.elsevier.com/S2352-7110(15)00010-2/sbref2
http://refhub.elsevier.com/S2352-7110(15)00010-2/sbref3
http://refhub.elsevier.com/S2352-7110(15)00010-2/sbref4
http://refhub.elsevier.com/S2352-7110(15)00010-2/sbref12
http://refhub.elsevier.com/S2352-7110(15)00010-2/sbref13
http://refhub.elsevier.com/S2352-7110(15)00010-2/sbref14
http://refhub.elsevier.com/S2352-7110(15)00010-2/sbref16
http://refhub.elsevier.com/S2352-7110(15)00010-2/sbref18
http://refhub.elsevier.com/S2352-7110(15)00010-2/sbref19
http://refhub.elsevier.com/S2352-7110(15)00010-2/sbref20

	Skinware 2.0: A real-time middleware for robot skin
	Motivation and significance
	Software description
	Terminology
	Skinware architecture
	Software functionalities

	Illustrative examples
	Impact
	Effects of drivers
	Effects of user applications
	Effects of communication buffers

	Conclusions
	Acknowledgment
	References

