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microarray analysis.
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of transcriptomic biomarkers are deter-

mined that predict clinical response

to beta-adrenergic antagonists.
rnia; cThe Johns Hopkins Hospital,

en’s Hospital, Boston, Massachu-

the University of Zurich, Zurich,

02017, and HL-65455 (to Dr. Hare).

ing of this work. All other authors

se.

ted February 23, 2016.

https://core.ac.uk/display/81115083?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jacbts.2016.02.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jacbts.2016.02.001


ABBR EV I A T I ON S

AND ACRONYMS

AR = adrenergic receptor

EF = ejection fraction

EMB = endomyocardial bio

GO = gene ontology

HF = heart failure

MiPP = Misclassified Penal

Posteriors

MYH = myosin heavy chain

SAM = significance analysi

microarrays

SERCA = sarcoplasmic

reticulum calcium-depende

ATPase

TBB = transcriptomic-base
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Over the last decades, beta-blockers have been a key component of heart failure therapy. However, currently there is no

method to identify patients who will benefit from beta-blocking therapy versus those who will be unresponsive or worsen.

Furthermore, there is an unmet need to better understand molecular mechanisms through which heart failure therapies,

such as beta-blockers, improve cardiac function, in order to design novel targeted therapies. Solving these issues is an

important step towards personalized medicine. Here, we present a comprehensive transcriptomic analysis of molecular

pathways that are affected by beta-blocking agents and a transcriptomic biomarker to predict therapy response.

(J Am Coll Cardiol Basic Trans Science 2016;1:107–21) © 2016 The Authors. Published by Elsevier on behalf of the

American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
G -protein–coupled receptors are the most
commonly targeted proteins of recently
designed drugs in the cardiovascular field,

making them a key component of pharmacogenomic
investigations and genetic variability studies (1). One
of the best studied G-protein–coupled receptors is the
beta-adrenergic receptor (AR) (1), with b1- and b2-AR
both being expressed on human cardiomyocytes.
Stimulation of ARs, in particular the b1-AR, induces
increased cardiac inotropy and chronotropy (1). The
b3-ARs have been shown to have negative regulatory
functions on inotropy and cardiac reserve (2,3) through
Gi coupling to cyclic guanine monophosphate-nitric
oxide (4). Although beta-adrenergic stimulation is a
major compensatory mechanism in the acute setting
such as traumatic hypovolemia, it appears to worsen
ventricular function and outcome in conditions with
limited metabolic and physiological reserves, such as
heart failure (HF) (1). Accordingly, beta-blocking
agents were developed to partially antagonize beta-
adrenergic “excess” of norepinephrine at the cardio-
myocyte level (1).
Since thefirst discovery of beneficial effects
of beta-blocker therapy in a small case series
of 7 patients with HF by Waagstein et al. (5) in
1975, a sequence of large clinical trials (5–9)
has confirmed clinical improvement with
beta-blockade in HF and suggested various
hypotheses on how beta-blockade in the
failing heart may improve outcomes. These
hypotheses included effects of beta-blockade
through activation of myocardial contractile
proteins and sarcoplasmic reticulum calcium-
dependent ATPase (SERCA) activity, as well
as alteration of gene expression (10–12).

In the field of gene expression analysis,
Lowes et al. (10) made the important obser-
vation that functional improvement during
beta-blocker therapy measured by improved
ejection fraction (EF) (increase by 18.8� 1.8%)
was associated with overexpression of SERCA and
a-myosin heavy chain (MYH), whereas there was a
decrease in expression levels of b-MYH. Yasumura
et al. (11) made a similar observation in a clinical study,
in which they treated patients with dilated cardio-
myopathy for 4 months with beta-blockers. Improve-
ment of EF during therapy with beta-blocking agents
was associated with overexpression of SERCA and
phospholamban.

While the previously mentioned investigational
approaches used polymerase chain reaction (PCR) to
gain valuable information about the molecular effects
of beta-blocking agents on specific candidate genes,
our group sought to expand the current knowledge by
applying microarrays, a technology that evaluates
expression levels of all genes in a given individual.
Therefore, it allows the discovery of new genes and
pathways in a more comprehensive approach (13–18)
that has proven useful to delineate diagnosis and
prognosis in HF populations (15,16,18). While typi-
cally only genes of interest or candidate genes are
investigated with polymerase chain reaction, micro-
array technology analyzes the entire transcriptome of
about 30,000 genes in 1 experiment (19) and, there-
fore, provides a less biased approach of gene
discovery.

METHODS

PATIENT POPULATION. To identify genes that un-
dergo expression changes during treatment with
beta-blocking agents, we first analyzed endomyo-
cardial biopsies (EMBs) obtained from patients with
new-onset HF (n ¼ 43), who were treated with
beta-blockers (n ¼ 30) versus alternative standard
therapy (n ¼ 13). This cohort has been previously
described and analyzed for prognostic information
(15). EMBs were obtained from a biorepository con-
taining samples from patients with new-onset HF
(15,16,18). In brief, transvenous EMBs were ob-
tained from the right interventricular septum and

http://creativecommons.org/licenses/by-nc-nd/4.0/


FIGURE 1 Study Design

We analyzed a cohort of 43 patients with idiopathic dilated cardiomyopathy for molecular

changes that are induced by beta-blocking agents. Among the patients on beta-blocking

agents, we selected patients with poor (n ¼ 13) versus good prognosis (n ¼ 17) to identify

gene expression changes in patients who improved during therapy with beta-blockers. Two-

thirds of the data were used as a train set to develop the biomarker (poor prognosis n ¼ 8;

good prognosis: n ¼ 11) and one-third of the data was used as an independent test set for

validation of the molecular signature (poor prognosis: n ¼ 5; good prognosis: n ¼ 6).
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immediately flash frozen in liquid nitrogen for storage
and subsequent microarray analysis. All patients gave
their written informed consent to participate in this
study.

New-onset HF was defined as onset of clinical
symptoms of HF within the past 6 months at the time
of diagnosis. HF was diagnosed on the basis of clin-
ical signs and symptoms as recommended by the
American Heart Association and the American Col-
lege of Cardiology (20). All patients had been treated
with beta-blockers or alternative therapy for a
maximum of 6 months at the time when biopsy
samples were obtained. Metoprolol (tartrate and
succinate) and carvedilol were used as beta-blocking
agents at the maximum tolerated dose, whereas
alternative standard therapy included angiotensin-
converting enzyme inhibitors, aldosterone antago-
nists, and diuretic agents. Patients who received
alternative therapy had contraindications to beta-
blocking agents, such as severe chronic obstructive
pulmonary disease, sinus bradycardia, or atrioven-
tricular node conduction disorders.

The cohort was matched on the basis of age, sex,
hemodynamic parameters, and medical therapy. To
avoid different types of cardiomyopathy from being a
possible confounding factor for gene expression
analysis, only samples from patients with idiopathic
dilated cardiomyopathy were investigated. Idiopathic
dilated cardiomyopathy was a diagnosis of exclusion,
after extensive workup including cardiac catheteri-
zation and special immunohistochemical stainings
were performed (16).

After identifying genes that were affected by car-
vedilol or metoprolol, we sought to identify tran-
scriptomic changes specifically related to improved
outcomes. Therefore, in a case-control fashion on the
basis of the same baseline parameters as for our first
analysis, we investigated gene expression changes
that were unique to patients who were responsive to
beta-blocking agents. For this second analysis, within
the previously described participants who received
beta-blocking agents, we identified a group with good
prognosis (n ¼ 17) and a group with poor prognosis
(n ¼ 13) (Figure 1). Good prognosis was defined as
event-free survival for at least 5 years after diagnosis
of HF. Poor prognosis was defined as having an event
within 2 years after symptom onset. Events included
death, requirement for left ventricular assist device
placement, or cardiac transplant (15).

RIBONUCLEIC ACID ISOLATION FROM EMBs. We
extracted and hybridized total RNA from EMBs as
previously described (15–17). All EMBs were obtained
at the time of diagnosis of new-onset HF and were
immediately flash-frozen in liquid nitrogen. The
average size of tissue samples was 2 mm. Samples
were homogenized with the MM 301 Mixer Mill
(Retsch, Inc., Newtown, Pennsylvania) (catalog no.
85120). Ribonucleic acid (RNA) extraction of total
RNA was done with Trizol reagent in combination
with the Micro-to-Midi Total RNA Purification System
(Invitrogen, Carlsbad, California) (catalog no.
12183-018). Concentration and integrity of total RNA
were measured with the Agilent 2100 Bioanalyzer
(Agilent Technologies, Inc., Santa Clara, California).
All RNA samples exhibited intact 28S and 18S ribo-
somal RNA on denaturing agarose gel electrophoresis,
and the 260-/280-nm absorbance readings fell within
the acceptable range of 1.8 to 2.1. Subsequently, RNA
was pre-processed with the Ovation Biotin RNA
Amplification and Labeling System (NuGEN Technol-
ogies, Inc., San Carlos, California) (catalog no.
2300-12).

MICROARRAY ANALYSIS. Without prior amplifica-
tion, samples were hybridized to the Human Genome
U133 Plus 2.0 Array from Affymetrix (Santa Clara,
California). Average background and noise of all chips
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registered within acceptable ranges, and hybridiza-
tion efficiencies were similar for all samples.
STATISTICAL ANALYSIS. Robust multiarray average
was used for normalization of microarray data and
significance analysis of microarrays (SAM) for
identification of differentially expressed genes in
patients taking beta-blocking agents (n ¼ 30) versus
alternative standard therapy (n ¼ 13). SAM iden-
tifies statistically significant genes by assimilating a
set of gene-specific t tests. This highly robust sta-
tistical algorithm provides a q value of statistical
significance for each individual gene within a
phenotype. The resulting set of genes was further
processed with Meta Core pathway analysis from
GeneGo Inc. (bioinformatics software, St. Joseph,
Michigan). A major strength of GeneGo Metacore is
to evaluate very comprehensively if genes are con-
nected to a certain pathway through ligands or re-
ceptors within a signaling cascade, whereas gene
ontology (GO) biological process terms will usually
only list a direct involvement of a gene in a mo-
lecular process.

Organ- and species-specific pre-filtering was per-
formed before network analysis to identify pathways
that are truly inter-related within the human heart.
To obtain a false discovery rate of a pathway, the
p value was adjusted for multiple comparisons. For
that purpose, the software applies a false discovery
rate adjustment. This adjustment of the p value of the
enrichment of a pathway takes into account the
number of tests that are being performed during
the enrichment analysis. In addition, a z score was
calculated for each network, which reflects the satu-
ration with genes from the experiment. A high z score
indicates a network that contains a large amount of
genes from the experiment, therefore suggesting that
this particular network was significantly affected.
The g score takes into account how many canonical
pathways were involved to create the network by
modifying the z score on the basis of the number of
linear canonical pathway fragments contained within
the network. A network with a high g score is satu-
rated with objects from the investigated gene list
and contains a large number of canonical pathway
fragments.

To develop a marker that predicts responsiveness
to beta-blockers, we applied Misclassification Penal-
ized Posteriors (MiPP) to compare patients who have
been on beta-blocking agents and had good prognosis
(event-free survival for at least 5 years) versus pa-
tients who had poor prognosis.

Poor prognosis was defined as having an event,
such as death, cardiac transplant, or left ventricular
assist device placement within 2 years after diagnosis
with HF. The MiPP package is an application in the R
environment, which employs the libraries MASS for
algorithms such as linear discriminant analysis and
e1071 for support vector machine (21,22). This soft-
ware sequentially adds genes to a classification model
on the basis of the Misclassification-Penalized Poste-
riors principle, which takes into account the likeli-
hood that a sample belongs to a given class by using
posterior probability of correct classification. Linear
discriminant analysis uses a linear combination of
features, which best separates 2 or more classes
(21,22).

In support vector machine algorithms for classifi-
cation, the input data is plotted as 2 vectors in an
n-dimensional space, and a virtual hyperplane is
created that best separates the 2 phenotypes. This
hyperplane is then used to classify samples with
unknown phenotypes.

We developed a molecular signature in two-thirds
of the data using 5-fold cross validation and per-
formed additional validation in an independent
sample that contained the other one-third of the data.

To evaluate if distinct models are generated from
additional random splits, we performed 50 random
divisions to develop individual classification models,
which were then validated in 10 independent splits.
Furthermore, we calculated mean sMiPP for every
given gene model, an additional parameter for per-
formance, which approximates 1 with increasing
accuracy.

RESULTS

Table 1 illustrates baseline variables of the initial set
of samples in our first analysis including patients with
new-onset HF treated with beta-blocking agents
versus alternative standard therapy. There were no
significant differences between the 2 groups (evalu-
ated by Student t test and Fisher exact test). Impor-
tantly, the cohort was balanced between male and
female subjects (70% vs. 62%). Hemodynamic pa-
rameters, including EF, left ventricular internal
dimension-diastole, pulmonary artery pressure, and
pulmonary capillary wedge pressure, were similar
between groups. In both patient populations, a pre-
dominance of angiotensin-converting enzyme inhib-
itor and diuretic agent use was observed. A predictive
molecular signature of therapy responsiveness was
then developed in a train set, which contained two-
thirds of the cohort treated with beta-blocking
agents. One third of data was used as independent
test set, in which accuracy of the biomarker was
evaluated. Table 2 depicts baseline conditions of
the train set (two-thirds of the cohort taking



TABLE 1 Baseline Conditions in Patients With New-Onset Heart

Failure on Beta-Blocking Agents Versus Alternative Therapy

Beta-Blocking
Agent

(n ¼ 30)

No Beta-Blocking
Agent
(n ¼ 13) p Value

Age, yrs 50 � 5 45 � 3 0.41

Male 21 (70) 8 (62) 0.73

LVEF, % 21 � 2 29 � 5 0.06

LVIDD, cm 6.3 � 0.3 5.7 � 0.6 0.31

PAP, mm Hg

Systolic 38 � 3 37 � 4 0.74

Diastolic 18 � 2 17 � 2 0.62

PCWP 16 � 2 12 � 2 0.12

Medications

ACE inhibitor 22 (73) 7 (54) 0.29

Aldosterone
antagonist

8 (27) 0 0.08

Diuretic agent 21 (71) 11 (85) 0.45

IV inotropic therapy 0 0 1.00

Values are mean � SD or n (%).

ACE ¼ angiotensin-converting enzyme; IV ¼ intravenous; LVEF¼ left ventricular
ejection fraction; LVIDD ¼ left ventricular internal dimension-diastole; PAP ¼
pulmonary artery pressure; PCWP ¼ pulmonary capillary wedge pressure.
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beta-blocking agents). The prognostic outcome in
male versus female patients was comparable. Hemo-
dynamic measurements of EF, left ventricular inter-
nal dimension-diastole, pulmonary artery pressure,
and pulmonary capillary wedge pressure were
again similar between both groups, as was medication
use.

OVEREXPRESSED GENES AND PATHWAYS IN PATIENTS

RECEIVING BETA-BLOCKER THERAPY WITH EITHER

METOPROLOL OR CARVEDILOL. First, we analyzed
EMBs from patients treated with beta-blockers
TABLE 2 Baseline Conditions of the Train Set Containing

Two-Thirds of the Population With New-Onset Heart Failure on

Beta-Blocking Agents Who Had Good Versus Poor Prognosis

Good Prognosis
(n ¼ 11)

Poor Prognosis
(n ¼ 8)

Age, yrs 42 � 2 42 � 4

Male 7 (64) 5 (63)

LVEF, % 20 � 2 23 � 3

LVIDD, cm 6.2 � 0.3 5.8 � 0.6

PAP, mm Hg

Systolic 35 � 4 40 � 4

Diastolic 15 � 2 19 � 3

PCWP 14 � 2 16 � 3

Medications

ACE inhibitor 9 (82) 5 (63)

Aldosterone antagonist 3 (27) 3 (38)

Diuretic agent 0 1 (13)

IV inotropic therapy 0 0

Values are mean � SD or n (%).

Abbreviations as in Table 1.
(n ¼ 30) versus alternative standard therapy (n ¼ 13)
to identify gene patterns that were overexpressed in
patients who received beta-blocker therapy with
metoprolol or carvedilol. Using SAM, we identified a
total of 94 transcripts that were overexpressed
(q value <5%, fold change [FC] >1.2) (Figure 2,
Table 3) in patients treated with beta-blocking agents
versus alternative therapy. The positive FC in pa-
tients on beta-blocking agents ranged from 1.14 to 2.
92 and averaged 1.47. The q value for this analysis
ranged from 0% to 4.1% and averaged 2.9%. Inter-
estingly, no downregulated genes were detected.
A heat map created by an unsupervised clustering
approach illustrates a distinct set of genes between
the 2 phenotypes (Figure 3). Overexpressed genes
were further evaluated with GeneGo Metacore
pathway analysis. We discovered 15 developmental
and metabolic pathways (Table 4) that were activated
in patients who had been treated with beta-blocking
agents. Those pathways included metabolic pro-
cesses involving phosphate, developmental pro-
cesses, and regulation of apoptosis. The percentage
values listed for each GO process in Table 4 represent
the percentage of objects on that specific particular
subnetwork that have been linked to that GO process.
Similarly, the p value listed next to the percentage is
calculated on the basis of the total number of objects
on that particular subnetwork, the number of those
objects on that subnetwork associated with the GO
process, and of the objects associated with that GO
process in the database. It uses the same calculation
method as the other p values throughout MetaCore
(hypergeometric distribution).

MOLECULAR SIGNATURE TO PREDICT RESPONSIVENESS

TO BETA-BLOCKING AGENTS IN PATIENTS WITH

NEW-ONSET HF. MiPP classification software was used
to identify a transcriptomic biomarker containing
the minimal set of genes necessary to distinguish
patients responsive to beta-blockers from nonre-
sponsive patients (22). A set of 4 transcripts was
identified, which predicted therapy responsiveness
with very high accuracy (mean error: 0.04, mean
sMiPP: 0.89). These included transcripts of the
genes ARHGEF1, ALP1, ZNF404, and the transcript
239497_at (Affymetrix ID, not yet characterized). The
6 most robust molecular signatures predictive for
response to beta-blockers are illustrated in Table 5.
Among those 6 signatures, in particular, 2 were
highly accurate, with a mean error of 0.04 and sMiPP
ranging from 0.89 to 0.91. Detailed information on
biological and molecular function of individual genes
within those 2 molecular signatures is illustrated in
Tables 6 and 7.



FIGURE 2 Significance Analysis of Microarrays Plot of Differentially Expressed Genes in Patients on Beta-Blocking Agents Versus

Alternative Therapy in IDCM

There were 94 genes differentially expressed in patients treated with beta-blocking agents versus alternative therapy (q value <5%, fold

change >1.2). No downregulated genes were detected in patients treated with beta-blocking agents. The 94 overexpressed genes are depicted

in red. IDCM ¼ idiopathic dilated cardiomyopathy.
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Among the genes of therapy responsiveness was
Rho Guanine Nucleotide Exchange Factor, which is a
key player in antiapoptotic function and in a meta-
bolic pathway that regulates contraction and actin-
myosin interaction. The pathway is illustrated in
Figure 4.

EVALUATION OF RECENTLY SUGGESTED CANDIDATE

GENES AFFECTED BY BETA-BLOCKING AGENTS,

WHICH MAY BE CAUSATIVE FOR IMPROVED HEART

FUNCTION. Finally we tested a set of genes that
had been recently related to improvement of EF
during beta-blocker therapy (10). Lowes et al. (10)
found MYH6 and SERCA2/ATP2A2ase to be over-
expressed and MYH7 to be down-regulated in
patients with an improvement of EF by at least 5%
while on beta-blocking agents. When we evaluated
those candidate genes in our population treated
with beta-blocking agents, we similarly found
overexpression of MYH6 (FC 1.3, q value ¼ 0%) and
SERCA2/ATPA2 (FC 1.4, q value ¼ 0%) in patients on
beta-blockers and good prognostic outcome versus
poor outcome. However, there was also slight over-
expression of MYH7 (FC 1.2, q value ¼ 0%) in patients
with good prognostic outcome.
DISCUSSION

The major new finding of this study is the discovery
of a molecular signature that identified patients with
favorable outcomes receiving beta-adrenergic antag-
onist therapy for new-onset HF. We hypothesize that
this signature can be used as a clinical biomarker.
Given the mentioned limitations of this study, further
prospective trials are necessary to test this hypothe-
sis, in particular if this molecular signature exists in
patients prior to initiation of beta-blocker therapy.
We have previously employed transcriptomic-based
biomarkers (TBBs) to establish diagnosis and prog-
nosis in patients with new-onset HF (15,16,18). The
present findings show the utility of this approach for
pharmacogenomic personalized medicine, and as
such, support the use of TBBs for advancing precision
medicine.

The success of beta-blocking therapy in the treat-
ment of HF has been attributed to molecular alter-
ations of pathways in the heart, including reverse
cardiac remodeling, as well as enhancement of con-
tractile and calcium-channel proteins. Lowes et al.
(10) discovered that treatment with beta-blockers



TABLE 3 Differentially Expressed Genes in Patients Treated With Beta-Blockers Versus Alternative Standard Therapy for Heart Failure

Probe Set ID Gene Symbol Gene Title Go Biological Process Term

204737_s_at MYH7 MYH7, myosin, heavy chain 7 Cardiac muscle, beta

216265_x_at MYH7 MYH7, myosin, heavy chain 7 Cardiac muscle, beta

214468_at MYH6 MYH6, myosin, heavy chain 6 Cardiac muscle, alpha

209186_at SERCA/ATP2A2ase ATP2A2, ATPase Caþþ transporting, cardiac muscle, slow
twitch 2

212361_s_at SERCA/ATP2A2ase ATP2A2, ATPase Caþþ transporting, cardiac muscle, slow
twitch 2

212362_at SERCA/ATP2A2ase ATP2A2, ATPase Caþþ transporting, cardiac muscle, slow
twitch 2

239996_x_at SERCA/ATP2A2ase ATP2A2, ATPase Caþþ transporting, cardiac muscle, slow
twitch 2

1553992_s_at NBR2 neighbor of BRCA1 gene 2
(nonprotein coding)

GTP binding

1554868_s_at PCNP PEST proteolytic signal containing nuclear
protein

Cell cycle, protein ubiquitination

1556414_at C21orf71 Chromosome 21 open reading frame 71 NA

1557383_a_at NA NA NA

1560109_s_at NA NA NA

1563498_s_at SLC25A45 Solute carrier family 25, member 45 Transport, transmembrane transport

200821_at LAMP2 Lysosomal-associated membrane protein 2 NA

201458_s_at BUB3 Budding uninhibited by benzimidazoles 3
homolog (yeast)

Mitotic sister chromatid segregation, cell
cycle, chromosome segregation

201534_s_at UBL3 Ubiquitin-like 3 NA

201979_s_at PPP5C Protein phosphatase 5, catalytic subunit Protein amino acid dephosphorylation,
mitosis, response to morphine

202125_s_at TRAK2 Trafficking protein, kinesin binding 2 Regulation of transcription from RNA
polymerase II promoter

202932_at YES1 v-yes-1 Yamaguchi sarcoma viral oncogene
homolog 1

Protein amino acid phosphorylation,
glucose transport, regulation of
vascular permeability

202933_s_at YES1 v-yes-1 Yamaguchi sarcoma viral oncogene
homolog 1

Protein amino acid phosphorylation,
glucose transport, regulation of
vascular permeability

203212_s_at MTMR2 Myotubularin-related protein 2 Protein amino acid dephosphorylation,
protein tetramerization

203387_s_at TBC1D4 TBC1 domain family, member 4 Regulation of Rab GTPase activity

203689_s_at FMR1 Fragile X mental retardation 1 Negative regulation of translational
initiation

204334_at KLF7 Kruppel-like factor 7 (ubiquitous) Regulation of transcription from RNA
polymerase II promoter, axon
guidance

205857_at SLC18A2 Solute carrier family 18 (vesicular
monoamine), member 2

Response to amphetamine, response to
toxin, post-embryonic development

209337_at PSIP1 PC4 and SFRS1 interacting protein 1 Interspecies interaction between
organisms, regulation of transcription

210257_x_at CUL4B Cullin 4B DNA repair, cell cycle

211552_s_at ALDH4A1 Aldehyde dehydrogenase 4 family,
member A1

Proline metabolic process, proline
biosynthetic process, oxidation
reduction

212008_at UBXN4 UBX domain protein 4 Response to unfolded protein

212071_s_at SPTBN1 Spectrin, beta, nonerythrocytic 1 Common-partner SMAD protein
phosphorylation, actin filament
capping

212214_at OPA1 Optic atrophy 1 (autosomal dominant) Inner mitochondrial membrane
organization transport of
mitochondrion, positive regulation of
antiapoptosis

212598_at WDFY3 WD repeat and FYVE domain containing 3 NA

Continued on the next page
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TABLE 3 Continued

Probe Set ID Gene Symbol Gene Title Go Biological Process Term

212688_at PIK3CB Phosphoinositide-3-kinase, catalytic, beta
polypeptide

Activation of MAPK activity, cell-matrix
adhesion, calcium ion homeostasis

212764_at ZEB1 Zinc finger E-box binding homeobox 1 Immune response, cell proliferation,
regulation of mesenchymal cell
proliferation, regulation of
transforming growth factor beta
receptor signaling pathway, negative
regulation of epithelial cell
differentiation

213169_at SEMA5A Sema domain, seven thrombospondin
repeats (type 1 and type 1-like),
transmembrane domain and short
cytoplasmic domain, (semaphorin) 5A

Patterning of blood vessels, cell
adhesion, cell-cell signaling,
development

213251_at SMARCA5 SWI/SNF-related, matrix-associated, actin-
dependent regulator of chromatin,
subfamily a, member 5

Chromatin silencing at rDNA, regulation
of transcription from RNA
polymerase II promoter, embryonic
development

214666_x_at IREB2 Iron-responsive element binding protein 2 Cellular iron ion homeostasis, post-
embryonic development

214757_at PMS2L2 Post-meiotic segregation increased 2-like 2
pseudogene

Mismatch repair

218082_s_at UBP1 Upstream binding protein 1 (LBP-1a) Angiogenesis, negative regulation of
transcription

218197_s_at OXR1 Oxidation resistance 1 Response to oxidative stress

218252_at CKAP2 Cytoskeleton-associated protein 2 Apoptosis, cell cycle

218528_s_at RNF38 Ring finger protein 38 NA

218658_s_at ACTR8 ARP8 actin-related protein 8 homolog
(yeast)

NA

219218_at BAHCC1 BAH domain and coiled-coil containing 1 NA

220494_s_at NA NA NA

220777_at KIF13A Kinesin family member 13A Transport, microtubule-based movement

221273_s_at RNF208 Ring finger protein 208 NA

221428_s_at TBL1XR1 Transducin (beta)-like 1 X-linked receptor 1 Regulation of transcription,
DNA-dependent

221472_at SERINC3 Serine incorporator 3 Induction of apoptosis

221768_at SFPQ Splicing factor proline/glutamine-rich
(polypyrimidine tract binding protein
associated)

Alternative nuclear mRNA splicing, via
spliceosome, DNA repair, response to
DNA damage stimulus

222209_s_at TMEM135 transmembrane protein 135 Protein folding, response to unfolded
protein

222572_at PDP1 Pyruvate dehydrogenase phosphatase
catalytic subunit 1

Protein amino acid dephosphorylation

223282_at TSHZ1 Teashirt zinc finger homeobox 1 Transcription, regulation of transcription,
DNA-dependent, multicellular
organismal development

224047_at NA NA NA

224471_s_at BTRC Beta-transducin repeat containing Ubiquitin-dependent protein catabolic
process, signal transduction,
regulation of I-kappaB kinase/NF-
kappaB cascade, interspecies
interaction between organisms,
positive regulation of ubiquitin-
protein ligase activity involved in
mitotic cell cycle

224639_at SPPL3 Signal peptide peptidase 3 Regulation of neuron apoptosis

224897_at WDR26 WD repeat domain 26 NA

224945_at BTBD7 BTB (POZ) domain containing 7 NA

224994_at CAMK2D Calcium/calmodulin-dependent protein
kinase II delta

G1/S transition of mitotic cell cycle,
regulation of cell growth, response to
hypoxia, cardiac muscle contraction

225026_at CHD6 Chromodomain helicase DNA binding
protein 6

Chromatin assembly or disassembly,
regulation of transcription, DNA-
dependent, nervous system
development

Continued on the next page
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TABLE 3 Continued

Probe Set ID Gene Symbol Gene Title Go Biological Process Term

225328_at NA NA NA

225538_at ZCCHC9 Zinc finger, CCHC domain containing 9 NA

225603_s_at C8orf83 Chromosome 8 open reading frame 83 NA

225785_at REEP3 Receptor accessory protein 3 NA

225912_at TP53INP1 Tumor protein p53 inducible nuclear
protein 1

Induction of apoptosis, response to
stress, cell cycle arrest

226004_at CABLES2 Cdk5 and Abl enzyme substrate 2 Cell division, regulation of cell cycle

226134_s_at NA NA NA

226558_at LOC389834 Ankyrin repeat domain 57 pseudogene NA

226771_at ATP8B2 ATPase, class I, type 8B, member 2 ATP biosynthetic process

226797_at MBTD1 Mbt domain containing 1 Transcription, chromatin modification

226799_at FGD6 FYVE, RhoGEF and PH domain containing 6 Cytoskeleton organization, regulation of
cell shape, actin cytoskeleton
organization

226806_s_at NFIA Nuclear factor I/A Transcription

226886_at GFPT1 Glutamine–fructose-6-phosphate
transaminase 1

Carbohydrate metabolic process

227434_at WBSCR17 Williams-Beuren syndrome chromosome
region 17

NA

227506_at SLC16A9 Solute carrier family 16, member 9
(monocarboxylic acid transporter 9)

Transmembrane transport

227948_at FGD4 FYVE, RhoGEF and PH domain containing 4 Apoptosis, cytoskeleton organization

227988_s_at VPS13A Vacuolar protein sorting 13 homolog A
(S. cerevisiae)

Transport, protein localization

227990_at SLU7 SLU7 splicing factor homolog
(S. cerevisiae)

RNA splicing, mRNA processing

228045_at NA NA NA

228151_at NA NA NA

228242_at N4BP2 NEDD4 binding protein 2 NA

228853_at STYX Serine/threonine/tyrosine interacting
protein

Protein amino acid dephosphorylation

228948_at EPHA4 EPH receptor A4 Protein amino acid phosphorylation,
signal transduction, transmembrane
receptor protein tyrosine kinase
signaling pathway

229376_at PROX1 Prospero homeobox 1 Cell fate determination, heart
development, positive regulation of
cell proliferation, negative regulation
of viral genome replication, positive
regulation of cell cycle, ventricular
cardiac myofibril development,
positive regulation of sarcomere
organization, ventricular septum
morphogenesis, positive regulation
of heart growth

230831_at FRMD5 FERM domain containing 5 NA

230894_s_at NA NA NA

232429_at NA NA NA

232871_at NA NA NA

232892_at C20orf166 Chromosome 20 open reading frame 166 NA

232909_s_at BPTF Bromodomain PHD finger transcription
factor

Positive regulation of gene-specific
transcription

235072_s_at NA NA NA

235855_at COX15 COX15 homolog, cytochrome c oxidase
assembly protein (yeast)

Mitochondrial electron transport,
cytochrome c to oxygen

236241_at MED31 Mediator complex subunit 31 Transcription, regulation of transcription

236379_at NA NA NA

236384_at NA NA NA

238174_at NA NA NA

238768_at C2orf68 Chromosome 2 open reading frame 68 NA

240044_x_at TNRC6B Trinucleotide repeat containing 6B Regulation of translation

Continued on the next page
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TABLE 3 Continued

Probe Set ID Gene Symbol Gene Title Go Biological Process Term

241734_at SRFBP1 Serum response factor binding protein 1 Regulation of transcription

243630_at NDUFB1 NADH dehydrogenase (ubiquinone) 1 beta
subcomplex, 1, 7kDa

Mitochondrial electron transport, NADH
to ubiquinone

37577_at ARHGAP19 Rho GTPase activating protein 19 Signal transduction

DNA ¼ deoxyribonucleic acid; MAPK ¼ mitogen-activated protein kinase; mRNA ¼ messenger ribonucleic acid; NADH ¼ nicotinamide adenine dinucleotide; rDNA ¼ ribosomal
deoxyribonucleic acid; RNA ¼ ribonucleic acid.
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leads to activation of a “fetal” gene program encoding
SERCA and the a- and b-MYH. The goal of the present
study was to use microarray analysis as a compre-
hensive approach to discover molecular pathways
that are affected by beta-blocking agents and to
identify transcriptomic markers of therapy
responsiveness.

Among 94 overexpressed transcripts in patients
taking beta-blocking agents, several genes were
involved in apoptosis, such as cytoskeleton associated
protein (CKAP)-2, serine incorporator (SERINC)-3,
tumor protein p53 inducible nuclear protein
(TP53INP)-1 and FYVE, RhoGEF and PH domain con-
taining (FGD)-4. The effect on programmed cell death
FIGURE 3 Heat Map of Samples From All Patients With IDCM

When we applied this unsupervised clustering algorithm, samples from p

(highlighted in a dotted square) that was very distinct from patients wh

sample, and each row corresponds to a gene. Down-regulated genes ar
may lead to reduction of necrosis and inflammation in
the myocardium and therefore contribute to the
observed reduction in adverse remodeling in this drug
category. Furthermore, those patients overexpressed
oxidation resistance (OXR)-1, a response gene to
oxidative stress, which may provide additional pro-
tection from tissue damage. Prospero homeobox
(PROX)-1, also up-regulated during beta-blocker
therapy, is a gene involved in cell fate determina-
tion, proliferation, and heart development, including
ventricular cardiac myofibril development and posi-
tive sarcomere organization. Similar to PROX-1, other
genes involved in heart development have been
found to be overexpressed during therapy with
atients on beta-blocking agents were grouped in a classification tree

o received alternative therapy. Each column represents a patient

e depicted in red, whereas up-regulated genes are labeled in blue.



TABLE 4 Overexpressed Pathways in Patients Treated With Beta-Blocking Agents Versus Alternative Therapy

Network GO Processes p Value z Score g Score

PROX1, SMARCA5, PSF, LBP-1B, PCNP Cellular metabolic process
(85.7%; 1.139e-06)

1.08E-32 59.84 59.84

FALZ, TBCD4, NFIA, IRP2, LAMP2 Cellular iron ion homeostasis
(8.9%; 4.641e-06)

1.02E-24 46.82 46.82

Ephrin-A receptor 4, PP5, Fodrin
(spectrin), YES, FMR1

Developmental process
(66.0%; 5.674e-09),
phosphate metabolic process
(34.0%; 3.201e-08),
phosphorus metabolic process
(34.0%; 3.201e-08)

3.67E-22 42.46 42.46

SMARCA5, PI3K cat class IA (p110-beta),
Cul4/DDB/ROC1 E3 ligase, BUB3, KLF7

Chromatin assembly or
disassembly (14.0%;
2.435e-06)

1.01E-17 35.8 35.8

VMAT2, KLF7, PSF, Cul4/DDB/ROC1 E3
ligase, CaMK II

Regulation of growth (31.0%;
2.324e-11), developmental
process (76.2%; 2.531e-11)
regulation of cell growth
(26.2%; 7.286e-11)

1.84E-17 34.7 34.7

TBLR1 (DC42), FMR1, LBP-1B, beta-TrCP,
P53DINP1a

Positive regulation of apoptosis
(18.6%; 6.013e-05)

3.34E-15 30.81 30.81

Ephrin-A receptor 4, KLF7, FMR1, Frabin,
Fodrin (spectrin)

Cellular developmental process
(63.8%; 1.245e-15), neuron
differentiation (36.2%;
5.415e-13)

5.89E-09 19.57 29.57

LBP-1B, LEDGF/p75, Y549 (GRIF1),
TRAP/SMCC complex, LEDGF/p52

DNA metabolic process (23.7%;
3.963e-06), cellular
biosynthetic process (57.9%;
6.829e-06)

2.36E-13 28.41 28.41

PROX1, PP5, PSF, LBP-1B, CaMK II delta Negative regulation of cellular
process (52.0%; 9.319e-12)

5.17E-13 26.93 26.93

YES, Cul1/Rbx1 E3 ligase, beta-TrCP,
UBXD2, CKAP2

Interspecies interaction between
organisms (22.9%;
6.687e-09), T cell activation
(16.7%; 4.271e-08)

6.75E-11 23.04 23.04

Cul1/Rbx1 E3 ligase, TBLR1 (DC42), TCF8,
beta-TrCP, Cullin 4B

Negative regulation of biological
process (62.0%; 1.065e-15),
organ development (62.0%;
1.615e-15)

7.28E-09 19.16 19.16

YES, CaMK II, Ephrin-A receptor 4, PI3K cat
class IA (p110-beta), SRFBP1

Protein amino acid
phosphorylation (45.8%;
1.541e-16)

7.28E-09 19.16 19.16

CaMK II delta, PP5, CaMK II, PSF, SP1 Response to stimulus (70.2%;
1.014e-10)

5.80E-07 15.44 15.44

VMAT2, H(’þ) ¼ H(’þ), H(’þ), Serotonin þ
H(’þ) ¼ Serotonin þ H(’þ), H(’þ) cytosol

Synaptic vesicle amine transport
(100.0%; 6.095e-05),
monoamine transport
(100.0%; 1.097e-03),
response to amphetamine
(100.0%; 1.463e-03)

6.63E-03 12.19 12.19

AL4A1, CaMK II, p53, FAK1, SHP-2 Positive regulation of cellular
process (71.4%; 3.026e-15),

1.25E-03 8.57 8.57

Abbreviations as in Table 3.
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beta-blocking agents, as mentioned in the previous
text (10). In addition, upstream binding protein (UBP)-
1, a gene involved in angiogenesis, was overexpressed
in patients taking beta-blocking agents. Surprisingly,
no down-regulated genes were identified. This is in
disagreement with prior studies (10–12) and may be
due to small sample size, which can lead to identifi-
cation of only the very most significant gene expres-
sion changes with the robust statistical algorithm
that was used in this study. Furthermore, prior
investigated cohorts are slightly different from ours.
Lowes et al. (10) as well as Yasumura et al. (11)
investigated samples from patients with chronic HF,
whereas our inclusion criteria was new-onset HF.
Furthermore, Hamdani et al. (12) investigated biopsies
of the left heart, whereas our study analyzed gene
expression in the right heart. Asp et al. (23) had pre-
viously shown that the gene expression profile of the
right atrium differs by about 2% of the genes covered
on a microarray from the transcriptome of the left



TABLE 5 Results From Misclassified Penalized Posteriors Classification Illustrating the Most Robust 6 Sets of Genes to Classify Patients

Who Were on Beta-Blocker Therapy and Had Good Prognostic Outcome

Split G1 G2 G3 G4 G5 G6 G7 mean ER mean sMiPP

31 ALP1 ARFGEF1 ZNF404 239497_at NA NA NA 0.04 0.89

46 C8orf47 1558458_at PSEN2 TNFRSF14 ITGA2 NA NA 0.04 0.91

44 SFRS16 MCF2 NA NA NA NA NA 0.07 0.80

7 SEMA3B 238953_at PDE1A NA NA NA NA 0.08 0.82

11 SMOX GP6PC3 ACSS1 GXYLT1 NA NA NA 0.08 0.79

41 231275_at 1565830_at 1564240_at KCTD5 NA NA NA 0.08 0.82

ER ¼ error; MiPP ¼ Misclassified Penalized Posteriors.
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ventricle. Animal studies showed similar findings for
right versus left ventricle (24–26).

When we performed MetaCore pathway analysis,
we identified 15 molecular pathways that were acti-
vated during treatment with metoprolol or carvedilol.
Pathways that were overexpressed with highest sig-
nificance values were cellular metabolic processes
involving phosphate metabolism, cellular iron ho-
meostasis, and developmental processes.

We then went on to investigate if transcriptomic
biomarkers derived from heart biopsies can be used to
predict therapeutic responsiveness in patients with
HF. After we applied MiPP, 2 very robust tran-
scriptomic markers were identified. The first
biomarker contained 4 transcripts, including Rho
guanine nucleotide exchange factor (GEF)-1, a protein
that plays a key role in actin-myosin interaction
during contraction. It could be speculated that
through the effect on actin-myosin coupling, beta-
blocking agents improved contractile efficiency in
those patients. Other biomarkers were alkaline
phosphatase (ALPI), a gene involved in magnesium
binding and phosphorylation; zinc finger protein
(ZNF)-404; and the transcript 239497_at. The second
biomarker consisted of 5 transcripts, including
chromosome 8 open reading frame 47 (C8orf47),
TABLE 6 Detailed Information About Genes Identified in Split 31

Probe Set ID Gene Symbol Gene Title Go B

203055_s_at ARHGEF1 Rho guanine nucleotide
exchange factor (GEF) 1

Rho pro
cell

211618_s_at ALPI Alkaline phosphatase,
intestinal

Metabo
phos

239043_at ZNF404 Zinc finger protein 404 Transcri
tran

239497_at NA NA

Abbreviations as in Table 3.
presenilin (PSEN)-2, tumor necrosis factor receptor
superfamily, member (TNFRSF)-14, integrin alpha
(ITGA)-2, and LOC 401320. Importantly, TNFRSF-14
has recently been shown by our group to be overex-
pressed in patients with good prognostic outcome
(15). Therefore, its overexpression in patients on beta-
blocking agents with good prognostic outcome may
not solely be related to better response to therapy,
but may confirm TNFRSF-14 as a generalizable prog-
nostic biomarker independent of therapy.

STUDY LIMITATIONS. A limitation of this study is
that in order to develop a marker of therapy respon-
siveness, it was necessary to divide patients on
beta-blocking agents into groups of poor versus good
outcomes, which ultimately led to small sample size.
Our samples were collected at 1 of the most active
heart biopsy centers in the United States over a
course of 10 years. Despite having collected a large
biorepository of 350 EMB samples over a decade, only
18 patients of whom samples were taken had poor
prognostic outcome. Of these 18 patients, only 13
were treated with beta-blockers, whereas 5 had con-
traindications. Therefore, significance values could
be overestimated in this subgroup analysis. For the
same reasons, the biomarker could not be validated in
an additional cohort. Despite this limitation, this is
iological Process Term Go Molecular Function Term

tein signal transduction,
proliferation

Rho guanyl-nucleotide exchange
factor activity, GTPase activator
activity, protein binding

lic process,
phorylation

Magnesium ion binding, catalytic activity,
alkaline phosphatase activity,
protein binding, zinc ion binding

ption, regulation of
scription, DNA-dependent

Nucleic acid binding, DNA binding,
zinc ion binding, metal ion binding

NA NA



FIGURE 4 Signaling Pathway of Rho Guanine Nucleotide Exchange Factor

Important functions of this pathway involve antiapoptotic actions and regulation of actin-myosin interaction.

TABLE 7 Detailed Information About Genes Identified in Split 46

Probe Set ID Gene Symbol Gene Title Go Biological Process Term Go Molecular Function Term Go Cellular Component Term

1552389_at C8orf47 Chromosome 8 open
reading frame 47

NA NA NA

1558458_at LOC401320 Homo sapiens, clone
IMAGE: 4860560,
mRNA

NA NA NA

204262_s_at PSEN2 Presenilin 2 (Alzheimer
disease 4)

Cell death, apoptotic
program, protein
processing, amyloid
precursor protein
catabolic process, positive
regulation of catalytic
activity

Protein binding, peptidase
activity, hydrolase activity

Golgi membrane, kinetochore,
integral to nuclear
inner membrane,
endoplasmic reticulum

209354_at TNFRSF14 Tumor necrosis factor
receptor superfamily,
member 14 (herpesvirus
entry mediator)

Apoptosis, immune response,
signal transduction, cell
surface receptor linked
signal transduction

Receptor activity, transmembrane
receptor activity, tumor necrosis
factor receptor activity, protein
binding

Cytoplasm, integral to plasma
membrane

227314_at ITGA2 Integrin, alpha 2
(CD49B, alpha 2 subunit
of VLA-2 receptor)

Cell adhesion, cell-matrix
adhesion, integrin-mediated
signaling pathway,
organ morphogenesis

Magnesium ion binding,
receptor activity, calcium
ion binding, collagen
binding

Plasma membrane, integrin
complex,
integrin complex, integral
to membrane

Abbreviations as in Table 3.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: In the

era of emerging precision medicine, it is essential to

develop techniques that can help the physician to not

only prescribe the correct medications for a given

patient, but also to monitor and predict patient

responsiveness. This is particularly important in dis-

orders such as new onset heart failure due to cardio-

myopathy, where there are a growing number of

different classes of drugs from which to choose. One

of the most successful classes of drugs employed for

heart failure are the beta-adrenergic antagonists. In

this paper, our group employed a comprehensive

transcriptomic-based approach to predict a favorable

clinical response to the use of the beta-adrenergic

blockers. Transcriptomics employs a comprehensive

micro-array that can measure the expression level of

known transcripts. With this approach and a dataset of

known outcomes in a group of patients with new-

onset heart failure, we determined a gene signature

that predicted a favorable outcome in patients taking

beta-blocking agents. Using various bioinformatic

classification algorithms, we developed the most

parsimonious signature comprising the expression

levels of 4 genes. These genes are overexpressed in

patients with a good prognosis relative to patients

who had a poor prognosis, defined as death, require-

ment for left ventricular assist device, or heart

transplantation within 2 years. Thus, this transcrip-

tomic-based biomarker can be potentially used by

practitioners caring for these patients to help monitor

patient’s response to drugs. This approach is similar to

other types of precision medicine approaches that

have been developed to predict clinical trajectory in-

dependent of drug treatment or to enhance the

diagnostic accuracy in myocarditis.

TRANSLATIONAL OUTLOOK: The transcriptomic-

based biomarker described in this study can be

potentially used by practitioners caring for these pa-

tients to help monitor patient’s response to drugs.

This approach is similar to other types of precision

medicine approaches that have been developed to

predict clinical trajectory independent of drug treat-

ment or to enhance the diagnostic accuracy in

myocarditis.
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the most comprehensive study to date investigating
the effects of beta-blocking agents on the gene
expression level and the first, to the best of our
knowledge, that has identified a transcriptomic
biomarker of therapy responsiveness in this drug
class. Mechanistic animal studies will be necessary in
the future to evaluate which of the changes during
therapy were causative.

Also it warrants mention that it is difficult to
establish a clear cut-off for each individual gene to
determine which FC in gene expression has signifi-
cant effect on its function downstream, as some
genes are regulated more tightly than others. This
issue has been previously discussed in the published
data (15,16,27). Because part of the purpose of this
study was gene discovery, we chose an inclusive
approach with an FC cutoff of 1.2 and q value <5% to
define significance.

Finally, it should be mentioned that some of the
molecular differences that were observed in patients
treated with beta-blocking agents versus alternative
therapy may reflect changes secondary to comorbid-
ities that prevented patients from being on beta-
blockers. For example, chronic obstructive pulmo-
nary disease, a comorbidity that limits the use of
beta-blocking agents in patients with HF, may have
led to right ventricular strain and consequently
changes on the molecular level.

CONCLUSIONS

We are presenting results of the first comprehensive
transcriptomic analysis that investigates the molec-
ular effects of beta-blocking agents in patients with
new-onset HF. Our data suggest a selection of genes
that may be involved in better outcomes of patients
with HF who are treated with beta-blockers. These
findings have implications for the use of TBBs in
pharmacogenomic drug development and precision
medicine, which is currently a major unmet need in
cardiovascular medicine.
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