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 On Dihedral Configurations and their Coxeter Geometries

 P AUL -H ERMANN  Z IESCHANG

 Within the theory of homogeneous coherent configurations ,  the dihedral configurations play
 the role which is played by the finite dihedral groups in the theory of finite groups .  Imitating
 Tits’ construction of a geometry from a set of subgroups of a given group ,  we assign a geometry
 of rank 2 to each dihedral configuration ,  its ‘Coxeter geometry’ .  (Each finite generalized
 polygon is a Coxeter geometry in this sense . )

 Apart from general results on the relationship between dihedral configurations and their
 Coxeter geometries ,  we settle completely the (ordinary) representation theory of the dihedral
 configurations of rank 7 .  We obtain three major classes .  The Coxeter geometries of the first
 class are exactly the non-symmetric 2-designs with  l  5  1 .  The other two classes lead to
 questions which require a further combinatorial treatment .

 ÷   1997 Academic Press Limited

 1 .  I NTRODUCTION

 Let ( X ,  G ) be a homogeneous coherent configuration [2] .
 For all  E , F  ‘  G ,  we define

 EF  : 5  !

 e P E
 !

 f  P F
 h g  P  G  3  a efg  ?  0 j ,

 where  a efg   denotes the intersection number of  e , f  and  g  given by ( X ,  G ) .
 A subset  F  of  G  is said to be  closed  if  FF  ‘  F  ?  [ .
 We shall denote by  #  ( G ) the set of all closed subsets of  G .
 For each subset  F  of  G ,  we define

 k F  l  : 5  "

 F  ‘ H P # ( G )
 H .

 An element  g  P  G  will be called a  generalized in y  olution  if  u k g l u  5  2 . †
 The set of generalized involutions of  G  will be denoted by Inv( G ) .
 The pair ( X ,  G ) will be called  dihedral  if there exists  L  ‘  Inv( G ) such that  u L u  5  2

 and  k L l  5  G .
 For each  x  P  X  and ,  for each  F  ‘  G ,  we define

 xF  : 5  !

 f  P F
 h  y  P  X  3  ( x ,  y )  P  f  j .

 It is easy to prove that ,  for each  H  P  # ( G ) ,

 X  / H  : 5  h xH  3  x  P  X  j

 is a partition of  X  ;  see [5 ,  (1 . 1)] .  In particular ,  for each  *  ‘  #  ( G ) ,

 ( X ,  h X  / H  3  H  P  *  j )

 is a chamber system in the sense of [4 ,  Section 2 . 1] .  We shall denote by  & ( X ,  *  ) the
 geometry associated with this chamber system via [4 ,  Section 2 . 2] .

 †  For each  g  P  G ,  we abbreviate  k g l  : 5  kh g jl .
 341
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 Now assume that there exists  L  ‘  Inv( G ) such that  u L u  5  2 and  k L l  5  G .  We shall say
 that ( X ,  G ) is  degenerate  if ,  for all  h , k  P  L , hk  5  kh . †  We shall call  & ( X ,  hk l l  3  l  P  L j )
 the  Coxeter geometry of  ( X ,  G ) ( with respect to L ) .

 It is easy to see that the rank of a non-degenerate dihedral configuration is at least 6 .
 (This follows immediately from [2 ,  (4 . 1)] . ) But ,  already ,  the rank 6 case seems to be
 hard .  The Coxeter geometry of a non-degenerate dihedral configuration of rank 6 is a
 generalized triangle of order  n  if  n  denotes the subdegree corresponding to one (and
 hence both) of the generating generalized involutions ;  see Theorem 3 . 3 .  Conversely ,  a
 straightforward computation shows that each projective plane is the Coxeter geometry
 of such a dihedral configuration .  Therefore it is impossible to classify the non-
 degenerate dihedral configurations of rank 6 .

 On the other hand ,  the intersection numbers of a non-degenerate dihedral
 configuration of rank 6 are uniquely determined by the (identical) subdegrees
 corresponding to the two generating generalized involutions .

 For non-degenerate dihedral configurations of rank 7 ,  we obtain the same result if
 the subdegrees in question are dif ferent ;  see Theorem 4 . 4 .  The case in which these
 subdegrees are equal will be the subject of Theorem 4 . 5 and Theorem 4 . 6 .  It raises a
 number of interesting questions ,  which cannot be answered with the help of the
 representation-theoretical approach of this paper .

 The notation of this paper is essentially that of [2] ;  but ,  for each  g  P  G ,  we define

 g *  : 5  h (  y ,  z )  3  ( z ,  y )  P  g j ,
 and we set

 1  : 5  h ( x ,  x )  3  x  P  X  j .

 Recall that ,  for all  d , e , f  P  G ,
 a d e f  5  a e * d * f  *

 and
 a d e f n f  5  a fe * d n d .

 These fundamental equations will frequently be applied without explicit reference .  For
 a proof ,  see [2 ,  (2 . 15)(b)] and [2 ,  (2 . 16)(b)] .

 2 .  P RELIMINARIES

 In this section ,  ( X ,  G ) will be a homogeneous coherent configuration .
 Let  V  denote the free  C -module based on  X .  For each  g  P  G ,  we shall denote by  s g

 the (unique) vector-space endomorphism of  V  such that ,  for each  x  P  X ,

 x s g  5  O
 y P xg

 y .

 We shall denote by  C [ G ] the subalgebra of End C ( V  ) generated by  h s g  3  g  P  G j .

 L EMMA  2 . 1 .  (i)  For all e , f  P  G ,

 s e s f  5  O
 g P G

 a e f g s g  .

 (ii)  h s g  3  g  P  G j   is a  C - basis of  C [ G ] .

 For a proof of Lemma 2 . 1 ,  see [2 ,  (2 . 6)] .

 †  For all  e , f  P  G ,  we abbreviate  ef  : 5  h e jh  f  j .
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 The next five results are consequences of [2 ,  (3 . 2)] ,  [5 ,  (4 . 5)] ,  [5 ,  (4 . 10)] ,  [5 ,  (4 . 7)]
 and [5 ,  (4 . 8)] ,  respectively .

 L EMMA  2 . 2 .  There exists an algebra homomorphism  χ  1 :  C [ G ]  5  C   such that , for each
 g  P  G ,

 χ  1 ( s g )  5  n g .

 The linear character  χ  1  of  C [ G ] is usually called the  principal  character of  C [ G ] .

 L EMMA  2 . 3 .  For each non - principal irreducible character  χ   of  C [ G ] ,

 O
 g P G

 χ  ( s g )  5  0 .

 L EMMA  2 . 4 .  Let F  ‘  G be such that  k F  l  5  G , and let  l   be a linear character of  C [ G ]
 such that , for each f  P  F ,  l ( s f  )  5  n f  . Then  l  5  χ  1  .

 Let  H  P  # ( G ) be given .  For each  g  P  G ,  we shall write  gH  instead of  h g j H .  We set

 G  / H  : 5  h gH  3  g  P  G j .

 The elements of  G  / H  will be called  left cosets  of  H  in  G .  It is easy to prove that  G  / H  is
 a partition of  G ;  see [5 ,  (1 . 1)] .

 L EMMA  2 . 5 .  Let H  P  # ( G )  be gi y  en , and define

 C H  : 5  "

 h P H
 h s  P  C [ G ]  3  s s h  5  n h s  j .

 Then  u G  / H u  5  dim C ( C H ) .

 L EMMA  2 . 6 .  Let l  P  Inv( G )  be gi y  en . Then we ha y  e the following .
 (i)  s  2

 l  5  n l 1  1  ( n l  2  1) s l  .
 (ii)  Let W be a  C [ G ]- module . Then W is the sum of  h w  P  W  3  w s l  5  2 w j   and

 h w  P  W  3  w s l  5  n l w j .

 3 .  G ENERAL  R ESULTS AND THE  R ANK  6 C ASE

 Let ( X ,  G ) be a homogeneous coherent configuration .  For each  H  P  # ( G ) ,  we
 define

 G  /  / H  : 5  h HgH  3  g  P  G j .

 (Note that ,  for all  D , E , F  ‘  G ,  ( DE ) F  5  D ( EF  ) .  In particular ,   HgH  is a well-defined
 subset of  G . )

 T HEOREM  3 . 1 .  Let  ( X ,  G )  be a homogeneous coherent configuration . Let h ,
 k  P  Inv( G )  be such that  k h ,  k l  5  G and hk  ?  kh . †

 Then  & ( X ,  hk h l ,  k k lj )  is a tactical configuration of type  ( n h  1  1 ,  n h  1  1)  or a  2- design
 with point set X  / k k l   if , and only if  u G  /  / k k l u  5  2 . ‡

 †  For all  e , f  P  G ,  we abbreviate  k e ,  f  l  : 5  kh e ,  f  jl .
 ‡  The geometric terminology here is borrowed from [1] .
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 In this case , if J  : 5  hk  >  kh , then

 1  1  O
 j P J

 a jkh

 is the number of blocks on two points .

 P ROOF .  The equivalence is obvious .  Therefore ,  we assume that  u G  /  / k k l u  5  2 .  Let
 (  y ,  z )  P  h  be given .

 Let  j  P  J  be given ,  and let  w  P  yj  >  zk  be given . †  Then ,  as  k h l  >  k k l  5  h 1 j ,
 u  yk  >  wh u  5  1 .

 Conversely ,  for each ( y  ,  w )  P  h  with  y  P  yk  and  w  P  zk ,  there exists  j  P  J  such that
 (  y ,  w )  P  j .  h

 P ROPOSITION  3 . 2 .  Let  ( X ,  G )  be a homogeneous coherent configuration . Let h ,
 k  P  Inv( G )  be such that hk  \  kh  ?  [ . Let m  P  hk  \  kh be gi y  en , and define

 J  : 5  G  \  h 1 ,  h ,  k ,  m ,  m * j .

 Assume that J  ‘  hk . Then we ha y  e the following .
 (i)  The left cosets of  k h l   in G are

 k h l ,  h k ,  m * j  <  J ,  h m j .

 (ii)  2  <  u h a h m j  3  j  P  J j u .

 P ROOF .  (i) Since  m  P  hk , a h k m  ?  0 .  Therefore ,   a khm *  ?  0 ,  whence

 k k h l  5  m * k h l .
 Similarly ,  as  m  ̧  kh ,

 k k h l  ?  m k h l .
 Also ,  since  J  ‘  hk ,

 k k h l  5  j k h l

 for all  j  P  J .  (Note that ,  for each  j  P  J , j *  P  J . )
 (ii)  Let us assume ,  by way of contradiction ,  that there exists  a  P  N   such that ,  for

 each  j  P  J ,

 a  5  a h m j  .

 Set

 s  : 5 O
 j P J

 s j  .

 From (i) we know that  m  ̧  m * k h l .  Therefore ,   a m * hm  5  0 .  Thus ,  by Lemma 2 . 1(i) ,

 s h s m  5  a h m k s k  1  a h m m s m  1  a s

 and

 s  m * s h  5  a h m k s k  1  a h m m s m *  1  a s .  (1)

 It follows that

 s h s m  2  s m * s h  5  a h m m ( s m  2  s m * ) .  (2)

 †  For each  x  P  X  and ,  for each  g  P  G ,  we abbreviate  xg  : 5  x h g j .
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 From  J  ‘  hk , m  P  hk  and  m *  ̧  hk  we conclude that

 s h s k  5  s m  1  s

 and that
 s k s h  5  s m *  1  s .  (3)

 It follows that
 s h s k  2  s k s h  5  s m  2  s m *  .  (4)

 Let  W  be an irreducible  C [ G ]-module on which  s h   and  s k   do not commute .  Then ,  by
 Lemma 2 . 6(ii) ,  there exists  w  P  W  \  h 0 j   such that

 w s h  5  2 w .  (5)

 From (i) and (5) we obtain that

 a hm * m * w s m *  5  w s h s m *  5  2  w s m *  .

 But  a hm * m *  ?  2 1 .  Therefore ,   w s  m *  5  0 .  Now ,  by (1) ,

 0  5  a h m k w s k  1  aw s  .
 Thus ,  by (3) ,

 0  5  a h m k w s k  1  aw s k s h .

 However ,   a h m k  >  0  <  a .  Thus ,  by Lemma 2 . 6(ii) ,  we conclude that

 ( w s k ) s h  5  2 w s k .

 From  u G  / k h l u  5  3 and Lemma 2 . 5 we deduce that dim C ( W  )  5  2 .  Therefore ,  by (5) ,
 C w  is  s k -invariant .  Now we conclude that  W  possesses a basis  h u ,  y  j ,  say ,  such that

 u s k  5  n k u ,  y s h  5  n h y  .

 Let  d   denote the matrix representation of  C [ G ] af forded by  h u ,  y  j .  Then ,  without loss
 of generality ,  we may assume that

 d  ( s h )  5 S 2 1
 0

 e

 n h
 D ,  d  ( s k )  5 S n k

 1
 0

 2 1
 D  ,

 where  e  P  C   has to be chosen suitably .
 Let  c 1  , c 2  , c 3  , c 4  P  C   be such that

 d  ( s m )  5 S c 1  c 3

 c 2  c 4
 D  .

 Then ,  by (i) and Lemma 2 . 2 ,

 n h S c 1  c 3

 c 2  c 4
 D  5 S c 1  c 3

 c 2  c 4
 D S 2 1

 0
 e

 n h
 D  5 S 2 c 1  c 1 e  1  c 3 n h

 2 c 2  c 2 e  1  c 4 n h
 D  .

 Since  n h  ?  2 1 ,  this implies that  c 1  5  0  5  c 2  .  Interchanging the roles of  h  and  k  in (i) ,  we
 obtain ,  similarly ,  that

 n k S 0
 0

 c 3

 c 4
 D  5 S n k

 1
 0

 2 1
 D S 0  c 3

 0  c 4
 D  5 S 0

 0
 n k c 3

 c 3  2  c 4
 D  .

 Thus  c 3  5  ( n k  1  1) c 4  ,  whence

 d  ( s m )  5 S 0
 0

 ( n k  1  1) c 4

 c 4
 D  .
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 Similarly ,  we find  d  P  C   with

 d  ( s  m * )  5 S  ed

 ( n h  1  1) d

 0
 0
 D  .

 Now (4) yields

 S  e

 n h  1  1
 2 ( n k  1  1) e

 2 e
 D  5 S  2 ed

 2 ( n h  1  1) d

 ( n k  1  1) c 4

 c 4
 D  .

 Thus ,   c 4  5  2 e  and  d  5  2 1 .  It follows that

 d  ( s m )  5 S 0
 0

 2 ( n k  1  1) e

 2 e
 D ,  d  ( s m * )  5 S  2 e

 2 ( n h  1  1)
 0
 0
 D  .

 Now ,  by (2) ,

 S  2 e

 2 ( n h  1  1)
 ( n k  1  1) e

 e
 D  5  a h m m S  e

 n h  1  1
 2 ( n k  1  1) e

 2 e
 D  ,

 contrary to 0  <  a h m m .  h

 T HEOREM  3 . 3 .  Let  ( X ,  G )  be a homogeneous coherent configuration . Let h ,  k  P
 Inv( G )  be such that  k h ,  k l  5  G and hk  ?  kh .

 Then  6  <  u G u   and , if  u G u  5  6 , then n h  5  n k  and  &  ( X ,  hk h l ,  k k lj )  is a generalized triangle
 of order n h .

 P ROOF .  Since  hk  ?  kh , hk  \  kh  ?  [ . Let m  P  hk  \  kh  be given .  Note that  m *  ?  m .
 Obviously ,   h 1 ,  h ,  k ,  m ,  m * j  ?  G .  Therefore ,  6  <  u G u .
 Assume that  u G u  5  6 .  Then there exists  j  P  G  such that

 h 1 ,  h ,  k ,  m ,  m * ,  j j  5  G .

 From Proposition 3 . 2(ii) we obtain that  j  ̧  hk .  Therefore ,  we have

 hk  5  h m j ,  kh  5  h m * j ,  hkh  5  h  j j  5  khk .

 Now the result follows from Theorem 3 . 1 .  h

 4 .  O N  D IHEDRAL  C ONFIGURATIONS OF  R ANK  7

 For the first three lemmata of this section ,  ( X ,  G ) will denote a non-degenerate
 dihedral configuration of rank 7 .

 Let  h ,  k  P  Inv( G ) be such that  k h ,  k l  5  G  and  hk  ?  kh .  Let  m  P  hk  \  kh  be given .
 Since  u G u  5  7 ,  there exist  j , l  P  G  such that

 h 1 ,  h ,  k ,  m ,  m * ,  j ,  l j  5  G .

 The non-principal linear characters of  C [ G ] will be denoted by  χ  2  and  χ  3  .

 L EMMA  4 . 1 .  We ha y  e  h  j ,  l j  ‘ /  hk .

 P ROOF .  Assume ,  by way of contradiction ,  that  h  j ,  l j  ‘  hk .  Then ,  by Proposition
 3 . 2(i) and Lemma 2 . 2 ,

 s m s h  5  n h s m  ,  s h s m *  5  n h s m *  .  (6)
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 Let  i  P  h 2 ,  3 j   be given .  By Proposition 3 . 2(i) ,   u G  / k h l u  5  3 .  Thus ,  by Lemma 2 . 5 and
 Lemma 2 . 6(ii) ,  we must have

 χ i ( s h )  5  2 1  5  χ i ( s k ) .

 Since  n h  ?  2 1  5  χ i ( s h ) ,  (6) yields

 χ i ( s m )  5  0  5  χ i ( s m * ) .

 But now we may use Proposition 3 . 2(i) to obtain

 a h m k  5  a h m j χ i ( s j )  1  a h m l χ i ( s l ) .

 On the other hand ,  by Lemma 2 . 3 ,

 1  5  χ i ( s j )  1  χ i ( s l ) .

 Since  χ  2  ?  χ  3  ,  we conclude that  a h m j  5  a h m l  ,  contrary to Proposition 3 . 2(ii) .  h

 L EMMA  4 . 2 .  Assume that  h  j ,  l j  >  hk  5  [ . Then we ha y  e the following .
 (i)  s h s k  5  s m  and  s k s h  5  s m *  .
 (ii)  Assume that n h  <  n k . Then  s h s k s h  P  h s j  ,  s l  ,  s j  1  s l j   and  s k s h s k  5  s j  1  s l  .

 P ROOF .  (i) Follows from the choice of  m .
 (ii)  From (i) we deduce that

 s h s k s h  5  s m h j s j  1  a m h l s l  ,  s k s h s k  5  a k m j s j  1  s k m l s l  (7 ,  8)
 and

 h a m h j  ,  a m h l  ,  a k m j  ,  a k m l j  ‘  h 0 ,  1 j .  (9)
 Assume first that

 a mhj  5  1  5  a kmj ,  a mhl  5  0  5  a kml .
 Then ,  by (7) and (8) ,

 a h s k s h  5  s j  5  s k s h s k .

 In particular ,  for each  i  P  h 2 ,  3 j ,  χ i ( s h )  5  χ i ( s k ) .  But  k h ,  k l  5  G .  Therefore ,  by Lemma
 2 . 6(ii) and Lemma 2 . 4 ,  we must have  χ i ( s h )  5  2 1  5  χ i ( s k ) for each  i  P  h 2 ,  3 j .  But then
 Lemma 2 . 3 and Lemma 2 . 1(ii) lead to the contradiction  χ  2  5  χ  3  .

 Assume next that
 a m h j  5  1  5  a k m l  ,  a m h l  5  0  5  a k m j  .

 Then ,  by (7) and (8) ,
 s h s k s h  5  s j  ,  s k s h s k  5  s l  .

 In particular ,
 χ  2 ( s j )  5  χ  2 ( s h ) 2 χ  2 ( s k ) ,  χ  2 ( s l )  5  χ  2 ( s h ) χ  2 ( s k ) 2 .

 Using (i) ,  Lemma 2 . 6(ii) and Lemma 2 . 3 ,  it is easy to obtain a contradiction from these
 two equations .

 The claim now follows from (9) .  h

 L EMMA  4 . 3 .  Assume that j  P  hk . Then we ha y  e the following .
 (i)  s h s k  5  s m  1  s j  and  s k s h  5  s m *  1  s j  .
 (ii)  Set

 c  : 5
 n m

 n k
 ,  d  : 5

 n j

 n k
 .
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 Then
 s m * s h  5  c s k  1  ( c  2  1) s m *  1  c s j  ,

 s j s h  5  d s k  1  d s m *  1  ( d  2  1) s j  ,

 s m s h  5  d s m  1  ( d  1  1) s l

 and
 s l s h  5  c s m  1  ( c  2  1) s l  .

 (iii)  n h  5  n k .

 P ROOF .  (i) follows from the choice of  m  and from Lemma 4 . 1 .
 (ii) From (i) we deduce that  h k ,  m * ,  j j   is a left coset of  k h l   in  G  and that  j *  5  j .  It

 follows that  l *  5  l .  Thus ,

 s m * s h  5  c s k  1  a h m m s m *  1  a h m j s j  ,  (10)

 s j s h  5  d s k  1  a h j m s m *  1  a h j j s j  ,  (11)

 s m s h  5  a m h m s m  1  a m h l s l  (12)
 and

 s l s h  5  a l h m s m  1  a l h l s l  .  (13)

 By (i) and Lemma 2 . 6(i) ,  we have

 s k s  2
 h  5  n h s k  1  ( n h  2  1)( s m *  1  s j )

 and

 ( s k s h ) s h  5  s m * s h  1  s j s h  .
 Thus ,  by (10) and (11) ,

 a h m m  1  a h j m  5  n h  2  1  5  a h m j  1  a h j j  .  (14)

 From (i) ,  (12) and (11) we obtain that

 s h ( s k s h )  2  ( s h s k ) s h  5  s h s m *  1  s h s j  2  s m s h  2  s j s h  5  ( a h j m  2  a m h m )( s m  2  s m * ) ,

 whence
 a h j m  5  a m h m .  (15)

 From (11) ,  (i) and (12) we obtain that

 s h ( s j s h )  5  d s h s k  1  a h j m s h s m *  1  a h j j s h s j

 5  d ( s m  1  s j )  1  a h j m ( a m h m s m *  1  a m h l s l )  1  a h j j ( d s k  1  a h j m s m  1  a h j j s j )

 and that

 ( s h s j ) s h  5  d s k s h  1  a h j m s m s h  1  a h j j s j s h

 5  d ( s m *  1  s j )  1  a h j m ( a m h m s m  1  a m h l s l )  1  a h j j ( d s k  1  a h j m s m *  1  a h j j s j ) .

 Thus ,  we have
 d  1  a h j j a h j m  5  a h j m a m h m  ,

 whence ,  by (15) ,
 d  5  a h j m ( a h j m  2  a h j j )  (16)

 and so
 c  5  a h m j ( a h j m  2  a h j j ) .  (17)

 From (16) ,  (17) and (14) we obtain that

 n h  5  c  1  d  5  ( a h m j  1  a h j m )( a h j m  2  a h j j )  5  ( a h m j  1  a h j m )( a h m j  2  a h m m ) .
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 In particular ,  we have
 a h m j  1  a h j m  <  n h  ,  a h m m  1  1  <  a h m j  ,

 which ,  by (14) ,  yields
 n h  5  a h m m  1  1  1  a h j m  <  a h m j  1  a h j m  <  n h .

 It follows that
 a h m m  1  1  5  a h m j  ,

 and therefore ,  by (14) ,
 a h j j  1  1  5  a h j m .

 Now ,  by (17) and (16) ,
 c  5  a h m j  ,  d  5  a h j m .  (18)

 This establishes the first two of the equations of (ii) .
 From (12) and Lemma 2 . 2 we obtain that

 n h n m  5  a m h m n m  1  a l h m n m  ,

 which ,  by (15) ,  yields that  n h  5  a h j m  1  a l h m .  Thus ,  by the the second equation of (18) ,

 c  5  a l h m .  (19)

 Similarly ,  by (13) and Lemma 2 . 2 ,

 n h n l  5  a m h l n l  1  a l h l n l  ,
 which yields

 n h  5  a m h l  1  a l h l  .  (20)

 Finally ,  by (13) ,  (19) and (10) ,

 s h ( s l s h )  5  c s h s m  1  a l h l s h s l  5  c ( c s k  1  ( c  2  1) s m  1  c s j )  1  a l h l ( c s m *  1  a l h l s l )
 and

 ( s h s l ) s h  5  c s m * s h  1  a l h l s l s h

 5  c ( c s k  1  ( c  2  1) s m *  1  c s j )  1  a l h l ( c s m  1  a l h l s l ) .

 Thus ,  we have
 c  5  a l h l  1  1 .

 Now (ii) follows from (19) and (20) .
 (iii)  From (ii) we may easily conclude that

 u G  /  / k h l u  5  2  5  u G  /  / k k l u .

 Thus ,  by Theorem 3 . 1 ,   & ( X ,  hk h l ,  k k lj ) is a tactical configuration of type ( n h  1  1 ,  n h  1  1)
 or a symmetric 2-design .  Therefore ,   n h  5  n k .  h

 T HEOREM  4 . 4 .  Let  ( X ,  G )  be a homogeneous coherent configuration of rank  7 . Let h ,
 k  P  Inv( G )  be such that  k h ,  k l  5  G and hk  ?  kh .

 Assume that n h  1  1  <  n k . Then the intersection numbers of  ( X ,  G )  are uniquely
 determined by n h  and n k  , and  & ( X ,  hk h l ,  k k lj )  is a  2-( n h n k  1  n h  1  1 ,  n h  1  1 ,  1)- design
 ( with point set X  / k k l ) .

 P ROOF .  Since  hk  ?  kh , hk  \  kh  ?  [ .  Let  m  P  hk  \  kh  be given .  Since  u G u  5  7 ,  there
 exist  j , l  P  G  such that

 h 1 ,  h ,  k ,  m ,  m * ,  j ,  l j  5  G .  (21)
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 By Lemma 4 . 3(iii) and Lemma 4 . 2(i) ,

 s h s k  5  s m  ,  s k s h  5  s m *  .  (22)

 From Lemma 4 . 2(ii) we obtain
 s k s h s k  5  s j  1  s l

 and ,  without loss of generality ,
 s h s k s h  5  s j  .

 Thus ,   C [ G ] is generated (as a  C -algebra) by  h s h  ,  s k j ;  see (21) and Lemma 2 . 1(ii) .  In
 particular ,  the structure constants of  C [ G ] with respect to the basis  h s g  3  g  P  G j   are
 uniquely determined by  n h   and  n k  ,  so that the first claim follows from Lemma 2 . 1(i) .

 The second claim follows from Theorem 3 . 1 and (22) .  h

 T HEOREM  4 . 5 .  Let  ( X ,  G )  be a homogeneous coherent configuration of rank  7 . Let h ,
 k  P  Inv( G )  be such that  k h ,  k l  5  G and hk  ?  kh .

 Assume that n h  5  n k  and that  u hk u  5  1 . Then we ha y  e the following .
 (i)  Let m ,  j ,  l  P  G be such that hk  5  h m j   and  h 1 ,  h ,  k ,  m ,  m * ,  j ,  l j  5  G . Then there exist

 a , b  P  N  \  h 0 j   with a  1  b  5  n h  and x ,  y  P  C   such that  C [ G ]  has the following irreducible
 representations :

 1  s h  s k  s m  s m *  s j  s l

 χ  1

 χ  2

 χ  3

 d

 1
 1
 1

 S 1  0
 0  1

 D

 n h

 2 1
 2 1

 S 2 1
 0

 n h

 n h
 D

 n h

 2 1
 2 1

 S n h

 1
 0

 2 1
 D

 n  2
 h

 1
 1

 S  0
 n h

 2 n h

 2 n h
 D

 n  2
 h

 1
 1

 S 2 n h

 2 1
 n  2

 h

 0
 D

 an  2
 h

 x
 y

 S  0
 2 a

 2 an h

 0
 D

 bn  2
 h

 2 x  2  1
 2 y  2  1

 S  0
 2 b

 2 bn h

 0
 D

 (ii)  & ( X ,  hk h l ,  k k lj )  is a projecti y  e plane of order n h .

 P ROOF .  (i) Since  hk  5  h m j ,
 s h s k  5  s m  ,  s k s h  5  s m *  .  (23)

 By Lemma 4 . 2(ii) and Lemma 2 . 2 ,
 s h s k s h  5  s j  1  s l  5  s k s h s k  .  (24)

 Let  χ  2  and  χ  3  denote the non-principal linear characters of  C [ G ] ,  and set

 x  : 5  χ  2 ( s j ) ,  y  : 5  χ  3 ( s j ) .

 Then the values of  χ  2  and  χ  3  in the table of (i) are easily obtained from (23) ,  (24) and
 Lemma 2 . 3 .  (Note that ,  by (24) ,  Lemma 2 . 4 and Lemma 2 . 6(ii) ,   χ i ( s h )  5  2 1  5  χ i ( s k )
 for each  i  P  h 2 ,  3 j . )

 The second equation of (23) implies that  h k ,  m * j   is a left coset of  k h l   in  G .  Thus ,

 s h s j  5  a h j m * s m *  1  a h j j s j  1  s h j l s l  .

 In particular ,  for each  z  P  h x ,  y j ,

 z ( a h j j  1  1  2  a h j l )  5  a h j l  2  a h j m *  .

 Since  x  ?  y ,  this implies that
 a h j j  1  1  5  a h j l  5  a h j m *  .
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 Thus ,  for  a  : 5  a h j l  ,  we have
 ( s h  1  1) s j  5  a ( s m *  1  s j  1  s l ) .  (25)

 Similarly ,  we conclude that

 ( s k  1  1) s j  5  a ( s m  1  s j  1  s l ) .  (26)

 From (25) ,  Lemma 2 . 2 ,  (23) and (24) we obtain that  n 2
 h   divides  n j  ,  so that we have all

 the values of  χ  1  .
 Let  W  be an irreducible  C [ G ]-module on which  s h   and  s k   do not commute .
 Let  w  P  W  be such that

 w s h  5  n h w  5  w s k  .

 By (23) and (24) ,   Cw  is fixed by  s m  ,  s m *  and  s j  1  s l  .  Thus ,  by (25) ,   C w  is
 C [ G ]-invariant .  Since  W  is irreducible ,   w  5  0 .

 It follows that  W  possesses a basis  h u ,  w j ,  say ,  such that

 u s k  5  n h u ,  y s h  5  n h y  .

 Let  d   denote the matrix representation of  C [ G ] af forded by  h u ,  y  j .  Then ,  without loss
 of generality ,  we may assume that

 d  ( s h )  5 S 2 1
 0

 e
 n h
 D ,  d  ( s k )  5 S n k

 1
 0

 2 1
 D  ,

 where  e  P  C   has to be chosen suitably .
 From (24) we obtain that

 S n h  2  e
 2 n h

 e ( e  2  2 n h )
 n h ( e  2  n h )

 D  5  d  ( s j )  1  d  ( s l )  5 S n h ( e  2  n h )
 e  2  2 n h

 2 n h e
 n h  2  e

 D  .

 Thus ,   e  5  n h   and

 d  ( s j )  1  d  ( s l )  5 S  0
 2 n h

 2 n 2
 h

 0
 D  .

 Let  c 1  , c 2  , c 3  , c 3  P  C   be such that

 d  ( s j )  5 S c 1  c 3

 c 2  c 4
 D  .

 Then ,  by (26) ,

 S ( n h  1  1) c 1

 c 1

 ( n h  1  1) c 3

 c 3
 D  5  a S 0

 0
 2 n h ( n h  1  1)

 2 n h
 D  ,

 whence  c 1  5  0 and  c 3  5  2 an h .  Similarly ,  by (25) ,   c 4  5  0 and  c 2  5  2 a .
 (ii)  follows from Theorem 3 . 1 and  hk  >  kh  5  [ .  h

 T HEOREM  4 . 6 .  Let  ( X ,  G )  be a homogeneous coherent configuration of rank  7 . Let h ,
 k  P  Inv( G )  be such that  k h ,  k l  5  G and hk  ?  kh .

 Assume that n h  5  n k  and that  u hk u  ?  1 . Then we ha y  e the following .
 (i)  Let m , j  P  hk be such that m *  ?  m , and let l  P  G be such that

 h 1 ,  h ,  k ,  m ,  m * ,  j ,  l j  5  G . Then there exist c , d  P  N  \  h 0 j   with c  1  d  5  n h  and x ,  y  P  C   such
 that  C [ G ]  has the following irreducible representations  :

 1  s h  s k  s m  s m *  s j  s l

 χ  1

 χ  2

 χ  3

 d

 1
 1
 1

 S 1  0
 0  1

 D

 n h

 2 1
 2 1

 S 2 1
 0

 c

 n h
 D

 n h

 2 1
 2 1

 S n h

 1
 0

 2 1
 D

 cn h

 x
 y

 S 0
 c

 2 c ( d 1 1)
 2 c

 D

 cn h

 x
 y

 S  2 c

 2 ( d  1  1)
 c 2

 0
 D

 dn h

 1  2  x
 1  2  y

 S 2 d

 d

 cd

 2 d
 D

 c 2 n h  / ( d  1  1)
 2 x
 2 y

 S  0
 2 c

 2 c 2

 0
 D
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 (ii)  Either c  5  1  or  & ( X ,  hk h l ,  k k lj )  is a  ( symmetric ) 2  2  (( n h ( n h  1  1) / ( d  1  1))  1  1 ,
 n h  1  1 , d  1  1)- design .

 P ROOF .  (i) From Lemma 4 . 3(ii) we conclude that

 u G  / k h l u  5  3  5  u G  / k k l u .
 Let  χ  2  and  χ  3  denote the non-principal linear characters of  C [ G ] .  Then ,  by Lemma 2 . 5 ,
 we have

 χ i ( s h )  5  2 1  5  χ i ( s k )
 for each  i  P  h 2 ,  3 j .  We set

 x  : 5  χ  2 ( s m ) ,  y  : 5  χ  3 ( s m ) .

 Then the values of  χ  2  and  χ  3  are obtained from Lemma 4 . 3(i) and Lemma 2 . 3 .
 The values of  χ  1  are given by Lemma 4 . 3 and Lemma 2 . 2 .
 Let  W  be an irreducible  C [ G ]-module on which  s h   and  s k   do not commute .
 Let  w  P  W  be such that

 w s h  5  n h w  5  w s k  .
 Then ,  by Lemma 4 . 3(i) ,

 w s m  5  w s m *  .  (27)

 On the other hand ,  the last equation of Lemma 4 . 3(ii) yields that

 s l s h  2  s h s l  5  c ( s m  2  s m * ) .
 Thus ,

 n h w s l  5  w s h s l  5  w s l s h .

 This implies that  w s l  P  C w .  Therefore ,  we may conclude from Lemma 4 . 3(ii) and (27)
 that  C w  is  C [ G ]-invariant .  But  W  is irreducible .  Thus ,   w  5  0 .

 It follows that  W  possesses a basis  h u ,  y  j ,  say ,  such that

 u s k  5  n h u ,  y s h  5  n h y  .

 Let  d   denote the matrix representation of  C [ G ] af forded by  h u ,  y  j .  Then ,  without loss
 of generality ,  we may assume that

 d  ( s h )  5 S 2 1
 0

 e
 n h
 D ,  d  ( s k )  5 S n h

 1
 0

 2 1
 D  ,

 where  e  P  C   has to be chosen suitably .
 From Lemma 4 . 3(i) we obtain that

 d  ( s m )  1  d  ( s j )  5 S e  2  n h

 n h

 2 e
 2 n h

 D  (28)

 and that

 d  ( s m )  2  d  ( s m * )  5 S  e
 n h  1  1

 2 e ( n h  1  1)
 2 e

 D  .  (29)

 Let  a 1  , a 2  , a 3  , a 4  P  C   be such that

 d  ( s m )  5 S a 1  a 3

 a 2  a 4
 D  .

 Then we obtain from the first equation of Lemma 4 . 3(ii) that

 S ea 2  2  a 1

 n h a 2

 ea 4  2  a 3

 n h a 4
 D  5  c S n h

 1
 0

 2 1
 D  1  ( c  2  1) S a 1  a 3

 a 2  a 4
 D  1  c S e  2  n h  2  a 1

 n h  2  a 2

 2 e  2  a 3

 2 n h  2  a 4
 D  ,

 whence  a 2  5  c  5  2 a 4  .  Therefore ,  by (29) ,

 d  ( s m * )  5 S  a 1  2  e

 2 ( d  1  1)
 a 3  1  e ( n h  1  1)

 e  2  c
 D  .
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 If we interchange the roles of  h  and  k  in Lemma 4 . 3(ii) ,  then the first equation there
 yields

 S  n h ( a 1  2  e )
 a 1  2  e  1  d  1  1

 n h a 3  1  n h e ( n h  1  1)
 a 3  1  e ( n h  1  1)  1  c  2  e

 D  5  c S  2 1
 0

 e
 n h
 D  1  ( c  2  1) S  a 1  2  e

 2 ( d  1  1)
 a 3  1  e ( n h  1  1)

 e  2  c
 D

 1  c S e  2  n h  2  a 1

 d

 2 e  2  a 3

 2 d
 D  ;

 use (28) .  It follows that  a 1  5  e  2  c  and  a 3  5  2 e ( d  1  1) .  Now we have

 d  ( s m )  5 S e  2  c

 c

 2 e ( d  1  1)
 2 c

 D  ,

 d  ( s m * )  5 S  2 c
 2 ( d  1  1)

 ec
 e  2  c

 D
 and

 d  ( s j )  5 S 2 d

 d

 ed

 2 d
 D  .

 Similarly ,  let  b 1  , b 2  , b 3  , b 4  P  C   be such that

 d  ( s l )  5 S b 1  b 3

 b 2  b 4
 D  .

 Then we obtain from the third equation of Lemma 4 . 3(ii) that

 S c  2  e ( d  1  1)
 2 n h ( d  1  1)

 e 2  2  2 ec

 n h ( e  2  c )
 D  5  d S  2 c

 2 ( d  1  1)
 ec

 e  2  c
 D  1  ( d  1  1) S b 1  b 3

 b 2  b 4
 D  ,

 whence  b 1  5  c  2  e  and  b 2  5  2 c .  This time ,  we interchange the roles of  h  and  k  in the
 third equation of Lemma 4 . 3(ii) to obtain that

 S n h ( e  2  c )
 e  2  2 c

 2 n h e ( d  1  1)
 c  2  ed  2  e

 D  5  d S e  2  c

 c

 2 e ( d  1  1)
 2 c

 D  1  ( d  1  1) S c  2  e

 2 c

 b 3

 b 4
 D  .

 Thus ,  we have  e  5  c , b 3  5  2 c 2  and  b 4  5  0 .  The proof of (i) is complete .
 (ii)  follows from Lemma 4 . 3(ii) and Theorem 3 . 1 .  h

 We finish this section with a few remarks .
 A little more can be said in the situation of Theorem 4 . 5 .  First of all ,  a lengthy

 computation shows that (in the notation of Theorem 4 . 5)  j *  5  j  and  l *  5  l .  By a shorter
 argument we obtain ,  then ,  that  n j  5  n l   or  x , y  P  Z .  E .  Shult has constructed examples in
 which  n j  5  n l  .

 The situation of Theorem 4 . 6 has been discussed to a certain extent in [3] .  Examples
 (of coherent configurations satisfying the hypotheses of Theorem 4 . 6) are provided by
 Hadamard designs .

 A CKNOWLEDGEMENTS

 During the writing of this article ,  the author was a visitor at Kansas State University .
 He is grateful to the Department of Mathematics for its hospitality and ,  in particular ,
 to Professor E .  Shult for many helpful discussions .



 P . - H . Zieschang 354

 R EFERENCES

 1 .  P .  Dembowski ,   Finite Geometries ,  Springer-Verlag ,  New York ,  1968 .
 2 .  D .  G .  Higman ,  Coherent configurations ,   Geom . Dedicata ,  4  (1975) ,  1 – 32 .
 3 .  K .  W .  Smith ,  Flag algebras of a symmetric design ,   J . Combin . Theory , Ser . A . ,  48  (1988) ,  209 – 228 .
 4 .  J .  Tits ,  A local approach to buildings ,  in :   The Geometric Vein  ( The Coxeter Festschrift ) ,  C .  Davis ,  B .

 Gru ̈  nbaum and F .  A .  Sherk (eds) ,  Springer-Verlag ,  Berlin ,  1981 ,  pp .  519 – 547 .
 5 .  P . -H .  Zieschang ,  Homogeneous coherent configurations as generalized groups and their relationship to

 buildings ,   J . Algebra  178  (1995) ,  677 – 709 .
 Recei y  ed  1 7   February  1 9 9 5   and accepted in re y  ised form  2 1   No y  ember  1 9 9 5

 P AUL -H ERMANN  Z IESCHANG

 Mathematisches Seminar der Uni y  ersita ̈  t Kiel ,
 Ludewig - Meyn - Stra ß e  4 ,
 D - 2 4 0 9 8   Kiel , Germany

 and

 Department of Mathematics ,
 Kansas State Uni y  ersity ,

 Manhattan , KS  6 6 5 0 6 - 2 6 0 2 , U .S .A .


