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Abstract

In this paper we prove that the simplest band representations of unitary operators on a
Hilbert space are five-diagonal. Orthogonal polynomials on the unit circle play an essential
role in the development of this result, and also provide a parameterization of such five-diagonal
representations which shows specially simple and interesting decomposition and factorization
properties. As an application we get the reduction of the spectral problem of any unitary
Hessenberg matrix to the spectral problem of a five-diagonal one. Two applications of these
results to the study of orthogonal polynomials on the unit circle are presented: the first one
concerns Krein’s Theorem; the second one deals with the movement of mass points of the
orthogonality measure under mono-parametric perturbations of the Schur parameters.
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1. Introduction

Matrix representations are an important tool for the study of linear operators on
a Hilbert space. They allow, for instance, the use of perturbation techniques for the
comparison of operators defined on different Hilbert spaces. Besides, the freedom
in the choice of the representation can be used to get a simple one that can make
the analysis of the operator easier. Usually a band representation with minimum size
band is desirable. A band matrix (ci,j ) is (p, q)-diagonal if ci,j = 0 for i − j > p

and j − i > q. A matrix that is ([n2 ], [n−1
2 ])-diagonal or ([n−1

2 ], [n2 ])-diagonal, is
called a n-diagonal matrix. If every operator of a certain class has a n-diagonal rep-
resentation but not all of them have a n − 1-diagonal one, we say that n-diagonal
representations are the minimal representations of the class.

Concerning the class of self-adjoint operators, any two-diagonal representation
must be diagonal due to its symmetry, but a diagonal representation is only possible
in the case of pure point spectrum. Therefore, the minimal representations are at
least tri-diagonal. In fact, they are tri-diagonal since, as a consequence of the spectral
theorem, every self-adjoint operator is unitarily equivalent to an orthogonal sum of
self-adjoint multiplication operators [28] and, hence, the use of basis of orthogonal
polynomials on the real line gives a tri-diagonal representation [32].

Unitary operators, together with self-adjoint ones, are the most important
examples of normal operators. However, in spite of their importance, the minimal
representations for unitary operators are an open problem. Analogously to the self-
adjoint case, the study can be reduced to unitary multiplication operators, but the
use of basis of orthogonal polynomials on the unit circle then leads to Hessenberg
instead of band representations [9,2,17,27,34]. As for the possibility of band rep-
resentations, it has been recently proved in [3] that any unitary tri-diagonal matrix
decomposes as a sum of 1 × 1 and 2 × 2 diagonal blocks and, therefore, it has a pure
point spectrum. This shows that the minimal representations of unitary operators
are at least four-diagonal. Simon has conjectured in a preliminary version of [31]
that a similar decomposition should happen for any unitary four-diagonal matrix,
which would imply that the minimal representations for unitary operators are at least
five-diagonal.

A step to get the minimal representations of unitary operators was taken by the
authors in [6]. The results presented there imply that any unitary operator has a
five-diagonal representation. In the next section we introduce these five-diagonal
representations and their connection with orthogonal polynomials on the unit cir-
cle. Section 3 is devoted to the study of such representations and their properties.
Although Hessenberg matrices have been extensively studied, all this analysis will
be done jointly for five-diagonal and Hessenberg representations for several reasons:

• It is convenient to understand the improvements given by the five-diagonal repre-
sentations, if compared with the known Hessenberg ones. Some concrete
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examples of the advantages of the five-diagonal representations will be clearly
shown in the applications discussed in Sections 4 and 5.

• The connections between Hessenberg and five-diagonal representations provide
an algorithm that reduces the spectral problem of any unitary Hessenberg matrix
to the spectral problem of a five-diagonal one (“five-diagonal reduction” of the
spectral problem of a unitary Hessenberg matrix). The importance of this result
is due to the increasing interest in the study of unitary Hessenberg matrices in
numerical linear algebra [17,18,19] and digital signal processing applications (see
[7] and references therein).

• The analysis of unitary Hessenberg matrices is the main tool to prove that the
minimal representations of unitary operators are indeed five-diagonal. This result
is a consequence of a more general one that closes Section 3: (1, q)-diagonal or
(p, 1)-diagonal representations of unitary operators are possible only in the case
of pure point spectrum.

In Sections 4 and 5 we consider some applications of the minimal representations
of unitary operators to the study of orthogonal polynomials on the unit circle. Both
applications concern the relation between the support of the measure of orthogonal-
ity and the corresponding Schur parameters. Section 4 shows the advantages of the
five-diagonal representation for the analysis of the limit points of the support of the
measure, while Section 5 is devoted to the study of the isolated mass points. We
finish this last section giving several explicit examples of perturbations of the Schur
parameters that keep an arbitrary mass point invariant.

Now we proceed with the conventions for the notation. For any subset A of a
Hilbert space, A is its closure and spanA the set of all finite linear combinations
of A. Also, if S is a subspace of the Hilbert space, A⊥S means the subspace of S
orthogonal to A.

Given a linear operator T on a Hilbert space, T ∗ denotes its adjoint and σ(T ) its

spectrum, while for every complex matrix M , MT is its transpose and M∗ = M
T

.
I and IN represent the unit matrix of order infinite and N , respectively. Any matrix
of order N is considered as an operator in CN , and any infinite bounded matrix
is identified with the continuous operator that it defines in �2, the Hilbert space of
square-sumable sequences in C. The inner products in CN and �2 are denoted by
(·, ·), and the corresponding canonical basis by {en}. No misunderstanding will arise
from this common notation.

The term measure always means non-negative finite Borel measure, and, without
loss of generality, we will consider only probability measures. If µ is a measure on
a subset of C, suppµ is its support and L2

µ the Hilbert space of µ-square-integrable
complex functions with inner product

〈f, g〉µ :=
∫

f (z)g(z) dµ(z), f, g ∈ L2
µ.
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T := {z ∈ C : |z| = 1} is the unit circle and D := {z ∈ C : |z| < 1} the open unit
disk in the complex plane. A multiplication operator on T has the form

Uµ : L2
µ → L2

µ

f (z) → zf (z)

where µ is a measure on T.

2. Representations of unitary operators and orthogonal polynomials on T

Given a unitary operator U on a separable Hilbert space H, the equivalence
between the following assertions is known [32]:

• The spectrum of U is simple.
• U has a cyclic vector v ∈ H, in the sense of span{Unv}n∈Z = H.
• U is unitarily equivalent to a multiplication operator on T.

A standard application of Zorn’s lemma shows that any unitary operator can be
expressed as a (finite or infinite) orthogonal sum of unitary operators with cyclic
vectors. Therefore, the study of unitary operators becomes the study of multiplication
operators on T. As for the spectral properties of such multiplication operators, it is
known that σ(Uµ) = suppµ, the mass points of µ being the eigenvalues of Uµ. The
eigenvectors of Uµ associated with an eigenvalue λ are spanned by the characteristic
function Xλ of the set {λ}.

For a long time, the usual attempts to get matrix representations of Uµ have dealt
with basis constituted by orthogonal polynomials (OP) with respect to µ, that is,
polynomials satisfying

degϕn = n, 〈ϕn, ϕm〉µ = δn,m, n,m � 0. (1)

When suppµ has a finite number N of elements, dim(L2
µ) = N and such a basis

�N := (ϕn)
N−1
n=0 comes from the orthogonalization of {zn}N−1

n=0 . �N is called a finite
segment of OP associated with µ. If suppµ is infinite, dim(L2

µ) = ℵ0 and the ortho-
gonalization of the infinite set {zn}n�0 gives a sequence � := (ϕn)n�0 satisfying (1)
that is called a sequence of OP with respect to µ. However, such a sequence is not
always a basis of L2

µ since the polynomials are not always dense in L2
µ.

In what follows, ϕn denotes the unique n-th OP with respect to µ with posit-
ive leading coefficient κn. It is known that these polynomials satisfy the recurrence
relation

ϕ0(z) = 1,

ρnϕn(z) = zϕn−1(z) + anϕ
∗
n−1(z), n � 1,

(2)

where p∗(z) := znp(z−1) for a polynomial p of degree n, ρn := √
1 − |an|2 and

an ∈ D are known as the Schur parameters associated with µ.
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Besides, when suppµ = {z1, z2, . . . , zN }, the same arguments that give (2) show
that the polynomial ψ(z) = (z − z1)(z − z2) · · · (z − zN) satisfies

κN−1ψ(z) = zϕN−1(z) + aNϕ
∗
N−1(z), aN ∈ T. (3)

It is known that the preceding results establish a one to one correspondence
between:

• Probability measures supported on N points of the unit circle and vectors aN :=
(a1, a2, . . . , aN) ∈ DN−1 × T.

• Probability measures supported on an infinite subset of the unit circle and se-
quences a := (an)n∈N ∈ Dℵ0 .

If � is the sequence of OP related to a measure µ with infinite support, from
(2) we find that the matrix of Uµ with respect to � is a Hessenberg one given by
[9,2,17,27,34]

H(a) :=




−a1 −ρ1a2 −ρ1ρ2a3 −ρ1ρ2ρ3a4 · · ·
ρ1 −a1a2 −a1ρ2a3 −a1ρ2ρ3a4 · · ·

ρ2 −a2a3 −a2ρ3a4 · · ·
ρ3 −a3a4 · · ·

ρ4 · · ·
· · ·



,

where a is the corresponding sequence of Schur parameters.
The principal matrix of order N of H(a) only depends on the vector aN and will

be denoted by H(aN). If aN ∈ DN−1 × T and µ is the related finitely supported
measure we get from (2) and (3) that z�N(z) = H(aN)T�N(z) + κN−1ψ(z)eN , �N

being the corresponding finite segment of OP [5]. Sinceψ(z) = 0µ-a.e., we find that
H(aN) is the matrix of Uµ with respect to �N .

Apart from its complexity, the infinite matrix H(a) represents the full operator Uµ

only when the polynomials are dense in L2
µ, that is, when a �∈ �2 [10,33]. In general,

H(a) represents the restriction of Uµ to the closure of P := span{zn}n�0. Hence,
although H(a) is always isometric, it is unitary iff zP = P. Since this condition is
equivalent to P = L2

µ, we see that H(a) is unitary iff a �∈ �2.
The measures corresponding to sequences a ∈ �2 constitute the so-called Szegö

class. A possibility of getting a matrix representation for Uµ in this case is to enlarge
the OP basis to get an orthonormal basis of L2

µ. This possibility is exploited in [31],
obtaining a doubly infinite unitary matrix in which H(a) is embedded. Anyway, the
complexity of the matrix representation remains.

If we want to simplify the matrix representation of Uµ solving at the same time
the problem for the Szegö class, we have to change completely the choice of the
basis for L2

µ. Since the space of Laurent polynomials is always dense in L2
µ, a more

natural choice for a basis is the orthogonal Laurent polynomials (OLP) with respect
to µ, related to the corresponding OP by [6,35]



M.J. Cantero et al. / Linear Algebra and its Applications 408 (2005) 40–65 45

χ2k(z) = z−kϕ∗
2k(z), χ2k+1 = z−kϕ2k+1(z), k � 0. (4)

The above relation gives a finite segment of OLP XN := (χn)
N−1
n=0 in the case of a

measure supported on N points, or a sequence X := (χn)n�0 of OLP for an infi-
nitely supported measure. XN and X always constitute an orthonormal basis of the
corresponding space L2

µ.
If the measure µ has infinite support, we get from (2) the following matrix repre-

sentation for the operator Uµ with respect to the related sequence X of OLP [6]

C(a) :=




−a1 −ρ1a2 ρ1ρ2
ρ1 −a1a2 a1ρ2 0
0 −ρ2a3 −a2a3 −ρ3a4 ρ3ρ4

ρ2ρ3 a2ρ3 −a3a4 a3ρ4 0
0 −ρ4a5 −a4a5 −ρ5a6 ρ5ρ6

ρ4ρ5 a4ρ5 −a5a6 a5ρ6 0
. . .

. . .
. . .

. . .
. . .



,

a being the corresponding sequence of Schur parameters.
Now we deal with a five-diagonal matrix that, contrary to the Hessenberg one, al-

ways represents the full operator Uµ and, hence, is unitary for any a ∈ Dℵ0 . Besides,
it has a much simpler dependence on the Schur parameters.

The principal matrix of order N of C(a), that only depends on aN , will be de-
noted by C(aN). Analogously to the case of the Hessenberg representation, if aN ∈
DN−1 × T and µ is the related measure, C(aN) is the matrix of Uµ with respect to
the corresponding finite segment of OLP XN : using (2)–(4) we find that zXN(z) =
C(aN)TXN(z) + bNz−[N−1

2 ]ψ(z), where

bN =
{
κN−1eN if N is even,
κN−1(ρN−1eN−1 + aN−1eN) if N is odd,

and, since ψ(z) = 0 µ-a.e., we get the desired result.
Let µ be a measure on T, (ϕn) the corresponding OP and (χn) the related OLP. As

a consequence of the whole previous discussion, if µ is associated with the sequence
a ∈ Dℵ0 of Schur parameters, σ(H(a)) = suppµ for a /∈ �2 while σ(C(a)) = suppµ
always happens. Also, if µ is the finitely supported measure associated with aN ∈
DN−1 × T, then σ(H(aN)) = σ(C(aN)) = suppµ. Similar relations hold between
the mass points of the measure and the eigenvalues of the related matrices. As for
the eigenvectors associated with a mass point λ, since 〈Xλ, ϕn〉µ = µ({λ})ϕn(λ)
and 〈Xλ, χn〉µ = µ({λ})χn(λ), we find that

∑
n ϕn(λ)en is an eigenvector of the

corresponding Hessenberg matrix when it represents the full operator Uµ, while∑
n χn(λ)en is always an eigenvector of the related five-diagonal matrix.
Let λ be a mass point of µ. Using the decomposition of Xλ with respect to the

OLP basis we find that µ({λ}) = 〈Xλ,Xλ〉µ = µ({λ})2 ∑n |χn(λ)|2 and, so, since
λ ∈ T, we get from the relation (4) between OP and OLP that µ({λ}) =
1/

∑
n |ϕn(λ)|2. Thus, when µ has infinite support, �(λ) ∈ �2 if λ is a mass point.
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Conversely, if λ ∈ T is such that �(λ) ∈ �2, then λ is a mass point sinceC(a)∗X(z) =
zX(z) ∀z ∈ C. Notice that these arguments also work using the OP basis but restric-
ted to measures outside the Szegö class.

Among other things, the preceding results show that the minimal representations
of unitary operators are at most five-diagonal, but, are they exactly five-diagonal?

Moreover, like any unitary operator, every Hessenberg matrix that is unitary must
be unitarily equivalent to a five-diagonal one. However, a question remains if we
want to complete the “five-diagonal reduction” of the spectral problem for any uni-
tary Hessenberg matrix: which one is the five-diagonal matrix related to an arbitrary
unitary Hessenberg one?

A deeper study of unitary five-diagonal and Hessenberg matrices will answer the
above questions.

3. Five-diagonal and Hessenberg matrices

The five-diagonal matrices presented in the previous section are examples of the
following kind of matrices, that can be considered an intermediate step between the
five-diagonal and the tri-diagonal case.

Definition 3.1. A (finite or infinite) five-diagonal matrix C = (ci,j ) is called para-
tridiagonal if c2k,2k+2 = c2k+1,2k−1 = 0 ∀k � 1, that is,

C =




c1,1 c1,2 c1,3

c2,1 c2,2 c2,3 0
0 c3,2 c3,3 c3,4 c3,5

c4,2 c4,3 c4,4 c4,5 0
0 c5,4 c5,5 c5,6 c5,7

c6,4 c6,5 c6,6 c6,7 0
. . .

. . .
. . .

. . .
. . .



.

C is called irreducible if c2,1 /= 0 and c2k−1,2k+1, c2k+2,2k /= 0 ∀k � 1.

Unitary irreducible para-tridiagonal matrices, like unitary irreducible Hessenberg
ones, have e1 as a cyclic vector (in fact, any vector en, n ∈ N, is cyclic in the first
case). Therefore, any unitary irreducible para-tridiagonal matrix is the matrix rep-
resentation of a multiplication operator on T and, hence, is unitarily equivalent to
one with the form C(a) or C(aN). However we do not know how to describe this
relation exactly. The following result is the first step to answer this and the previous
questions, since it provides the general form of infinite unitary para-tridiagonal and
Hessenberg matrices. The matrix representations introduced in the preceding section
are indispensable guides for taking this step.
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Theorem 3.2. An infinite para-tridiagonal (Hessenberg) matrix is unitary (isomet-
ric) iff it has the form C(a, b) (H(a, b)), where a, b ∈ Cℵ0 are such that |an|2 +
|bn|2 = 1 ∀n ∈ N, and

C(a, b) :=




−a1 −b1a2 b1b2
b1 −a1a2 a1b2 0
0 −b2a3 −a2a3 −b3a4 b3b4

b2b3 a2b3 −a3a4 a3b4 0
0 −b4a5 −a4a5 −b5a6 b5b6

b4b5 a4b5 −a5a6 a5b6 0
. . .

. . .
. . .

. . .
. . .



,

H(a, b) :=




−a1 −b1a2 −b1b2a3 −b1b2b3a4 · · ·
b1 −a1a2 −a1b2a3 −a1b2b3a4 · · ·

b2 −a2a3 −a2b3a4 · · ·
b3 −a3a4 · · ·

b4 · · ·
· · ·



.

Proof. An infinite para-tridiagonal matrix C can be written in the way

C =



CT

1 C2 0 · · ·
0 CT

3 C4 · · ·
0 0 CT

5 · · ·
· · · · · · · · · · · ·


 ,

C1 ∈ C(1,2),

Cn ∈ C(2,2), n � 2.

It is unitary iff C∗C = CC∗ = I , which is equivalent to

C1C
∗
1 = I1,

CnC
∗
n + (C∗

n−1Cn−1)
T = I2, n � 2,

C∗
nC

T
n−1 = 0, n � 2.

The first condition means that

C1 = (−a1 b1
)
, |a1|2 + |b1|2 = 1,

and, then, by induction, we find that the rest of the equations are satisfied iff

Cn =
(−bn−1an bn−1bn

−an−1an an−1bn

)
, |an|2 + |bn|2 = 1, n � 2.

This proves the theorem in the para-tridiagonal case.
Now, let H be a Hessenberg matrix, that is, its nth column hn belongs to span{e1,

e2, . . . , en+1} ⊂ �2. H is isometric iff H ∗H = I , which means that {hn}n∈N is an
orthonormal set of �2. We will see that this is equivalent to



48 M.J. Cantero et al. / Linear Algebra and its Applications 408 (2005) 40–65

hn = bnen+1 − anvn, n ∈ N

vn =
n∑

i=1
ai−1bibi+1 · · · bn−1ei, n ∈ N,

a0 = 1; |an|2 + |bn|2 = 1, n ∈ N,

(5)

which proves the theorem for the Hessenberg case.
First of all, let us suppose that the columns of H have the form (5). From the

expression of vn we find that vn+1 = bnvn + anen+1 for n ∈ N. Therefore, we get by
induction that vn⊥{h1, h2, . . . , hn−1} and (vn, vn) = 1 for n ∈ N. Then, the expres-
sion for hn implies that hn⊥{h1, h2, . . . , hn−1} and (hn, hn) = 1 for n ∈ N.

On the other hand, if the columns of H form an orthonormal set of �2, then
we can write h1 = −a1e1 + b1e2, |a1|2 + |b1|2 = 1, and, for n � 2, hn = bnen+1 +
un, bn ∈ C, un ∈ {h1, h2, . . . , hn−1}⊥span{e1,e2,...,en}. So, h1 has the form given by
(5). Moreover, let us suppose that h1, h2, . . . , hn−1 satisfy (5). Then, {h1, h2, . . . ,

hn−1}⊥span{e1,e2,...,en} = span{vn} and we find that un = −anvn, an ∈ C. The condi-
tion (hn, hn) = 1 gives |an|2 + |bn|2 = 1. This proves by induction that hn has the
form (5) for n ∈ N. �

A consequence of Theorem 3.2 is its analogue for finite matrices. The result for
the Hessenberg case was already known [18]. In what follows, since the principal
submatrix of orderN ofC(a, b) (H(a, b)) only depends on aN, bN−1, this submatrix
will be denoted by C(aN, bN−1) (H(aN, bN−1)).

Corollary 3.3. A finite para-tridiagonal (Hessenberg) matrix of order N is unitary
iff it has the form C(aN, bN−1) (H(aN, bN−1)), where |an|2 + |bn|2 = 1 for 1 �
n � N − 1 and |aN | = 1.

Proof. This result is just a direct consequence of Theorem 3.2 and the following
facts: a finite square matrix M is unitary iff the infinite matrix M ⊕ I is unitary; the
matrices C(a, b) and H(a, b), with |an|2 + |bn|2 = 1 ∀n ∈ N, decompose as a direct
sum of their principal submatrices of order N and an infinite matrix iff bN = 0. �

Remark 3.4 (Decomposition property). Unitary para-tridiagonal and isometric Hes-
senberg matrices have similar decomposition properties. They decompose as a sum
of diagonal blocks iff, for some N , bN = 0, that is, aN ∈ T. Moreover, in this sit-
uation, the blocks must again be unitary para-tridiagonal and isometric Hessenberg
matrices, respectively. In fact, if aN ∈ T,

C(a, b) =
{
C(aN, bN−1) ⊕ C

(
aNa(N), aNb(N)

)
, even n,

C(aN, bN−1) ⊕ C
(
aNa(N), aNb(N)

)T
, odd n,

C(aN+M, bN+M−1) =


C(aN, bN−1) ⊕ C

(
aNa(N)

M , aNb(N)
M−1

)
, even n,

C(aN, bN−1) ⊕ C
(
aNa(N)

M , aNb(N)
M−1

)T
, odd n,
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where a(N) = (aN+n)n∈N, a(N)
M = (aN+1, aN+2, . . . , aN+M) and analogously for b.

In the Hessenberg case, if aN ∈ T,

H(a, b) = H(aN, bN−1) ⊕ H
(
aNa(N), b(N)

)
,

H(aN+M, bN+M−1) = H(aN, bN−1) ⊕ H
(
aNa(N)

M , b(N)
M−1

)
.

Remark 3.5 (Factorization property). For a, b ∈ C, let us define

�(a, b) :=
(−a b

b a

)
, �̂n(a, b) := In−1 ⊕ �(a, b) ⊕ I.

Then, for any bounded sequences a, b ∈ Cℵ0 ,

C(a, b) = Co(a, b)Ce(a, b)T, H(a, b) =
∞∏
n=1

�̂n(an, bn),

where the infinite product, which has to be understood in the strong sense, is from
the left to the right, and

Ce(a, b) = I1 ⊕
(⊕
n∈N

�(a2n, b2n)

)
, Co(a, b) =

⊕
n∈N

�(a2n−1, b2n−1).

These factorizations show explicitly the isometric properties of the matrices given in
Theorem 3.2 and Corollary 3.3.

We also denote �(a) := �(a,
√

1 − |a|2), �̂n(a) := In−1 ⊕ �(a) ⊕ I , so that
H(a) = ∏∞

n=1 �̂n(an) and C(a) = Co(a)Ce(a), where Ce(a) := I1 ⊕ (
⊕

n∈N

�(a2n)) and Co(a) := ⊕
n∈N �(a2n−1).

In the case of finite unitary Hessenberg matrices, the above properties have been
used for spectral computations [18,19]. Notice that the factorization property in the
Hessenberg case is much worse than in the para-tridiagonal one.

We know that any unitary matrix represents an orthogonal sum of multiplication
operators on T and, hence, is unitarily equivalent to a direct sum of unitary irreduc-
ible para-tridiagonal matrices. However, if the initial matrix is also para-tridiagonal,
the equivalence becomes an equality. This is just a consequence of Theorem 3.2,
Corollary 3.3 and the decomposition property given in Remark 3.4. For the same
reason, a similar result is also true for isometric Hessenberg matrices.

Corollary 3.6. Every unitary para-tridiagonal matrix is a direct sum of irreducible
and transposed irreducible ones. Every isometric Hessenberg matrix is a direct sum
of irreducible ones.

Even more, in the study of irreducible unitary para-tridiagonal (isometric Hessen-
berg) matrices, it is enough to consider those with the form C(a) (H(a)) and their
principal submatrices. More precisely, we have the following immediate result.
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Lemma 3.7. For any a ∈ Cℵ0 , b ∈ (C\{0})ℵ0 we have H(a) = R∗H(a, b)R and
C(a) = S∗C(a, b)S, where

R =



r1

r2
r3

. . .


 ,

r1 = 1,
rn+1/rn = bn/|bn|, n � 1,

S =



s1

s2
s3

. . .


 ,

s1 = 1,
s2 = b1/|b1|,
sn+1/sn−1 = bn−1bn/|bn−1bn|, n � 2.

If RN, SN are the principal submatrices of order N of R, S respectively, H(aN) =
R∗
NH(aN, bN−1)RN and C(aN) = S∗

NH(aN, bN−1)SN .

Notice that Theorem 3.2 and the above lemma imply that an infinite Hessenberg
matrix is unitary iff it has the form H(a, b) with |an|2 + |bn|2 = 1 and a /∈ �2.

The preceding results have the following consequence, that represents the “five-
diagonal reduction” of the spectral problem for any unitary Hessenberg matrix. With-
out loss of generality we consider only the irreducible case.

Theorem 3.8. Let H = (hi,j ) be a (finite or infinite) unitary irreducible Hessenberg
matrix and let us define

τn :=
{

1, n = 1,∏n−1
k=1 hk+1,k, n � 2.

Then, H is unitarily equivalent to a para-tridiagonal matrix C = (ci,j ) with the form
C(a) or C(aN), where

an = −h1,n

τ n
, n � 1.

The unitary equivalence is given by H = V ∗CV, where the columns of V = (vi,j )

can be recursively obtained by

vi,j =




τ j
|τj |δi,j , j = 1, 2,

1
hj,j−1

(
min{i+2,2j−4}∑

k=i−2
ci,kvk,j−1

−
j−1∑

k=min
{
i,
[
i+3

2

]}hk,j−1vi,k


 , i � 2j − 2, j � 3,

0, i � 2j − 1, j � 3.

In the above expression the sums have to be understood only over those terms in
which the matrix coefficients have indices between 1 and the order of H. The eigen-



M.J. Cantero et al. / Linear Algebra and its Applications 408 (2005) 40–65 51

vectors x(λ) = ∑
n xn(λ)en of H and y(λ) = ∑

n yn(λ)en of C corresponding to the
same eigenvalue λ are related by

x2k−1(λ) = τ2k−1

|τ2k−1|λ
1−ky2k−1(λ), x2k(λ) = τ2k

|τ2k|λ
1−ky2k(λ), k � 1.

Proof. We will consider only the case of an infinite matrix H , the proof for the finite
case being completely analogous. Then, from Theorem 3.2, H must have the form
H(a, b), a ∈ Dℵ0\�2. So, according to Lemma 3.7, H is unitarily equivalent to H(a)
which, at the same time, is unitarily equivalent to C(a) since they are representations
of the same multiplication operator.

We know that H = RH(a)R∗, R = (riδi,j ), where ri = τi/|τi | since hi+1,i = bi .
Besides, if µ is the measure related to the sequence a of Schur parameters and
(ϕn)n�0, (χn)n�0 are the corresponding OP, OLP respectively, then H(a) = U∗C(a)
U , U = (ui,j ), ui,j = 〈ϕj−1, χi−1〉µ. Therefore, H = V ∗C(a)V , V = UR∗. For
j = 1, 2, ϕj−1 = χj−1 and, so, vi,j = rj δi,j . For the rest of the columns in V ,
if j � 2, ϕj ∈ span{1, z, z−1, . . . , z1−j , zj } = span{χ0, χ1, . . . , χ2j−1} and, thus,
〈ϕj , χi〉µ = 0 for i � 2j . Since R is diagonal, this implies that vi,j = 0 for i �
2j − 1, j � 3. Moreover, from the equality VH = C(a)V we get

j∑
k=1

vi,khk,j−1 =
i+2∑

k=i−2

ci,kvk,j−1, i � 2j − 2, j � 3,

which completes the expression given for vi,j , once the restriction vi,j = 0, i �
max{j + 1, 2j − 1}, is taken into account in the above sums.

Given an eigenvalue λ of H = RH(a)R∗, the corresponding eigenvectors are
spanned by

∑
n∈N rnϕn−1(λ)en, while the eigenvectors of C(a) are spanned by∑

n∈N χn−1(λ)en. Hence, the referred relation between eigenvectors is just a
consequence of the relation (4) between OP and OLP. �

The para-tridiagonal representations improve the Hessenberg representations of
unitary operators because of their greater simplicity. Besides, as we pointed out
in Remark 3.4, they have similar decomposition properties and, thus, “Divide and
Conquer” algorithms [19] can be also developed for the spectral problem of a uni-
tary para-tridiagonal matrix. Even more, the factorization given in Remark 3.5 al-
lows to write the corresponding five-diagonal eigenvalue problem equivalently as a
generalized eigenvalue problem for a tri-diagonal pair of unitary matrices.

Now we reach the announced result about the minimal representations of unitary
operators.

Theorem 3.9. A (p, q)-diagonal unitary matrix is a sum of diagonal blocks of order
not greater than p + q if p or q are equal to 1.
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Proof. We can restrict our attention to the case of (1, q)-diagonal matrices since,
otherwise, we can deal with the adjoint matrix, that keeps the unitarity. Also, it is
enough to prove that, if such a unitary band matrix has order greater than q + 1, then
it must decompose as a sum of smaller diagonal blocks. Let us suppose that � =
(ωi,j ) is of order greater that q + 1 and does not decompose. � is, in particular, an
isometric Hessenberg matrix and, hence, � = H(a, b) or � = H(aN, bN−1), N �
q + 2. Since it does not decompose, bn /= 0 for all n. Thus, for j � q + 2, ω1,j =
−∏j−1

k=1 bkaj = 0 implies aj = 0. Hence, if i � j , ωi,j = −ai−1aj
∏j−1

k=i bk = 0
for j � q + 2. Therefore, {�∗e1,�∗e2, . . . ,�∗eq+2} ⊂ span{e1, e2, . . . , eq+1},
which is a contradiction with the unitarity of �. �

A matrix that decomposes as a sum of finite diagonal blocks has always pure point
spectrum. Therefore, the previous theorem shows that the only (p, q)-diagonal repre-
sentations possible for any unitary operator are those where p, q � 2. Consequently,
we have the following corollary.

Corollary 3.10. The minimal representations of unitary operators are five-diagonal.

4. Krein’s Theorem

One of the advantages of band representations is that they make it easier to decide
the “smallness” of a perturbation. For example, the compactness of an operator is
equivalent to stating that the diagonals of a band representation converge to 0. This
makes it quite simple, for example, to apply Weyl’s Theorem [36,26,29] for the
invariance of the essential spectrum. Also, it is easier to prove that a perturbation
belongs to the trace class, which can be used to give a simple and elegant operator
theoretic proof of Rakhmanov’s lemma [31] using the Kato–Rosenblum Theorem
[25,30,26,29] on the invariance of the absolutely continuous part of the spectrum of
an operator.

In spite of the difficulties that appear, many results about the orthogonality mea-
sures of OP on T have been obtained using the Hessenberg representation [12,13,14,
16,34], mainly due to the efforts of Golinskii. The proofs of such results can be now
simplified, but we want to show some new results and advantages provided by the
para-tridiagonal representation in the analysis of the relation between measures and
Schur parameters.

First of all, we will discuss the advantages found in the application of Krein’s
Theorem [1], getting new results for discrete measures whose support has a finite
derived set. Krein’s Theorem asserts that, given a measure µ with infinite support,
it is equivalent to saying that suppµ accumulates on the finite set {w1, w2, . . . , wN }
and that the operator pN(Uµ) is compact, where pN(z) = ∏N

i=1(z − wi). This the-
orem was established in 1962 by Akhiezer and Krein [1] for measures on the real
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line with finite moments. Recently, the translation to the unit circle was given by
Golinskii [12], who succeeded in characterizing in terms of the Schur parameters the
measures whose support has one or two limit points, using the Hessenberg represen-
tation of Uµ. He also proved that the Schur parameters of any measure on T whose
support has a finite number N of limit points must satisfy

lim
n
ρnρn+1 · · · ρn+N−1 = 0, (6)

from which comes the property limn|an| = 1 for any measure whose support has a
finite derived set.

However, with the Hessenberg representation it is hard to go further in this direc-
tion. The para-tridiagonal representation makes things easier, not only because of its
band structure, but also due to its factorization properties. In the context of the para-
tridiagonal representation, for the application of Krein’s Theorem it is necessary
to decide the compactness of pN(C(a)), where a is the sequence of Schur param-
eters associated with µ. This requires the calculation of the 4N + 1 diagonals of
pN(C(a)), some of them possibly giving redundant information. We can optimize
the calculations using the factorization of Remark 3.5.

Proposition 4.1. Given w1, w2, . . . , wN ∈ T, let us define

qN(C(a)) =
{
C(a)∗kpN(C(a)) if N = 2k,

Co(a)∗C(a)∗kpN(C(a)) if N = 2k + 1,

where pN(z) = ∏N
i=1(z − wi). Then, qN(C(a)) is a 2N + 1-diagonal matrix such

that

qN(C(a))∗ =
{(∏N

i=1 wi

)
qN(C(a)) if N is even,

qN(C(a)) if N is odd,

and pN(C(a)) is compact iff limn qN(C(a))n+m,n = 0 for m = 0, 1, . . . , N.

Proof. From the unitarity of C(a) and Co(a), the equivalence between the compact-
ness of pN(C(a)) and qN(C(a)) follows. The matrix qN(C(a)) is a linear combi-
nation of products of, at most, N tri-diagonal matrices, so, it is 2N + 1-diagonal.
Thus, qN(C(a)) is compact iff limn qN(C(a))n+m,n = 0 for m = 0,±1, . . . ,±N .
Hence, to finish the proof we just have to check the relations between qN(C(a)) and
qN(C(a))∗.

When N is odd, qN(C(a)) is a linear combination of products of an odd number
of alternate factors Co(a) and Ce(a), or their adjoints. Since Co(a) and Ce(a) are
symmetric, qN(C(a)) is symmetric too.

In the case of evenN = 2k, we can write qN(C(a)) = ∏k
i=1 ri(C(a)), ri(C(a)) =

(C(a) − wi)C(a)∗(C(a) − wk+i ). The result is just a consequence of the fact that
ri(C(a))∗ = wiwk+i ri(C(a)). �
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Therefore, we can apply Krein’s Theorem imposing only that the main and lower
diagonals of qN(C(a)) converge to 0, which will give in general N + 1 asymptotic
conditions for the Schur parameters of a measure whose support has N given limit
points. For illustrative purposes we present the results achieved using this procedure
when applied to the characterization of measures whose support has up to three limit
points.

Proposition 4.2. Let µ be the measure associated with the sequence a of Schur
parameters. Then:

1. {suppµ}′ = {α} iff
limn(anan+1 + α) = 0.

2. {suppµ}′ ⊂ {α, β} iff
limn ρnρn+1 = 0,
limn ρn+1(anan+2 − αβ) = 0,
limn(anan+1 + αβanan+1 + α + β) = 0.

3. {suppµ}′ ⊂ {α, β, γ } iff
limn ρnρn+1ρn+2 = 0,
limn ρn+1ρn+2(anan+3 + αβγ ) = 0,
limn ρn+1(anan+1 + an+1an+2 − αβγ anan+2 + α + β + γ ) = 0,
limn(ana

2
n+1 − ρ2

n+1an+2 + αβγ (a2
nan+1 − an−1ρ

2
n) + (αβ + βγ + γα)an +

(α + β + γ )an+1) = 0.

The first result of the above proposition is the same one obtained in [12], but the
second assertion simplifies the one given in [12]. Notice that the relations given in
the two last cases of the proposition also imply

lim
n
ρn+1

(
anan+1 + an+1an+2 + α + β

) = 0,

if {suppµ}′ ⊂ {α, β}, while, for {suppµ}′ ⊂ {α, β, γ },
lim
n
ρn+1ρn+2

(
anan+1 + an+1an+2 + an+2an+3 + α + β + γ

) = 0.

The above results suggest the following improvement of the property (6) that gives a
common feature for measures whose support has a finite derived set.

Theorem 4.3. Let µ be the measure associated with the sequence a of Schur para-
meters. If {suppµ}′ ⊂ {w1, w2, . . . , wN }, then

lim
n

N∏
i=1

ρn+i = 0, N � 1,

lim
n
(anan+N − P)

N−1∏
i=1

ρn+i = 0, N � 2,
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lim
n


 N∑
j=1

an+j−1an+j + S


N−1∏

i=1

ρn+i = 0, N � 2,

lim
n


N−1∑

j=1

an+j−1an+j + Panan+N−1 + S


N−2∏

i=1

ρn+i = 0, N � 2,

where P := (−1)Nw1w2 · · ·wN and S := w1 + w2 + · · · + wN .

Proof. We will consider only the case of even N = 2k, since the analysis for odd N

is analogous. Then, the operator qN(C(a)) associated with the points w1, w2, . . . ,

wN, given in Proposition 4.1, has the form

qN(C(a)) = C(a)k − SC(a)k−1 + · · · − SPC(a)∗k−1 + PC(a)∗k.

For N − 3 � m � N , qN(C(a))n+m,n = q
(1)
N (C(a))n+m,n, where

q
(1)
N (C(a)) = C(a)k − SC(a)k−1 − SPC(a)∗k−1 + PC(a)∗k.

So, limn q
(1)
N (C(a))n+m,n = 0, N − 3 � m � N , under the hypothesis for µ.

Let us examine the coefficients q(1)N (C(a))n+m,n for m = N,N − 1, N − 2. We
can write Co(a) = Ao + VBo + BoV

∗ and Ce(a) = Ae + VBe + BeV
∗, V being

the right shift, defined by V en = en+1, and

Aoen =
{−anen, odd n,

an−1en, even n,
Aeen =

{
an−1en, odd n,

−anen, even n,

Boen =
{
ρnen, odd n,

0, even n,
Been =

{
0, odd n,

ρnen, even n.

Taking into account that V , V ∗ rise and lower the indices of the vectors en, respec-
tively, V ∗e1 = 0, and Bo, Be vanish over vectors with even and odd index n, respec-
tively, we find that(

q
(1)
N (C(a))en, en+N

)= (
((V BoVBe)

k + P(VBeVBo)
k)en, en+N

)
=
{
ρnρn+1 · · · ρn+N−1, even n,

Pρnρn+1 · · · ρn+N−1, odd n,

(
q
(1)
N (C(a))en, en+N−1

)
= (

((V BoVBe)
k−1VBoAe + AoVBe(V BoVBe)

k−1)en, en+N−1
)

+P
(
((V BeVBo)

k−1VBeA
∗
o + A∗

eV Bo(V BeVBo)
k−1)en, en+N−1

)
=
{−ρn · · · ρn+N−2(an+N−1 − Pan−1), even n,

−Pρn · · · ρn+N−2(an+N−1 − Pan−1), odd n.
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Therefore, limn

∏N
i=1 ρn+i = 0 and limn(an+N − Pan)

∏N−1
i=1 ρn+i = 0, which is

equivalent to the first and second equalities of the theorem.
Concerning the coefficients (q(1)N (C(a))en, en+N−2), we have that(

C(a)ken, en+N−2
)

= (
(V BoVBe · · ·VBoVBeAoAe)en, en+N−2

)
+ (

(V BoVBe · · ·VBoAeAoVBe)en, en+N−2
)

+ · · · + (
(AoVBe · · ·VBoVBeVBoAe)en, en+N−2

)
=
{−ρn · · · ρn+N−3(an−1an + · · · + an+N−3an+N−2), even n,

−ρn · · · ρn+N−3an−1an+N−2, odd n,

(
C(a)∗ken, en+N−2

)
= (

(V BeVBo · · ·VBeVBoA
∗
eA

∗
o)en, en+N−2

)
+ (

(V BeVBo · · ·VBeA
∗
oA

∗
eV Bo)en, en+N−2

)
+ · · · + (

(A∗
eV Bo · · ·VBeVBoVBeA

∗
o)en, en+N−2

)
=
{−ρn · · · ρn+N−3an−1an+N−2, even n,

−ρn · · · ρn+N−3(an−1an + · · · + an+N−3an+N−2), odd n,

(
C(a)k−1en, en+N−2

) = (
(V BoVBe)

k−1en, en+N−2
)

=
{
ρnρn+1 · · · ρn+N−3, even n,

0, odd n,

(
C(a)∗k−1en, en+N−2

)= (
(V BeVBo)

k−1en, en+N−2
)

=
{

0, even n,

ρnρn+1 · · · ρn+N−3, odd n.

From these results the last equality of the theorem follows. The third relation is just
a consequence of the other ones. �

5. Perturbations of the Schur parameters and mass points

In the previous discussion we have exploited the band structure and factorization
properties of the para-tridiagonal representation. Now we will also show the advan-
tages of its simple dependence on the Schur parameters, in particular, of the fact
that, contrary to the Hessenberg representation, any Schur parameter appears in only
a finite number of elements of the para-tridiagonal representation.

The application to the study of OP of standard results of operator theory, like
the Weyl, Krein or Kato–Rosenblum theorems, gives information about the limit
points of the support of the orthogonality measure. However, for the analysis of
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isolated mass points other tools are more appropriate. This last section illustrates the
usefulness of the para-tridiagonal representation for this purpose too. Our aim is to
study the behaviour of the isolated mass points of the measure under mono-paramet-
ric perturbations of the Schur parameters using the Hellmann–Feynman Theorem
[8,20,21,23].

Let us suppose a sequence a(t) ∈ Dℵ0 depending on t ∈ I , where I is an inter-
val of R. A measure µt corresponds to each value of t . The related OP and OLP
sequences will be denoted by �t := (ϕtn)n�0 and Xt := (χt

n)n�0 respectively.
Besides, let u(t) be a function of t ∈ I with values on T. For each t we can con-

sider the finitely supported measure µt
N corresponding to the parameters (a1(t), . . . ,

aN−1(t), u(t)), whose finite segments of OP and OLP are respectively �t
N :=

(ϕtn)
N−1
n=0 and Xt

N := (ϕtn)
N−1
n=0 . The importance of such discrete measures is that

they weakly converge to µt and, thus, they provide the, so called, Szegö quadrature
formulas [24] for the measure µt .

We are interested in the evolution with t of the isolated mass points of µt , that
is, the isolated eigenvalues of C(t) := C(a(t)). We will also analyze the movement
of the mass points of the discrete approximations µt

N , that is, the eigenvalues of
CN(t) := C(âN(t)), âN(t) := (a1(t), . . . , aN−1(t), u(t)).

Since the finite matrices CN(t) have N different eigenvalues, in any interval
where âN(t) is differentiable with respect to t , its eigenvalues are differentiable
functions λ(t) [26]. Moreover, the corresponding eigenvectors Xt

N (λ(t)) are also
differentiable in t , since XN(z) is a differentiable function of a1, . . . , aN−1, z.

Concerning the infinite matrix C(t), a similar result holds, but only locally. More
precisely, let us suppose that C(t) is differentiable in norm with bounded derivative
C′(t) and ‖C′(t)‖ locally bounded. Then, if λ0 is an isolated eigenvalue of C(t0),
there exists a neighbourhood of t0 where C(t) has an isolated eigenvalue λ(t) which
is differentiable and such that λ(t0) = λ0. Moreover, a related eigenvector can be
chosen as a strongly differentiable function of t in a neighbourhood of t0 [22].

This last discussion justifies the following lemma.

Lemma 5.1. Let �(t) = (ωi,j (t))i,j∈N be a bounded band matrix depending on a
parameter t ∈ I, I being an interval of R. Assume that the coefficients ωi,j (t) are
twice differentiable and supi,j∈N |ω′

i,j (t)|, supi,j∈N |ω′′
i,j (t)| are locally bounded on

I. Then,�(t) is differentiable in norm with bounded derivative �′(t) := (ω′
i,j (t))i,j∈N

and ‖�′(t)‖ is locally bounded on I.

Proof. We can write �(t) = �0(t) + ∑N
k=1(V

k�k(t) + �−k(t)V
∗k), where �k(t),

|k| � N , are diagonal matrices and V is the right shift. Hence, if the statement is
true for the matrices �k(t), it is also true for �(t). So, we just have to check the
proposition for a diagonal matrix �(t) = diag(ω1(t), ω2(t), . . .). If ωn(t) are differ-
entiable and supn∈N |ω′

n(t)| is locally bounded on I , �′(t) := diag(ω′
1(t), ω

′
2(t), . . .)

is bounded with ‖�′(t)‖ = supn∈N |ω′
n(t)| locally bounded on I . If, besides, ωn(t)
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are twice differentiable and supn∈N |ω′′
n(t)| � K in a neighbourhood of t0, using the

mean value theorem we get∥∥∥∥�(t) − �(t0)

t − t0
− �′(t0)

∥∥∥∥ = sup
n∈N

∣∣∣∣ωn(t) − ωn(t0)

t − t0
− ω′

n(t0)

∣∣∣∣ � K|t − t0|,

for t in such a neighbourhood. This proves the differentiability in norm. �

Now we can state the following result for a differentiable mono-parametric per-
turbation of the Schur parameters.

Proposition 5.2. Let an : I → D be differentiable for n ∈ N. Then:

1. If u : I → T is differentiable, the mass points of µt
N are differentiable functions

λ : I → T satisfying

λ′(t) = µt
N({λ(t)})Xt

N(λ(t))
TC′

N(t)X
t
N(λ(t)).

2. If an : I → D is twice differentiable for n ∈ N and supn∈N |a′
n(t)|, supn∈N |a′′

n(t)|,
supn∈N |ρ′

n(t)|, supn∈N |ρ′′
n(t)| are locally bounded on I, for any isolated mass

point λ0 of µt0 there exists a differentiable function λ : J → T on a neighbour-
hood J of t0 such that λ(t) is an isolated mass point of µt for t ∈ J and λ(t0) =
λ0. This function satisfies

λ′(t) = µt({λ(t)})Xt (λ(t))TC′(t)Xt (λ(t)).

Proof. From the previous discussions and Lemma 5.1 we find that the referred
differentiable functions λ(t) exist under the conditions of the theorem. The expres-
sion for λ′(t) follows from the Hellmann–Feynman Theorem for normal operators.
Let us consider the infinite case since the analysis of the finite case is analogous.
The mass points λ(t) are simple eigenvalues of C(t) with associated eigenspace
spanned by Xt(λ(t)). We know that there exists a strongly differentiable eigenvec-
tor Y (t) of C(t) with respect to λ(t). Therefore, just differentiating the equality
Y (t)∗C(t)Y (t) = λ(t)Y (t)∗Y (t) and bearing in mind the unitarity of C(t), we get
Y (t)∗C′(t)Y (t) = λ′(t)Y (t)∗Y (t). This relation is also true when substituting Y (t)

by Xt(λ(t)) since they are proportional. The statement 2 is then a consequence of
the equality Xt(λ(t))TXt(λ(t)) = ∑

n∈N |ϕn(λ(t))|2 = 1/µt ({λ(t)}). �

It is natural to expect a qualitatively different behaviour of the measure under
rotations or dilatation of the Schur parameters. Therefore, it could be interesting to
examine the preceding result when we decompose the mono-parametric perturbation
in the way an(t) = rn(t)eiαn(t), rn(t), αn(t) being real functions.

Theorem 5.3. Let an(t) = rn(t)eiαn(t), where rn : I → (−1, 1), αn : I → R are
differentiable for n ∈ N. We define the functions



M.J. Cantero et al. / Linear Algebra and its Applications 408 (2005) 40–65 59

�t
n(z) := 2

ρn(t)2
Im

(
e−iαn(t)z2−n(ϕtn−1(z))

2), n ∈ N,

�t
n(z) := ∣∣ϕtn−1(z)

∣∣2 − ∣∣ϕtn(z)∣∣2, n ∈ N.

1. If u(t) = eiβ(t), being β : I → R differentiable, the mass points of µt
N have the

form λ(t) = eiθ(t), where θ : I → R is a differentiable function that satisfies

θ ′(t) =µt
N({λ(t)})

{
N−1∑
n=1

(r ′
n(t)�

t
n(λ(t))

+α′
n(t)�

t
n(λ(t))) + β ′(t)|ϕN−1(λ(t))|2

}
.

2. Let rn : I → (−1, 1), αn : I → R be twice differentiable. Assume that
supn∈N |r ′

n(t)|, supn∈N |r ′′
n (t)|, supn∈N |α′

n(t)|, supn∈N |α′′
n(t)| are locally bounded

on I and there exists r < 1 such that |rn(t)| < r whenever r ′
n(t) /= 0. Then, if λ0

is an isolated mass point of µt0 , there exists a differentiable function λ : J → T

on a neighbourhood J of t0 such that λ(t) is an isolated mass point of µt for
t ∈ J and λ(t0) = λ0. λ(t) = eiθ(t), where θ : I → R is a differentiable function
that satisfies

θ ′(t) = µt({λ(t)})
∞∑
n=1

(
r ′
n(t)�

t
n(λ(t)) + α′

n(t)�
t
n(λ(t))

)
.

Remark 5.4. Notice that the above series converges due to the suppositions about
the sequences (rn(t))n∈N, (αn(t))n∈N and the fact that �t (λ(t)) ∈ �2 since λ(t) is a
mass point of µt .

Proof. The conditions given for the sequences (rn(t))n∈N, (αn(t))n∈N and the func-
tion β(t) are enough to apply Proposition 5.2. Therefore, the referred differentiable
functions λ(t) exist. Since R is the universal covering space of T, with the imaginary
exponential as a covering map, there exists a unique continuous real valued function
θ(t) such that λ(t) = eiθ(t), θ(t0) = Arg(λ(t0)). Moreover, the imaginary exponen-
tial is locally invertible with differentiable inverse, so, θ(t) must be differentiable
too. From Proposition 5.2 we know that

θ ′(t) = λ′(t)
iλ(t)

= µt({λ(t)})
iλ(t)

Xt (λ(t))TC′(t)Xt (λ(t)).

The rest of the proof is just the calculation of the right hand side of the above expres-
sion, which we will do only for the infinite case since the arguments in finite case are
similar. We can easily do this calculation using the factorization C(t) = Co(t)Ce(t),
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Co(t) = Co(a(t)), Ce(t) = Ce(a(t)), given by Remark 3.5. As a consequence of (2)
and (4), Ce(t)Xt (λ(t)) = Xt(λ(t)) and Co(t)X

t (λ(t)) = λ(t)Xt (λ(t)). Therefore,

Xt(λ(t))TC′(t)Xt (λ(t)) =Xt(λ(t))TC′
o(t)X

t (λ(t))

+ λ(t)Xt (λ(t))∗C′
e(t)X

t (λ(t)),

which, using (4), gives

θ ′(t) = iµt({λ(t)})
∞∑
n=1

λ(t)−n
{
a′
n(t)ϕ

t∗
n−1(λ(t))

2 − a′
n(t)ϕ

t
n(λ(t))

2

−2ρ′
n(t)ϕ

t∗
n−1(λ(t))ϕ

t
n(λ(t))

}
.

Finally, the expression given in the theorem for θ ′(t) follows from the above one,
taking into account (2) and the relations

a′
n(t) = r ′

n(t)e
iαn(t) + iα′

n(t)an(t), ρ′
n(t) = − rn(t)

ρn(t)
r ′
n(t). �

From the above theorem we directly get a bound for the angular velocity of the
isolated mass points.

Corollary 5.5. Under the conditions of Theorem 5.3

|θ ′(t)| � 2

1 − r2
sup
n�1

|r ′
n(t)| + sup

n�1
|α′

n(t) − α′
n−1(t)|,

where α0 = 0 and, in the case of µt
N , the sums run from 1 to N and αN = β.

The particular case of uniform rotations of the Schur parameters is specially inter-
esting. It has been previously considered in [15] and by the authors in [4–6].

Corollary 5.6. Let a ∈ Dℵ0 , u ∈ T and α : I → R differentiable. If an(t) = aneiα(t)

for n ∈ N and u(t) = ueiα(t). Then:

1. The differentiable arguments of the mass points of µt
N satisfy

θ ′(t) = µt
N({λ(t)})α′(t).

2. If α′′(t) exists and is locally bounded on I, the differentiable arguments of the
isolated mass points of µt satisfy

θ ′(t) = µt({λ(t)})α′(t).

Proof. Apply Theorem 5.3 to rn(t) = |an|, αn(t) = α(t) + Arg(an) and β(t) =
α(t) + Arg(u). Notice that α′(t) is locally bounded on I if α(t) is twice differen-
tiable. �
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This result is the generalization to arbitrary measures of the one founded in [5] for
finitely supported measures using the Hessenberg representation. It says that under
a uniform rotation of the Schur parameters the isolated mass points of the corre-
sponding measure rotate in the same direction and the mass of each point gives its
relative angular velocity with respect to the angular velocity of the Schur parameters.
Therefore, a mass point rotates so much more quickly with the Schur parameters as
its mass gets bigger. In fact, Theorem 5.3 suggests that, in general, the mass of an
isolated mass point gives a measure of its instability under perturbations of the Schur
parameters.

The study of the relation between Schur parameters and measures implies the
attempt to find families of Schur parameters associated with measures with some
common features. Theorem 5.3 opens a way to find mono-parametric families of
Schur parameters whose measures have a common mass point. Among the ways to
do this, we will just select some of them.

5.1. Measures with a fixed mass point

Let µ be the measure corresponding to a sequence a = (rneiαn)n∈N of Schur
parameters and (ϕn)n�0 the associated OP. If λ = eiθ is an isolated mass point of
µ, our aim is to find mono-parametric perturbations a(t), a(t0) = a, such that the
corresponding measures µt have the same mass point, at least in a neighbourhood of
t0. We will also consider the analogous problem for the finitely supported measures
µN associated with the parameters (a1, . . . , aN−1, u), u = eiβ . In what follows we
suppose that the perturbation satisfies the conditions given in Theorem 5.3.

Case 1. ak(t) =
{
ak if k /= n

r(t)eiα(t) if k = n
(r(t0) = rn, α(t0) = αn).

This case corresponds to the perturbation of only the nth Schur parameter. So, the
first n OP coincide with the unperturbed ones. Using (2) we get from Theorem 5.3
that λ = eiθ is a fixed mass point if

r ′(t) Im
(
e−iα(t)λ2−n(ϕn−1(λ))

2)
= α′(t)r(t)

{
Re(e−iα(t)λ2−n(ϕn−1(λ))) + r(t)2|ϕn−1(λ)|2

}
.

If (ϕn−1(λ))
2 = |ϕk(λ)|2eiξ , the above equation becomes

d(r sin(α + (n − 2)θ − ξ)) + r2dα = 0,

whose solution for the conditions r(t0)= rn, α(t0)= αn is

r = sin c

sin(α + (n − 2)θ − ξ − c)
,

c = arctan

(
rn sin(αn + (n − 2)θ − ξ)

1 + rn cos(αn + (n − 2)θ − ξ)

)
.
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The same solution appears in the case of a finitely supported measure µN , N > n, if
we leave the parameter u unperturbed.

Case 2. ak(t) =


ak if k < n

r(t)eiα(t) if k = n

ei(α(t)−αn)ak if k > n

(r(t0) = rn, α(t0) = αn)

Again, the first n OP coincide with the unperturbed ones. The condition given by
Theorem 5.3 for a fixed mass point λ = eiθ is now

2dr

1 − r2
sin(α + (n − 2)θ − ξ) − dα = 0,

where ξ is the phase of (ϕn−1(λ))
2. The solution for the conditions r(t0) = rn,

α(t0) = αn is

r = sin 1
2 (α + (n − 2)θ − ξ − c)

sin 1
2 (α + (n − 2)θ − ξ + c)

,

c = 2 arctan

(
1 − rn

1 + rn
tan

1

2
(αn + (n − 2)θ − ξ)

)
.

This solution remains valid in the case of a measure µN , N > n, if we also include
a perturbation u(t) = ei(α(t)−αn)u of the parameter u.

Case 3. ak(t) =


ak if k < n

r(t)eiαn if k = n

eiα(t)ak if k > n

(r(t0) = rn, α(t0) = 0)

As in the previous cases, the first n OP coincide with the unperturbed ones. From
Theorem 5.3 and using (2) we find that the perturbations of this type with a fixed
mass point λ = eiθ are characterized by

2 sin(αn + (n − 2)θ − ξ)dr − (1 + 2r cos(αn + (n − 2)θ − ξ) + r2)dα = 0,

where, again, ξ is the phase of (ϕn−1(λ))
2. The solution for the conditions r(t0) =

rn, α(t0) = 0 is

r = −
sin

(
1
2α + αn + (n − 2)θ − ξ − c

)
sin( 1

2α − c)
,

c = arctan

(
sin(αn + (n − 2)θ − ξ)

rn + cos(αn + (n − 2)θ − ξ)

)
,

which is also valid in the case of a measure µN , N > n, if including a perturbation
u(t) = eiα(t)u of u.

If µt0 has an isolated point at λ = eiθ , the previous relations between r and α

provide perturbations of the Schur parameters that give families of measures with
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the same mass point λ, at least for r , α in a neighbourhood of r(t0), α(t0). In the case
of a finitely supported measure this neighbourhood is only restricted by the condition
|r| < 1.

The simplest case of the above perturbations happens when n = 1, where always
ξ = 0. Another particularly simple situation is the perturbation of a Geronimus mea-
sure, that corresponds to a constant sequence of Schur parameters.

Example: perturbations of Geronimus measures with a fixed mass point.

Let us consider the measure corresponding to a constant sequence of Schur param-
eters an = a ∈ D\{0}, n � 1 [10]. This measure has an isolated mass point at λ =
(1 − a)/(1 − a) if |a − 1/2| > 1/2, that is, if Re(a) < |a|2. The related orthogo-
nal polynomials are ϕn(z) = ρ−n(un+1(z) − (1 − a)un(z)), where ρ = √

1 − |a|2,
un(z) = (w1(z)

n − w2(z)
n)/(w1(z) − w2(z)) and w1(z), w2(z) are the solutions of

w2 − (z + 1)w + ρ2z = 0 [11]. If λ = eiθ , the phase of w1(λ) and w2(λ) is θ/2 and,
thus, (n − 1)θ/2 is the phase of un(λ). Hence, ξ = (n − 1)θ and α + (n − 2)θ −
ξ = α − θ for all n. In this case, the relations between r and α that give a fixed mass
point for the three previous perturbations are independent of the index n of the Schur
parameter where the perturbation starts.

Let us write a = r0eiα0 , r0, α0 ∈ R. Then, the condition for the existence of an
isolated mass point is cosα0 < r0. Using the explicit form of the mass point we find
that

cos(α0 − θ) = (1 + r2
0 ) cosα0 − 2r0

1 + r2
0 − 2r0 cosα0

, sin(α0 − θ) = (1 − r2
0 ) sinα0

1 + r2
0 − 2r0 cosα0

.

Taking into account these expressions we can find explicitly the relations between
r and α that give a fixed mass point at λ = (1 − a)/(1 − a) in the case of the three
perturbations previously studied. We find the following results:

Case 1. r = r0 sinα0
sinα−r0 sin(α−α0)

.

Case 2. r = r0 sin 1
2 (3α0−α)+sin 1

2 (α−α0)

sin 1
2 (α0+α)−r0 sin 1

2 (α−α0)
.

Case 3. r = r0 sin 1
2 (2α0−α)+sin 1

2α

sin 1
2 (2α0−α)+r0 sin 1

2α
.

Notice that in the first and second cases r = r0 for α = α0, due to the initial
conditions r(t0) = r0, α(t0) = α0, while in the third case r = r0 for α = 0, since
r(t0) = r0, α(t0) = 0. If t0 = 0, we can choose α(t) = α0 + t in the first two cases
and α(t) = t in the third one. Then, as a consequence of the previous results, we find
that, in a neighbourhood of t = 0, the following families a(t) of Schur parameters are
related to measures with a common mass point at λ = (1 − a)/(1 − a) (we assume
a ∈ D\R and Re(a) < |a|2):

Case 1. ak(t) =
{
a if k /= n,

Im(a)

Im(a) cos t−(|a|2−Re(a)) sin t
eit a if k = n.
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Case 2. ak(t) =



a if k < n,

Im(a) cos t
2 +(1−Re(a)) sin t

2
Im(a) cos t

2 −(|a|2−Re(a)) sin t
2

eit a if k = n,

eit a if k > n.

Case 3. ak(t) =



a if k < n,

Im(a) cos t
2 +(1−Re(a)) sin t

2
Im(a) cos t

2 +(|a|2−Re(a)) sin t
2
a if k = n,

eit a if k > n.

Acknowledgements

The work of the authors was supported by Project E-12/25 of DGA (Diputación
General de Aragón) and by Ibercaja under grant IBE2002-CIEN-07.

References

[1] N.I. Akhiezer, M.G. Krein, Some questions in the theory of moments, Trans. Math. Mono., vol. 2,
AMS, Providence, RI, 1962, Kharkov, 1938.

[2] M. Alfaro, El operador multiplicación en la teoría de polinomios ortogonales sobre la circunferen-
cia unidad, in: Proceedings of the II Spanish-Portuguese Mathematical Conference, Madrid, 1973,
Consejo Sup. Inv. Cient., Madrid, 1977, pp. 13–21.

[3] O. Bourget, J.S. Howland, A. Joye, Spectral analysis of unitary band matrices, Comm. Math. Phys.
234 (2003) 191–227.

[4] M.J. Cantero, Polinomios ortogonales sobre la circunferencia unidad. Modificaciones de los paráme-
tros de Schur, Doctoral Dissertation, Universidad de Zaragoza, 1997.

[5] M.J. Cantero, L. Moral, L. Velázquez, Measures and para-orthogonal polynomials on the unit circle,
East J. Approx. 8 (2002) 447–464.

[6] M.J. Cantero, L. Moral, L. Velázquez, Five-diagonal matrices and zeros of orthogonal polynomials
on the unit circle, Linear Algebra Appl. 362 (2003) 29–56.

[7] P. Delsarte, Y. Genin, On the role of orthogonal polynomials on the unit circle in digital signal pro-
cessing applications, in: P. Nevai (Ed.), Orthogonal Polynomials: Theory and Practice, NATO-ASI
Series C, vol. 294, Kluwer, Dordrecht, 1990, pp. 115–133.

[8] R.P. Feynman, Forces in molecules, Phys. Rev. 56 (1939) 340–343.
[9] Ya.L. Geronimus, On polynomials orthogonal on the circle, on trigonometric moment problem, and

on allied Carathéodory and Schur functions, Mat. Sb. 15 (1944) 99–130.
[10] Ya.L. Geronimus, Orthogonal Polynomials, Consultants Bureau, New York, 1961.
[11] L. Golinskii, Geronimus polynomials and weak convergence on a circular arc, Method. Appl. Anal-

ysis 6 (1999) 421–436.
[12] L. Golinskii, Singular measures on the unit circle and their reflection coefficients, J. Approx. Theory

103 (2000) 61–77.
[13] L. Golinskii, Operator theoretic approach to orthogonal polynomials on an arc of the unit circle,

Matematicheskaya fizika, analiz, geometriya 7 (2000) 3–34.
[14] L. Golinskii, On the spectra of infinite Hessenberg and Jacobi matrices, Matematicheskaya fizika,

analiz, geometriya 7 (2000) 284–298.
[15] L. Golinskii, P. Nevai, Szegö difference equations, transfer matrices and orthogonal polynomials on

the unit circle, Commun. Math. Phys. 223 (2001) 223–436.



M.J. Cantero et al. / Linear Algebra and its Applications 408 (2005) 40–65 65

[16] L. Golinskii, P. Nevai, W. Van Assche, Perturbation of orthogonal polynomials on an arc of the unit
circle, J. Approx. Theory 83 (1995) 392–422.

[17] W.B. Gragg, Positive definite Toeplitz matrices, the Arnoldi process for isometric operators, and
Gaussian quadrature on the unit circle, J. Comput. Appl. Math. 46 (1993) 183–198; Numerical Meth-
ods of Linear Algebra, pp. 16–32, Moskov. Gos. Univ., Moskow, 1982.

[18] W.B. Gragg, The QR algorithm for unitary Hessenberg matrices, J. Comput. Appl. Math. 16 (1986)
1–8.

[19] W.B. Gragg, L. Reichel, A Divide and Conquer method for unitary and orthogonal eigenproblems,
Numer. Math. 57 (1990) 695–718.

[20] H. Hellmann, Einführung in die Quantenchemie, Deuticke, Viena, 1937.
[21] E.K. Ifantis, A theorem concerning differentiability of eigenvectors and eigenvalues with some

applications, Appl. Anal. 28 (1988) 257–283.
[22] E.K. Ifantis, Concavity and convexity of eigenvalues, Appl. Anal. 41 (1991) 209–220.
[23] M.E.H. Ismail, R. Zhang, On the Hellmann–Feynman theorem and the variation of zeros of certain

special functions, Adv. Appl. Math. 9 (1988) 439–446.
[24] W.B. Jones, O. Njåstad, W.J. Thron, Moment theory, orthogonal polynomials, quadrature, and con-

tinued fractions associated with the unit circle, Bull. London Math. Soc. 21 (1989) 113–152.
[25] T. Kato, Perturbation of continuous spectra by trace class operators, Proc. Japan Acad. 33 (1957)

260–264.
[26] T. Kato, Perturbation Theory for Linear Operators, Springer, New York, 1966.
[27] F. Marcellán, E. Godoy, Orthogonal polynomials on the unit circle: distribution of zeros, J. Comput.

Appl. Math. 37 (1991) 195–208.
[28] M. Reed, B. Simon, Methods of Modern Mathematical Physics, I. Functional Analysis, Academic

Press, New York, 1972.
[29] M. Reed, B. Simon, Methods of Modern Mathematical Physics, IV. Analysis of Operators, Academic

Press, New York, 1978.
[30] M. Rosenblum, Perturbation of the continuous spectrum and unitary equivalence, Pacific J. Math. 7

(1957) 997–1010.
[31] B. Simon, Orthogonal Polynomials on the Unit Circle, vols. 1 and 2, AMS Colloquim Series,

American Mathematical Society, Providence, RI, 2005.
[32] M.H. Stone, Linear Transformation in Hilbert Space, AMS, Providence, RI, 1932.
[33] G. Szegö, Orthogonal Polynomials, AMS Colloq. Publ., vol. 23, 4th ed., AMS, Providence, RI,

1975.
[34] A.V. Teplyaev, The pure point spectrum of random polynomials orthogonal on the unit circle, Soviet

Math. Dokl. 44 (1992) 407–411; Dokl. Akad. Nauk SSSR 320 (1991) 49–53.
[35] W.J. Thron, L-polynomials orthogonal on the unit circle, Nonlinear numerical methods and rational

approximation (Wilrijk, 1987), pp. 271–278, Math. Appl., vol. 43, Reidel, Dordrecht, 1988.
[36] H. Weyl, Über gewöhnliche differentialgleichungen mit singularitäten und die zugehörigen ent-

wicklungen willkürlicher funcktionen, Math. Ann. 68 (1910) 220–269.


	Minimal representations of unitary operators and orthogonal polynomials on the unit circle
	Introduction
	Representations of unitary operators and orthogonal polynomials on TTTT
	Five-diagonal and Hessenberg matrices
	Krein's Theorem
	Perturbations of the Schur parameters and mass points
	Measures with a fixed mass point

	References


