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a b s t r a c t

In this paper, we give a nonoscillation criterion for half-linear equations with periodic
coefficients under fixedmoments of impulse actions. Themethod is based on the existence
of positive solutions of the related Riccati equation and a recently obtained comparison
principle. In the special case when the equation becomes impulsive Hill equation new
oscillation criteria are also obtained.
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1. Introduction

Consider the second-order half-linear impulsive equation

(Φα(x′))′ + p(t)Φα(x′) + q(t)Φα(x) = 0, t ≠ θi;
1Φα(x′) + βiΦα(x) = 0, t = θi,

(1.1)

where p, q ∈ PLC(R+, R) := {f ∈ C(θi, θi+1), f (θ±

i ) exist, f (θi) = f (θ−

i ), i ∈ N}; {βi} is a sequence of real numbers;
Φα(x) = |x|α−2x, α > 1; 1f (t) := f (t+) − f (t−) with f (t±) = limτ→t± f (τ ).

We will assume that (1.1) is ω-periodic, which means that there exist a positive real number ω and a positive integer r
such that

(i) p(t + ω) = p(t), q(t + ω) = q(t) for all t ∈ R+ \ {θi : i ∈ N}.
(ii) θi + ω = θi+r for all i ∈ N.
(iii) βi+r = βi for all i ∈ N.

By a solution of (1.1) defined on R+ we mean a nontrivial continuous function x such that x′, Φα(x′) ∈ PLC(R+, R)
and that x(t) satisfies (1.1) for all t ∈ R+. Such a solution x(t) of (1.1) is called oscillatory if it has arbitrarily large zeros;
nonoscillatory otherwise. (1.1) is called oscillatory (nonoscillatory) if all of its solutions are oscillatory (nonoscillatory). By
a Sturm type comparison theorem [1] we know that (1.1) is oscillatory if and only if it has an oscillatory solution.

If α = 2, then (1.1) is said to be an impulsive Hill equation

x′′
+ p(t)x′

+ q(t)x = 0, t ≠ θi;
1x′

+ βix = 0, t = θi,
(1.2)
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as it reduces to the well-known Hill equation

x′′
+ p(t)x′

+ q(t)x = 0, (1.3)

when the impulses are absent. Actually, the original Hill equation does not contain a damping term and has many
applications in engineering and physics, including problems inmechanics, astronomy, andmetal conductivity of electricity;
see [2].

It is well known that if q is nontrivial and ω-periodic of mean value zero, i.e.,∫ ω

0
q(t)dt = 0,

then every solution of

x′′
+ q(t)x = 0 (1.4)

is oscillatory. However, the same is not true for (1.3) when p and q are ω-periodic of mean value zero as pointed out in [3],
where the authors observe that

x′′
+ (sin t)x′

+ (cos t)x = 0 (1.5)

has a nonoscillatory solution x(t) = exp(cos t), while every solution of

x′′
+ (cos t)x′

+ (sin t)x = 0 (1.6)

is oscillatory [4]. Related to this problem for (1.3) the following theorems are obtained in [3]. For a time scale extension,
see [5].

Theorem 1.1. Let p, q be ω-periodic and Q (t) be an indefinite integral of q(t). If q is of mean value zero, then

[p(t) − Q (t)]Q (t) ≥ 0, 0 ≤ t ≤ ω (1.7)

implies that (1.3) is nonoscillatory.

Theorem 1.2. In addition to the assumptions in Theorem 1.1, if q(t) ≢ 0, p(t) and Q (t) are ω-periodic of mean value zero and
satisfy

[p(t) − Q (t)]Q (t) ≤ 0, 0 ≤ t ≤ ω, (1.8)

and furthermore

measure {t ∈ [0, ω] : [p(t) − Q (t)]Q (t) < 0} > 0, (1.9)

then (1.3) is oscillatory.

Next, let us consider (1.1) without impulses

(Φα(x′))′ + p(t)Φα(x′) + q(t)Φα(x) = 0. (1.10)

In [6], Došlý and Elbert proved that if p ≡ 0 and q is nontrivial and periodic of mean value zero, then (1.10) is oscillatory.
An extension of Theorem 1.1 to (1.10) is given by Sugie and Matsumura [7] as follows, where α∗ denotes the conjugate
exponent of α, i.e.,

1
α

+
1
α∗

= 1.

Theorem 1.3. Let p and q be ω-periodic and Q (t) be an indefinite integral of q(t), where q(t) is of mean value zero, then

[p(t) − (α − 1)Φα∗(Q (t))]Q (t) ≥ 0, 0 ≤ t ≤ ω (1.11)

implies that (1.10) is nonoscillatory.

The proof of the above theorem is based on the fact that (1.10) is nonoscillatory if and only if there exist a t0 ≥ 0 and a
continuously differentiable function z : [t0, ∞) → R such that the Riccati inequality

z ′
≥ (α − 1)|z|α

∗

− p(t)z + q(t), t ≥ t0 (1.12)

holds; see [8].
It is a natural question to ask for similar results for impulsive differential equations of the form (1.1). In this paper, by

using the tools of impulsive differential equations we provide some answers to these questions. It turns out that there is a
substantial difference due to impulse effects.
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2. Main results

First we recall that a sequence {ai} is called r-periodic if

ai+r = ai for all i ∈ N,

and of mean value zero if
r−

i=1

ai = 0.

Let {γi} be an r-periodic sequence, and define

Q (t) :=

∫ t

0
q(s)ds +

−
0≤θi<t

γi.

It is clear that

Q ′(t) = q(t) for t ≠ θi; 1Q = γi for t = θi. (2.1)

We will assume in the sequel that Q (ω) = 0, i.e.,∫ ω

0
q(t)dt +

r−
i=1

γi = 0. (2.2)

Note that if q and {γi} are of mean value zero, then (2.2) holds. However, the converse is in general not true.
Denote by

Jimp = {θ1, θ2, . . . , θr}

the impulse points in [0, ω].
The main results of this paper are as follows.

Theorem 2.1. Let (i)–(iii), and (2.2) hold.
If

[p(t) − (α − 1)Φα∗(Q (t))]Q (t) ≥ 0, t ∈ [0, ω] \ Jimp (2.3)

and

γi ≥ βi, i = 1, 2, . . . , r, (2.4)

then (1.1) is nonoscillatory.

Theorem 2.2. In addition to the assumptions in Theorem 2.1, suppose that p and Q are of mean value zero.
If

[p(t) − Q (t)]Q (t) ≤ 0, t ∈ [0, ω] \ Jimp, (2.5)

γi ≤ βi, i = 1, 2, . . . , r (2.6)

and furthermore

measure {t ∈ [0, ω] : [p(t) − Q (t)]Q (t) < 0} + max{βi − γi : i = 1, 2, . . . , r} > 0, (2.7)

then (1.2) is oscillatory.

Theorem 2.3. Let the assumptions in Theorem 2.2 hold, and denote

k(t) = exp
∫ t

0
(p(s) − 2Q (s))ds. (2.8)

If ∫ ω

0
k(t)[Q (t) − p(t)]Q (t)dt +

r−
i=1

k(θi) (βi − γi) > 0, (2.9)

then (1.2) is oscillatory.
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Remark 1. If the impulses are dropped, then by taking βi = 0 and γi = 0 in Theorem 2.1 we recover Theorem 1.3 and
hence Theorem 1.1 when α = α∗

= 2. Similarly, Theorems 2.2 and 2.3 are the extensions of the oscillation criteria given in
Theorem 1.2 and [7, Theorem 3.1].

Remark 2. We see from Theorem 2.2 that if q is nontrivial ω-periodic and {βi} is r-periodic, and (2.2) holds, then every
solution of

x′′
+ q(t)x = 0, t ≠ θi;

1x′
+ βix = 0, t = θi,

(2.10)

is oscillatory. This means that the well-known oscillation criterion for (1.4) is also true for the impulsive equation (2.10). In
fact, we may allow q ≡ 0 by replacing (2.2) with an r-periodic {γi} of mean value zero such that γi ≥ βi and γi ≢ βi. The
problem for half-linear impulsive equation (1.1) when p ≡ 0 and α ≠ 2 is open.

Remark 3. It is seen from the results that the nonoscillation (oscillation) behavior of solutions can be altered by imposing
impulse conditions. We see from Theorem 2.1 that the nonoscillation of the differential equation without impulses is
necessary for the nonoscillation of solutions of the related impulsive differential equation. However, the same is not true
for the oscillation of the equations as seen from Theorems 2.2 and 2.3.

Remark 4. Unfortunately, the extension of Theorem 2.2 to (1.1) is not possible by the same technique since Riccati type
inequality (1.12) is not of the same type under a linear transformation unless α = 2; see the proof of Theorem 2.2.

3. Proofs

First we need a lemma which is analogous to the one given in [8]. The proof of the lemma is similar but require a Sturm
type comparison theorem for half-linear impulsive differential equations, which is available in [1]. In the case α = 2 and
βi ≡ 0, see also [9] or [10, Theorem 7.2].

Lemma 3.1. Eq. (1.1) is nonoscillatory on [0, ∞) if and only if there exist a t1 ∈ [0, ∞) and a function u ∈ PLC[t1, ∞) such
that

u′
≥ (α − 1)|u|α

∗

− p(t)u + q(t), t ≠ θi;
1u ≥ βi, t = θi

(3.1)

for all t ≥ t1.

Proof. Let x(t) be a solution of Eq. (1.1) having no zero in [t1, ∞). It is easy to see that the function u defined by u(t) =

−Φα(x′(t)/x(t)) for t ≥ t1 satisfies the Riccati type impulsive equation

u′
= (α − 1)|u|α

∗

− p(t)u + q(t), t ≠ θi;
1u = βi, t = θi.

(3.2)

Conversely, let there exist a function u ∈ PLC[t1, ∞) satisfying (3.1). Define

f (t) := u′(t) − (α − 1)|u(t)|α
∗

+ p(t)u(t) − q(t), t ≠ θi;
fi := 1u − βi, t = θi.

From (3.1), f (t) ≥ 0 for t ≥ t1 and fi ≥ 0 for all i for which θi ≥ t1. Thus we have the Riccati equation with impulses

u′
= (α − 1)|u|α

∗

− p(t)u + q(t) + f (t), t ≠ θi;
1u = βi + fi, t = θi.

(3.3)

The corresponding impulsive differential equation is

(Φα(x′))′ + p(t)Φα(x′) + {q(t) + f (t)}Φα(x) = 0, t ≠ θi;
1Φα(x′) + {βi + fi}Φα(x) = 0, t = θi.

(3.4)

Let

k(t) = exp
∫ t

0
p(τ )dτ , t ≥ t1.

Wemay write from (1.1) and (3.4),

(k(t)Φα(x′))′ + k(t)q(t)Φα(x) = 0, t ≠ θi;
1k(t)Φα(x′) + k(t)βiΦα(x) = 0, t = θi

(3.5)
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and

(k(t)Φα(x′))′ + k(t){q(t) + f (t)}Φα(x) = 0, t ≠ θi;
1k(t)Φα(x′) + k(t){βi + fi}Φα(x) = 0, t = θi

(3.6)

respectively. Clearly, x(t) = exp
 t

Φα∗(−u(τ ))dτ is a nonoscillatory solution of (3.6).
Since

q(t) + f (t) ≥ q(t)

and

βi + fi ≥ βi,

by the Sturm type comparison theorem [1, Corollary 2.2] for half-linear impulsive differential equations, we may conclude
that (3.5) and hence (1.1) is also nonoscillatory. �

Proof of Theorem 2.1. We first claim that the function Q is ω-periodic. Indeed, since Q (ω) = 0 we have

Q (t + ω) − Q (t) =

∫ t+ω

0
q(s)ds +

−
0≤θi<t+ω

γi −

∫ t

0
q(s)ds −

−
0≤θi<t

γi

= Q (ω) +

∫ t+ω

ω

q(s)ds −

∫ t

0
q(s)ds +

−
ω≤θi<t+ω

γi −
−

0≤θi<t

γi

=

∫ t

0
q(s + ω)ds −

∫ t

0
q(s)ds +

−
0≤θi<t

γi+r −

−
0≤θi<t

γi

= 0.

In view of (2.1), (2.3), and (2.4), we obtain

Q ′(t) ≥ (α − 1)|Q (t)|α
∗

− p(t)Q (t) + q(t), t ≠ θi;
1Q (t) ≥ βi, t = θi,

(3.7)

which by Lemma 3.1 gives us that (1.1) is nonoscillatory. �

Proof of Theorem 2.2. Suppose on the contrary that (1.2) is nonoscillatory. Wemay assume without loss of generality that
there exists a positive solution x(t) defined on [t0, ∞) for some t0 ≥ 0.

Let u(t) = −x′(t)/x(t) for t ≥ t0. It is easy to see that u(t) satisfies the Riccati type impulsive equation

u′
= u2

− p(t)u + q(t), t ≠ θi;
1u = βi, t = θi.

(3.8)

Define z(t) = u(t) − Q (t), t ≥ t0. The function z(t) solves

z ′
= z2 + [2Q (t) − p(t)]z + Q 2(t) − p(t)Q (t), t ≠ θi;

1z = βi − γi, t = θi.
(3.9)

By Lemma 3.1, the corresponding second-order impulsive equation

y′′
+ {p(t) − 2Q (t)}y′

+ {Q 2(t) − p(t)Q (t)}y = 0, t ≠ θi;
1y′

+ {βi − γi}y = 0, t = θi
(3.10)

is nonoscillatory. Let

m(t) = exp
∫ t

0
{p(s) − 2Q (s)}ds.

Then we may write (3.10) as

(m(t)y′)′ + m(t)(Q (t) − p(t))Q (t)y = 0, t ≠ θi;
1m(t)y′

+ m(θi){βi − γi}y = 0, t = θi.
(3.11)

On the other hand, since p and Q are ω-periodic with mean value zero, the function m becomes ω-periodic and hence
there existsm1 > 0 such that∫ (n+1)ω

nω

1
m(t)

dt =

∫ (n+1)ω

nω

[
exp

∫ t

0
{2Q (s) − p(s)}ds

]
dt

=

∫ ω

0

[
exp

∫ t

0
{2Q (s) − p(s)}ds

]
dt = m1 > 0, n ∈ N. (3.12)
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Moreover, (2.7) results in∫ (n+1)ω

nω
m(t){Q 2(t) − p(t)Q (t)}dt +

−
nω≤θi<(n+1)ω

m(θi){βi − γi} =: m2 > 0, n ∈ N. (3.13)

It follows that from (3.12) and (3.13), respectively, that∫
∞

0

1
m(t)

dt = ∞

and ∫
∞

0
m(t){Q 2(t) − p(t)Q (t)}dt +

−
0<θi

m(θi){βi − γi} = ∞.

Applying the Leighton–Wintner theorem for impulsive equations [11, Theorem 2.1], we conclude that (3.11) is oscillatory.
This contradiction completes the proof of Theorem 2.2. �

Proof of Theorem 2.3. Proceeding as in the proof of Theorem2.2we obtain (3.12) and (3.13)withm(t) replaced by k(t). �

4. Examples

Example 4.1. Consider the impulsive Hill equation

x′′
+ λp(t)x′

+ q(t)x = 0, t ≠ θi; λ ∈ R,
1x′

+ βix = 0, t = θi,
(4.1)

where

p(t) =

∫ t

0
q(s)ds + σ

−
0≤θi<t

βi, t ∈ [0, ω] (4.2)

and βi > 0 for all i = 1, 2, . . . , r and that p(ω) = 0. Eq. (4.1) is nonoscillatory if λ ≥ 1 and σ ≥ 1 and oscillatory if λ ≤ 1
and σ < 1 (or λ < 1 and σ ≤ 1) by Theorems 2.1 and 2.2, respectively. Moreover, (4.1) is oscillatory if

(1 − λ)

∫ ω

0
p2(t)e(λ−2)

 t
0 p(s)dsdt + (1 − σ)

r−
i=1

βie(λ−2)
 θi
0 p(s)ds > 0 (4.3)

by Theorem 2.3.
Let us consider a special case. We take q(t) = σ(2π)−1, βi = (−1)i, θi = iπ/2, and ω = 2π . Then r = 4 and

p(t) = (t/π − 1 + (−1)i+1)σ/2, t ∈ ((i − 1)π/2, iπ/2], i = 1, 2, 3, 4.
After some tedious calculations we see that if λ = 2 and σ < 0, then (4.3) is satisfied, and so

x′′
+ {t/π − 1 + (−1)i+1

}σ x′
+ σ(2π)−1x = 0, t ≠ iπ/2;

1x′
+ (−1)ix = 0, t = iπ/2

(4.4)

is oscillatory.
If we choose σ(λ − 2) = −2, σ < 1, 39419, and λ < 0, 56548, then in view of (4.3), (4.4) is oscillatory.

Example 4.2. Consider the impulsive Hill equation

x′′
+ sin(2t)x′

+ cos(2t)x = 0, t ≠ iπ/4;
1x′

+ (β + cos(iπ/2))x = 0, t = iπ/4, (4.5)

where β ≥ 1. It can be seen that conditions (i)–(iii) are satisfied with ω = π and r = 4. Let

Q (t) =

∫ t

0
cos(2s)ds +

−
0≤θi<t

sin(iπ/2), t ∈ [0, π] (4.6)

where Jimp = {π/4, π/2, 3π/4, π}. Note that

Q (π) =

∫ π

0
cos(2s)ds +

3−
i=1

sin(iπ/2) = 0
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and

Q (t) =
1
2
sin(2t) +

1
2


−1, t ∈ [0, π/4)
1, t ∈ (π/4, π/2)
1, t ∈ (π/2, 3π/4)
−1, t ∈ (3π/4, π).

(4.7)

It can be easily seen that the function Q is π-periodic with mean value zero, and that

[p(t) − Q (t)]Q (t) = −
1
4
cos2 2t ≤ 0, t ∈ [0, π] \ Jimp. (4.8)

Thus, we conclude from Theorem 2.2 that (4.5) is oscillatory. We remark that if the impulses are dropped, then the
corresponding Hill equation

x′′
+ sin(2t)x′

+ cos(2t)x = 0 (4.9)

is nonoscillatory by Theorem 1.1.

Example 4.3. Consider the equation

x′′
+ ax′

+ bx = 0, t ≠ iσ ;

1x′
− bσ x = 0, t = iσ (4.10)

where a, b, c and σ are real constants with b > 0, σ > 0 and a ≥ 2bσ . It can be seen that conditions (i)–(iii) are satisfied
with ω = rσ . Let

Q (t) =

∫ t

0
bds +

−
0≤iσ<t

(−bσ), t ∈ [0, rσ ],

then a simple calculation gives Q (t) = bt − bσ(i − 1), t ∈ ((i − 1)σ , iσ ].
We see that Q (ω) =

 ω

0 bds +
∑

0≤θi<ω(−bσ) = 0. Define

H(t) := {a − bt + bσ(i − 1)}{bt − bσ(i − 1)}, t ∈ ((i − 1)σ , iσ ].

Clearly,

H ′(t) = 2b2(iσ − t − σ) + ab ≥ b(a − 2bσ) ≥ 0, t ∈ ((i − 1)σ , iσ ].

So the function H(t) is an increasing function on ((i − 1)σ , iσ ]. Since inf((i−1)σ ,iσ ] H(t) = 0, H((iσ)+) = {a − bt + bσ i}
x{bt − bσ i}|t=iσ = 0, the condition (2.3) of Theorem 2.1 is satisfied. It follows that (4.10) is nonoscillatory. Note that

x′′
+ ax′

+ bx = 0 (4.11)

is oscillatory if a2 < 4b.
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