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A new measure of agreement is introduced to ri?easure and assess the extent of agreement 
between hvo judges or raters in assigning n subjects to L unordered qualitative categories. The 
statistical analysis entails an interesting discrete conditional distribution, and provides an 
example of ‘conditional’ inference and ‘exact’ tests of significance. In fact, the measure is 
related to the log odds ratio in a 2 x 2 contingency table and its analysis is related to Fisher’s 
(1935) conditional exact analysis of the 2 x 2 table. 

Consider two raters or judges who assign n subjects independently to L 
qualitative unordered categories C,, . . . , CL. The resulting observations form an 
L X L contingency table X = {Xij}, i, j = 1, . . . , L, where X;j is the number oi 
subjects assigned to categories Ci, Ci simultaneously by Raters 1 and 2 respec- 
tively. The problem is to assess the extent to which the raters agree in their 
assignment of subjects to categories. The diagonal cell frequencies {x,} represent 
agreements and the remaining cell frequencies represent disagreements. All 
disagreement cells are assumed to have the same importance and are hence 
weighted equally. The same is true of the agreement cells. For example, the 
raters may be diagnosticians assigning subjects to diagnostic classes such as 
normal, neurotic and psychotic. The extent to which the diagnosticians agree is an 
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indication of the merit or 
classification is ntrp of much use if no two 

where pr(i, i) ES the jokr 
Ci by both raters, pt(j.1 is the margina! 
Ci by Rater 1, ati 
The definition of k 
that 

then K = 0, and if the agreement is perfect, z pr(i, i.) = 1, then K = 1. If the cell 
frequencies xu are not small, then the estim obtained by replacing ptJ 
by x,/n, tends to be normally distributed, so cd tests can be applied to 
assess the evidence. Kapgpa has been wide1 ified. Indeed, it now 
seems to be the principal measure of awement advocated tith nominal scales 
such as the L categories described above. 

However, a peculiar feature of this problem is that the more successful are the 
categories {C,) at discriminating among the subjects, the more problematic will 
be a statistical analysis based on normal approximations. For, in the favourable 
case of strong agreement between the raters. the cell frequencies X will tend to 
concentrate along the diagonal. Then (xii) will be large. and {Xii, i #j), will be 
small. Statistical analyses based on asymptotic normality will then be of 
questionable accuracy. 

This difficulty can be avoided in the special case of L = 2 categories. Fisher [3] 
developed an ‘exact’ analysis for the 2 x 2 contingency table, based on the 
conditibnaf probability of x1, given the row and column totals. This conditional 
probability function depends only on the log odds ratio. Hence if the amount of 
agreement between the two judges is defined to be the log odds ratio, this exact 
analysis can be applied, and the difficulties associated with small cell frequencies 
avoided. This was exemplified in [4] in the context of test-retest reliability, where 
the two raters are the same person on two different occasions. 

The purpose here is to develop a measure, having the same properties as the 
log odds ratio, to measure agreement in the general case of an L x L table. In 
addition, a conditional probability function will be obtained which will serve as 
the basis for an exact analysis, valid when the cell frequencies are small or zero. 
When L = 2, the log odds ratio is obtained, and the conditional probability 
function will be equivalent to that of [3] cited above. 



= tog K, 9 i xii log(p,), K, = 
)=I 

. (2W 

The logarithm of the distribution of ail the frequencies A’ is the sum of the 
logarithms of these L L-variate multinomial distributions 

Notice that. under this model, the probability of the observations X is 
conditioned on the row totals (c} at the outset. 

Let 

"ij = 10gp,i/p;j- 

Note that 

(44 

--m<lYii<=, i #j, &ii = 0, (4b) 

so that, subject to the restrictions in (l), the mapping {pi,} c-, {a;,}, i f j. is 
one-to-one. The quantity exp LL,~ is the o&s that a given subject is assigned to 
category Ci versus Cj by Rater 2 condihmal on being assigned to category C, by 
Rater 1. Hence ~ij is the conditional log odds of agreement versus disagreement 
on categories Ci versus Cj, given Cj by Rater 1. Thus Cuii measures the difference 
between the agreement cell (i, i) and the disagreement cell (i, j). Also the 
functional form (4a) of each ~ij (i fj) weights equally the agreement and 
disagreement cells. The fact that the categories {C,} are qualitative and 
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unordered implies that all such comparisons given by 
equally. This yields the L(L - 1)/2 log odds ratios 

Vij=&ij+cyii, i<i, 

the { o<j} are to be weighted 

Pa) 

as the measures of agreement between the raters on categories Ci and Cj, 
i,j=l,2 ,..., L,and 

2v 
“=L(L- I), --mi+<oo, 

where 

V=CC Vjj=Cz aij=C C au, PC) 
i<j i#j i j 

as the measure of the overall state of agreement between the two raters. 
The interpretation of these measures is that the odds of one rater classifying a 

subject in category Ci versus Cj are exp vii times greater if the subject was 
classified in category Ci rather than Cj by the other rater. The quantity exp (9) is 
the geometric mean of these odds ratios over all L(L - 1)/2 pairs of categories. It 
thus may be thought of as the extent to which, on the average, the odds of a 
subject being classified in a given category by one rater are increased by being 
classified in the same category by the other rater. 

From (4) (5~) can be written 

V = 
( 

L $lOgpii) - i i 1Ogpij. (6) 
i=l i=l j=l 

The quantity v is zero if the rows and columns are statistically independent, so 
that the agreement is fortuitous. The results of one rater cannot be predicted 
from the results of the other. 

3. StatistieaI inference for 9 

It is mathematically more convenient to deal with v than with 9. Inferences 
about v can be directly converted into inferences about 8. From (4a), (4b), and 

p,, = [exP(-aij)l 
11 Di ’ 

Di = i exp( -aij). 
j=l 

Thus the probability (3) of the observations X 
{ oii} 9 and of v given by (SC), is 

(7) 

expressed as a function of the 

P= Kexp I( - CC o&j) - C ri log Di] 

= K(exp-x,,v) ai#fij) - C rt log O,]}, 
I JI 

(8) 
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since &ii = 0 for all i, where 

a..=*..-- ‘1 11 129 (i +:ih K = flKi. Pi 

Since v is the parameter of interest about which inferences are to be made, it is 
necessary to eliminate the {cuii) from (8). This can be done by conditioning (8) on 
the {a#}. The conditional probability of x r2, given {Uii> of (8) and the row totals 
{I;;} of (2a), is proportional to (8) with {aij} and {I;:} held constant. Renormalizing 
(8) so that the total probability is unity with {aij}, and (4.i) held constant yields 
the conditional probability of xl2 to be 

= Kh)(exp - x12v) 

z K(h)(exp - hv) 
(10) 

where 

K(h) = <h!> 
l-Id,(h)! ’ 

d,(h) =Uij + h, (i #i), Wa) 

dii(A) = ri - 2 d,(h)- 
j#i 

WW 

The sum in (10) is over all h for which the quantities (11) are nonnegative. 
Holding {aii} and {Ti} constant also holds the column totals of the L x L table 
constant. 

The probability (10) depends only on v. The parameter v has been separated 
from the (LQ}, and isolated in the probability function (10). Thus the probability 
function (10) provides information about v free from possible misinterpretations 
through ignorance of the other parameters { aij}- Furthermore, (10) is exact. Its 
use does not require asymptotic normal approximations that depend for their 
validity on the cell frequencies being sufficiently large. Statistical tests of 
significance for specific values of 0, e.g. + = 0, and, more importantly, confidence 
intervals for 9, can be obtained using (10). This is illustrated in Section 5. 

4. The 2 X 2 table 

For the 2 x 2 table, from (5b) and (4a) 
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which is the log odds ratio for the 2 x 2 table. The restrictions (11) produce the 
set of 2 x 2 tables {(r, -A, h); (alI + A, r, - ~21 - It)}, where the first ordered pair 
represents the first row of the table and the second, the second row. Setting 
i = r, - h produces the equivalent set 

(0. rl -i); (c, - i. r, -cl + i)}. 

The conditional probability g(xr2; v) of (10) is thus equivalent to 
pr(Xr,; v 1 rl, r2, cl, c,). that is, the conditional probability of x,, given the 
marginal totals. This conditional probability is proportional to 

exp(xr,v) 
x,,!(r, -X*J?(C, -xr,)!(rz -cr +x,,)! - 

This result was obtained in [3], and forms the basis of the standard ‘exact’ analysis 
of the 2 x 2 table. 

b25. Examples 

In Example 1 the frequencies are very small, and so the exact procedure is 
required. In Example 2 the frequencies are large, and so simplifying approxima- 
tions can be made. 

Example 1. The data of Table 1 are taken froim [2]. They are the frequencies 
arising from the classification of 46 trees and shrubs on two occasions one week 
apart by one observer according to four health categories. 

Since xrz = 0, from (9) {ali} = {Xii}- Only for h = 0 or 1 are the quantities (11) 
nonnegative. The value h = xl2 = 0 yields the observed Table 1. The probabilities 
of h = 0, h = 1 can easily be calculated from (10) and (1 I) for any specified value 
of v. 

Using v = 0 in (IO), the probability of h = 0 is 1.74 x IO-“. Therefore, either 
v > 0, that is, 5 > 0, or the observed table h = xi2 = 0 has probability less than 
1.74 x lo-‘. Thus there is strong evidence against 5 = 0. 

Table I 
4 x 4 classification of tiic: and shrubs according to health by one 
observer on two occasions 

Occasion 2 
Health 
Category C, C, C, C, Total 

Occasion 1 C, 6 0 0 0 6 
G 1 4 1 0 6 
C3 0 1 3 5 9 
C‘i 0 0 4 21 25 

Total 7 5 8 26 46 
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Table 2 
4 x 4 classification of trees and shrubs eccordirig tu hdth by two 
observers 

Observer 2 
Health 
Category c, c, C, (‘4 

Observer I C, 2.39 IX 9 II 
C, 24 38 41 II 
c3 IS 49 II3 94 
G 6 22 IW I93 

Total 2x4 127 272 309 

T0td 

2-n 
II4 
231 
3x1 

992 

Using v = 10.32 in (lo), the probability of h = 0 is 0.05, and of h = 1 is 0.95. 
Thus either v > 10.32 or an event of probability P ~0.05 has been observed. 
From (5a), V > 1.72. This puts a lower 0.95 confidence bound on +. At this lcvcl 
of confidence, the odds of the observer classifying a plant in a given category on 
Occasion 2 are on the average at least exp(l.72) = 5.6 times greater if the plant 
was similarly classified by the observer on Occasion 1. 

Example 2. The data in Table 2 are also taken from [21. They are the frequencies 
arising from the classification of trees and shrubs by two diZere:it observers in% 

the same health categories as in Example 1. From (9). 

{@ii} = (-9. -7.6, 23, -7, -3, 31. 76, -12, 4, 91). 

There are nineteen values of h that make the quantities (I 1) nonnsgative: 
h = 12, 13, . . . , 30. Using (lo), their respective probabilities can be obtair-ed as 
in Example 1, although the calculations arc much more extensive. For v = 17.057 
the probability of the observed value h = xl2 = 18 is 0.0238, and the probabihty 
h s 18 is 0.025. Thus a lower 0.975 confidence bound is v = 17.057. Similarly, 
when v = 22.101, the probability h 3 18 is 0.025, giving an upper 0.975 confidence 
bound for v, and a 0.95 confidence interval v = (17.1, 22.1). The corresponding 
confidence interval for f is (2.85, 3.68), or (17.3, 39.8) for exp V. 

6. Maximum likelihood approximations 

If the cell frequencies X are not too small, maximum likelihood (ML) 
approximations can be applied with the gain of considerable computational 
simplicity. 

The likelihood function of (a;!, . . . , a,J is proportional to the probability 

function 6 of (2a) expressed as a function of { cU,l, . . . , CQ}. From (2b) and (7) it 
can easily be seen that the logarithm of this is 

log c = - i aijxij - ri log 0, + log Ki_ 
j=l 

(12) 
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The maximum likelihood estimate of Cyii is the value &j, = lOg(Xiz/X,) that 
maximizes (12). Thus from (6), the ML estimate of v is 

$= Clog?= ( L c log xij - cc log xij. 
ij ) (13) 

The application of ML estimation requires the calculation of the inverse of the 
matrix of negative second derivatives of (12) with mpect to the (q} evaluated at 
the ML estimate (&ij). A straightforward calculation shows these to be 

Ijj = 1 
1 1, -, jri, 

Xii Xii 

1 
Ijk = - 

Xii ’ 
j#k, j, k+:i. 

(14) 

The matrix of elements (14) can be loosely thought of as an estimate of the 
covariance matrix (cov &+ &k). In particuh~, they combine like variances and 
covariances. 

Let 

Since the quantities (14) combine like variances and covariances, the quantity 
Iii applicable to Ci. is 

= SK!. 
[ 1 

A4 
+ (L - 1j2 

j xij Xij ’ 

where C’ means the sum over j (and k) # i. Since from (5) v = CVi., and the rows 
i are statistically independent, the corresponding quantity for 9, denoted by Iv, is 

= 27; +L(L-2)c.L. 
[ 1 i 8; i xii 

From ML theory, the quantity 

(15) 

(16) l.w, vJ=y$ * 
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is an approximate standard normal (N(0, 1)) variate. Approximate confidence 
intervals and tests of significance for v, and hence 8, can thereby be obtained. 

Because of the marked discreteness of the probability function (it)), a 
continuity correction will appreciably improve the accuracy of the con 
intervals obtained from (16). This correction is essentially the same ws that 
required for the 2 X 2 table. It consists in replacing xrz by xl2 + 0.5 and by 
xl2 -0.5 in calculating the sower and upper confidence bounds respectively. 
Because the analysis holds the marginal totals and the 4’s of (9) constant, this 
correction will result in adding and subtracting respectively 0.5 to ali the 
off-diagonal ceils, and subtracting and adding respectively (L - 1)[2 to the 
diagonal ceils. 

This can be illustrated by Example 2. To obtain lower confidence bounds, add 
0.5 to all the off-diagonal observations and subtract 1.5 from all ;he diagonal 
observations in Table 2. From (13) and (15) with L. = 4, resulting ML estimate is 
3 = 19.258, and I” = 1.113. Using (16) as an approximate N(0, 1) variate, the 
lower 0.975 confidence bound is v = + - 1.96(1’)! = 17.19, and + = 2.865. To 
obtain upper confidence bounds, subtract 0.5 and add 1.5 to all off-diagonal and 
diagonal observations respectively. This results in f = 20.394 and I” = 1.160, so 
that v = 0 + 1.96(1’)$ = 22.50, and 0 = 3.399. This results in the approximate 0.95 
confidence interval (2.865, 3.399) for F. Using (lo), the exact confidence level of 
this interval is 0.956. Mence this interval compares favourably with the exact 
interval ? = (2.85,3.68) obtained in Example 2. 

The classifications Ci in Section 5 are in order of increasing health, and so are 
actually ordinal categories. They are treated in Section 5 as nominal categories 
for illustrative purposes, as was also done in [2]. Koever, this raises the question, 
as suggested by a referee, whether these methods can be extended to cover 
ordinal categories. It would appear that regression techniques and weighted sums 
could replace (5~). This is an interesting area of future research. 
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