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Thiswork pertains to GEO submission GSE36672, in vivo and in vitro genomewide binding (ChIP-Seq) of Bapx1/
Nkx3.2 and Sox9 proteins. We have previously shown that data from a genome wide binding assay combined
with transcriptional profiling is an insightful means to divulge the mechanisms directing cell type specification
and the generation of tissues and subsequent organs [1]. Our earlier work identified the role of the DNA-binding
homeodomain containing protein Bapx1/Nkx3.2 in midgestation murine embryos. Microarray analysis of EGFP-
tagged cells (both wildtype and null) was integrated using ChIP-Seq analysis of Bapx1/Nkx3.2 and Sox9 DNA-
binding proteins in living tissue.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Organism/cell line/tissue
 Mus musculus (C57BL/6J)
x
 Pooled male and female embryos

quencer or array type
 Microarray - MouseWG-6 v2.0 Expression BeadChip

microarrays (Illumina). ChIP Sequencing -Genome
Analyzer II/IIx (Illumina)
ata format
 Analyzed

xperimental factors
 E12.5 Wildtype and gene-targeted Bapx1/Nkx3.2 and

Sox9 mouse embryos

xperimental features
 E12.5 embryos were isolated. We performed ChIP-Seq

on vertebral columns isolated from wildtype and
gene-targeted embryos to determine genome wide
binding.
onsent
 Level of consent allowed for reuse if applicable
(typically for human samples) NA
mple source location
 NA
Sa
1. Direct link to deposited data

Deposited data can be found here: http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE36672
. This is an open access article under
2. Materials, Methods and Experimental approach

2.1. Experimental approach

The information presented here has been previously described in
Chatterjee et al. (2014) “In vivo genome-wide analysis of multiple tis-
sues identifies gene regulatory networks, novel functions and down-
stream regulatory genes for Bapx1 and its co-regulation with Sox9 in
the mammalian vertebral column.” [1]. An overview of the experimen-
tal approach is shown in Fig. 1. The Bapx1/Nkx3.2 protein was tagged in
vivowith the S-peptide epitope to give specificity to the isolation of the
Bapx1/Nkx3.2 S-peptide fusion protein for immunoprecipitation. In a
similar fashion, the Bapx1/Nkx3.2 cDNA was engineered so as to have
an in-frame fusion with the V5 epitope tag that has a well-established
high degree of specificity for the corresponding anti-V5 antibody and
is commonly used in in vitro cell culture systems following the overex-
pression of the V5-tagged protein. In this case the V5-Bapx1/Nkx3.2 fu-
sion protein was employed in electrophoretic mobility shift assays
(EMSA). The vertebral columns of mid-gestation (E12.5)mouse embry-
os carrying the Bapx1/Nkx3.2 S-peptide allele were carefully dissected
away from surrounding embryonic tissues, disaggregated into micro
pieces and chromatin immunoprecipitation was performed to identify
the DNA sequences bound by Bapx1/Nkx3.2 protein in the native in
vivomurine vertebral column.
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Fig. 1. Overview of the strategy for performing ChIP-seq on genetically modified Bapx1/Nkx3.2 by the addition of an S-protein epitope tag to the N-terminus of the endogenous Bapx1/
Nkx3.2 protein-encoding sequence. Once correctly targeted ES clones are identified they are used to generate germline transmitting chimeras and subsequent stable lines of mice
expressing the S-protein- Bapx1/Nkx3.2 fusion protein. S-protein tagged Bapx1/Nkx3.2 expressing embryos are isolated mid-gestation and the vertebral columns are removed. The
isolated cells are cross-linked with fixitive, DNA is isolated and sheared and anti-S-protein antibody is employed for immunoprecipitation. The isolated DNA which is enriched for
Bapx1/Nkx3.2 genomic binding sites is sequenced and mapped to the lastest build of the mouse genome.
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2.2. Genetically modified mouse line generation

The “Quick and Easy” BAC modification kit (Gene Bridges) was used
to generate Bapx1/Nkx3.2 gene targeting constructs as we have previ-
ously described [2, 3] using C57BL/6J strain murine BAC clones contain-
ing the Bapx1/Nkx3.2 gene obtained from the BACPAC Resources Centre
at Children’s Hospital Oakland Research Institute (CHORI). Fragments of
each modified region flanked by short and long homology arms with a
total average length of N10 kb were subcloned into a minimal vector
with the Gene Bridges BAC Subcloning kit. The resulting plasmids
were linearized and electroporated into ES cells previously we de-
scribed [2,3]. Normal karyotype ES clones positive by DNA blotting
with probes external to the gene targeting constructs were used to gen-
erate germline transmitting chimeras as we have previously described
[4]. The resulting highly chimeric mice were crossed to C57BL/6J mice
and stable mouse lines were established expressing the S-peptide
tagged Bapx1/Nkx3.2 protein. The FRT-flanked neomycin G418 antibiotic
selection cassette in the targeted Bapx1/Nkx3.2 allele was deleted
by crossing to FLPe–deleter mice (129S4/SvJaeSor-Gt(ROSA)26Sor
tm1(FLP1)Dym/J (Stock #3946) from Jackson Laboratories) [5,6].
Genotyping ofBapx1/Nkx3.2 lineswas performedbyPCR essentially as de-
scribed [7]. RNA in situ analysis was performed as previously described
[8] on the resulting modified allele carrying embryos to verify that there
were no detectable changes in expression of the gene-targeted locus.
For analysis of the vertebral column the E12.5 embryos were sectioned
through the sagittal plane [9].

2.3. Chromatin immunoprecipitation and DNA-binding motif analysis

Wildtype or Baxp1/Nkx3.2 gene-targeted mouse lines were mated
and noon of the plug date was designated as E0.5. At E12.5 embryos
were isolated and the vertebral columns (tagged with S-peptide for
Baxp1/Nkx3.2 or wildtype mouse embryos for Sox9) were carefully
dissected away from other organs and pooled. An overview of the
experimental approach is shown in Fig. 1. Chromatin (~2 mg) was
used for chromatin immunoprecipitation as previously described for
Bapx1/Nkx3.2 and Sox9 [10]. With 15 ng of purified ChIP DNA from
each sample, the sequencing library was generated according to the
manufacturer’s instructions (Illumina) [1,11]. Antibodies used for
Bapx1/Nkx3.2 and Sox were anti S-Peptide antibody (Bethyl laborato-
ries, A190-134A) and anti-Sox9 antibody (R&D Systems, AF3075)
respectively. The Illumina Genome Analyzer Pipeline was used to map
reads that had passed signal filtering to the murine mm9 genome. The
Illumina Genome Analyzer II/Iix produced sequence reads. The peak
calling algorithmMACS was used to match unique reads with 2 or less
mismatches, with default settings as previously described [12]. ChIP-
Seq peak annotation is as previously described [1,11]. All data was de-
posited in Gene Expression Omnibus (GEO) under accession number
GSE36672. 2815 Bapx1/Nkx3.2 peaks were detected at the TSS (540).
Many binding sites, however, were located far from a TSS; some located
at over 25 kb distally in the intergenic (1052) and less located over
25 kb in the intragenic regions (722). Many peaks were identified for
Sox9 (3722). DNA-binding motif analysis used the top several hundred
peaks and the masked repeat genome sequence spanned on either side
from the summit of these peaks by 50 bp.MACS determined peakswere
ranked as described [1]. The DNA binding motif for Sox9 was deter-
mined mostly by in vitro studies [13]. We identified the Bapx1/Nkx3.2
binding motif [14] enriched in about 40% of the Bapx1/Nkx3.2 binding
sites [1,11]. Gene enrichment test for regions bound by Sox9 and
Bapx1,we submitted the analyzed ChIP-Seqdata as bed format to Geno-
mic Regions Enrichment of Annotations Tool (GREAT) [15] version 1.8
with the following parameters, species assembly-mm9 and Association
rule-Single nearest gene: 100,000 bp maximum extension, curated reg-
ulatory domains included.
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