Asymptotic behavior for almost-orbits of a reversible semigroup of non-Lipschitzian mappings in a metric space

Behzad Djafari Rouhani a,*,1 and Jong Kyu Kim b,2

a Institute for Studies in Nonlinear Analysis, School of Mathematical Sciences, Shahid Beheshti University, P.O. Box 19395-4716, Evin, 19834 Tehran, Iran
b Department of Mathematics, Kyungnam University, Masan, Kyungnam 631-701, Republic of Korea

Received 13 January 2002
Submitted by W.A. Kirk

Abstract

Let (M, ρ) be a metric space and τ a Hausdorff topology on M such that $\{M, \tau\}$ is compact. Let S be a right reversible semitopological semigroup and $\mathcal{I} = \{T(s): s \in S\}$ a representation of S as ρ-asymptotically nonexpansive type self-mappings of M and u a ρ-bounded almost-orbit of \mathcal{I}. We study the τ-convergence of the net $\{u(s): s \in S\}$ in M when the triplet $\{M, \rho, \tau\}$ satisfies various types of τ-Opial conditions. Our results extend and unify many previously known results.

Keywords: Almost-orbit; Reversible; Semitopological semigroup; Asymptotically nonexpansive type; Opial condition; τ-asymptotically regular; Fixed point

* Corresponding author.
E-mail addresses: b-rohani@cc.sbu.ac.ir (B.D. Rouhani), jongkyuk@kyungnam.ac.kr (J.K. Kim).
1 Supported in part by a grant from Shahid Beheshti University.
2 Supported by grant No. R05-2001-000-0001-0 from Korea Science and Engineering Foundation.
1. Introduction

The first weak convergence theorem for the sequence of iterates \(\{T^n x\} \) of a nonexpansive mapping was proved by Opial [19] in a Hilbert space. It states that if \(M \) is a nonempty bounded closed and convex subset of a Hilbert space \(H \) and \(T \) is a nonexpansive self-mapping of \(M \), i.e., \(\|Tx - Ty\| \leq \|x - y\| \) for all \(x, y \in M \), then for each \(x \in M \), \(\{T^n x\} \) converges weakly to a fixed point of \(T \) if and only if \(T \) is weakly asymptotically regular, i.e., \(w\lim_{n \to \infty} (T^{n+1} x - T^n x) = 0 \) for each \(x \in M \). This result was subsequently extensively studied and extended in many directions [1–9,11,12,14–20,24,25].

In [5] we gave an extension of some of these results to the case of an asymptotically nonexpansive type mapping defined on a metric space \((M, \rho)\) with a Hausdorff topology \(\tau \) such that the triplet \(\{M, \rho, \tau\} \) satisfies various types of \(\tau \)-Opial conditions.

In this paper we further extend these results by studying the \(\tau \)-convergence of a \(\rho \)-bounded almost-orbit of a right reversible semitopological semigroup of asymptotically nonexpansive type self-mappings of \(M \). Our results extend in particular recent results of Li [16] and Kim and Li [11,17] from Banach space to metric space, and from nonexpansive to right reversible semigroup of asymptotically nonexpansive type mappings. We note that our results are new even in a Banach space \(X \), since compared to [16], no other requirement than the appropriate Opial condition is assumed for the norm of \(X \). Moreover, since in our case the \(\tau \)-limit of the almost-orbit is not necessarily a common fixed point for the semigroup, a new method of proof is required by introducing the notion of an asymptotic almost-orbit for the semigroup. On the other hand, our results answer affirmatively an open question of Reich [23, p. 550] even in this very general context.

2. Preliminaries

Throughout the paper \((M, \rho)\) is a metric space and \(\tau \) is a Hausdorff topology on \(M \). \(S \) is a semitopological semigroup, that is, \(S \) is a semigroup with a Hausdorff topology such that for each \(s \in S \) the mappings \(s \mapsto t \cdot s \) and \(s \mapsto s \cdot t \) from \(S \) to \(S \) are continuous. We assume that \(S \) is right reversible, that is, any two closed left ideals of \(S \) have nonempty intersection. In this case, \((S, \preceq)\) is a directed system when the binary relation \(\preceq \) on \(S \) is defined by \(s \preceq t \) if and only if \(\{s\} \cup \overline{ss} \supset \{t\} \cup \overline{st} \), for \(s, t \in S \). Right reversible semigroups include all commutative semigroups and all semitopological semigroups which are right amenable as discrete semigroups. Asymptotically nonexpansive type mappings were introduced by Kirk [13]. We assume that \(\mathcal{S} = \{T(t): t \in S\} \) is a \(\rho \)-asymptotically nonexpansive type semigroup on \(M \), that is, for each \(t \in S \), \(T(t) \) is a self-
mapping of M, $T(st)x = T(s)T(t)x$ for all $s, t \in S$ and $x \in M$, and for each $x \in M$,

$$\limsup_{t \in S} \sup_{y \in M} \left[\rho(T(t)y, T(t)x) - \rho(x, y) \right] \leq 0;$$

i.e.,

$$\rho(T(t)y, T(t)x) \leq \rho(x, y) + \epsilon(t, x)$$

for all $x, y \in M$ and $t \in S$,

where $\epsilon(t, x) \geq 0$ and for each $x \in M$, $\lim_{t \in S} \epsilon(t, x) = 0$. \mathcal{S} is called a nonexpansive semigroup if $\epsilon(t, x) = 0$ for all $t \in S$ and $x \in M$. We denote by $F(\mathcal{S})$ the common fixed point set of \mathcal{S} and $AF(\mathcal{S}) := \{ p \in M : \lim_{t \in S} \rho(T(t)p, p) = 0 \}$. When there is no confusion these sets will be denoted by F and AF, respectively.

It is clear that $F \subset AF$. A function $u : S \rightarrow M$, to which we shall refer as a curve in M in the sequel, is called an almost-orbit of \mathcal{S} if

$$\lim_{t \in S} \left[\sup_{x \in S} \rho(u(st), T(s)u(t)) \right] = 0.$$

Definition 2.1. A curve $u = \{ u(t) : t \in S \}$ is called an asymptotic almost-orbit of \mathcal{S} if

$$\lim_{t \in S} \left[\limsup_{s \in S} \rho(u(st), T(s)u(t)) \right] = 0.$$

Obviously every orbit of \mathcal{S} is an almost-orbit for \mathcal{S}, which itself is an asymptotic almost-orbit of \mathcal{S}.

Definition 2.2. A curve u in M is said to be τ-asymptotically regular if for each $x \in M$ and each τ-neighborhood V of x containing an infinite subnet $\{ u(t_{\alpha}) : \alpha \in A \}$ of u, and for each $h \in S$, there exists $t_{0} \in S$ such that $u(ht_{\alpha}) \in V$ for all $t_{\alpha} \geq t_{0}$. u is said to be ρ-asymptotically regular if for each $h \in S$, $\lim_{t \in S} \rho(u(ht), u(t)) = 0$.

Now we define various types of τ-Opial conditions; see [10,12,19,21,22].

Definition 2.3. The triplet $\{ M, \rho, \tau \}$ is said to satisfy the τ-Opial condition if for each ρ-bounded net $\{ x_{\alpha} : \alpha \in A \}$ in M that τ-converges to some $x \in M$, we have

$$\limsup_{\alpha \in A} \rho(x_{\alpha}, x) < \limsup_{\alpha \in A} \rho(x_{\alpha}, y)$$

for all $y \neq x$.

It is said to satisfy the locally uniform τ-Opial condition if for each ρ-bounded net $\{ x_{\alpha} \}$ in M that τ-converges to some $x \in M$ and every $\epsilon > 0$, there exists $\eta(\{ x_{\alpha} \}, \epsilon) > 0$ such that for each $y \in M$ with $\rho(x, y) \geq \epsilon$, we have

$$\limsup_{\alpha \in A} \rho(x_{\alpha}, x) + \eta \leq \limsup_{\alpha \in A} \rho(x_{\alpha}, y).$$
It is said to satisfy the uniform τ-Opial condition if for every $R > 0$ and every $\epsilon > 0$, there exists $\eta(R, \epsilon) > 0$ such that for every net $\{x_\alpha : \alpha \in A\}$ in M that τ-converges to some $x \in M$ with $\limsup_{\alpha \in A} \rho(x_\alpha, x) \leq R$, and for every $y \in M$ with $\rho(x, y) \geq \epsilon$, we have

$$\limsup_{\alpha \in A} \rho(x_\alpha, x) + \eta \leq \limsup_{\alpha \in A} \rho(x_\alpha, y).$$

The uniform Opial condition in Banach spaces was introduced by Prus [22]. It is clear that the uniform τ-Opial condition implies the locally uniform τ-Opial condition which in turn implies the τ-Opial condition. It is also clear that in Definition 2.3 all the $\limsup_{\alpha \in A}$ can be replaced by $\liminf_{\alpha \in A}$.

The following lemma which gives an equivalent condition to the locally uniform τ-Opial condition is well-known; see [12,19].

Lemma 2.4. The triplet $\{M, \rho, \tau\}$ satisfies the locally uniform τ-Opial condition if and only if for every ρ-bounded net $\{x_\alpha : \alpha \in A\}$ in M that τ-converges to some $x \in M$, and for every net $\{y_\beta : \beta \in B\}$ in M that satisfies

$$\limsup_{\beta \in B} \left[\limsup_{\alpha \in A} \rho(x_\alpha, y_\beta) \right] \leq \limsup_{\alpha \in A} \rho(x_\alpha, x),$$

we have $\lim_{\beta \in B} \rho(y_\beta, x) = 0$.

3. Asymptotic behavior

In this section, unless otherwise stated, S is a right reversible semitopological semigroup and $\mathcal{S} = \{T(t) : t \in S\}$ is a representation of S as ρ-asymptotically nonexpansive type self-mappings of M and $u = \{u(t) : t \in S\}$ is an almost-orbit of \mathcal{S}. We study the τ-convergence of u in M. We denote the τ-convergence of a net $\{x_\alpha : \alpha \in A\}$ to $x \in M$ by $x_\alpha \xrightarrow{\tau} x$, or by $x_\alpha \xrightarrow{\tau} x$, and the ρ-convergence by $\rho(x_\alpha) \xrightarrow{\rho} x$. $\omega_\tau(u)$ denotes the τ-limit set of u, i.e.,

$$\omega_\tau(u) = \{x \in M; \exists \text{ subnet } u(t_\alpha) \xrightarrow{\tau} x\}.$$

$\omega_\tau(u) \neq \emptyset$ if $\{M, \tau\}$ is compact.

Let $L(u) := \{p \in M; \lim_{t \in S} \rho(u(t), p) \text{ exists}\}$.

Lemma 3.1. If u and v are asymptotic almost-orbits of T, then $\lim_{t \in S} \rho(u(t), v(t))$ exists. In particular, $F \subset AF \subset L(u)$.

Proof. Let

$$a(t) = \limsup_{s \in S} \rho(u(st), T(s)u(t))$$
and

\[b(t) = \limsup_{s \in S} \rho(v(st), T(s)v(t)). \]

Then \(\lim_{t \in S} a(t) = \lim_{t \in S} b(t) = 0 \), and we have

\[
\rho(u(st), v(st)) \leq \rho(u(st), T(s)u(t)) + \rho(T(s)u(t), T(s)v(t)) \\
+ \rho(T(s)v(t), v(st)) \\
\leq \rho(u(st), T(s)u(t)) + \rho(T(s)v(t), v(st)) + \rho(u(t), v(t)) \\
+ \epsilon(s, u(t)).
\]

Keeping \(t \) fixed and taking the limit over \(s \in S \), we get

\[
\limsup_{s \in S} \rho(u(s), v(s)) \leq a(t) + b(t) + \rho(u(t), v(t)).
\]

Now taking the limit over \(t \in S \) we get

\[
\limsup_{s \in S} \rho(u(s), v(s)) \leq \liminf_{t \in S} \rho(u(t), v(t))
\]

which implies that \(\lim_{t \in S} \rho(u(t), v(t)) \) exists.

Now to complete the proof of the lemma, the inclusion \(F \subset AF \) is obvious, and we have \(AF \subset L(u) \) since every element of \(AF \) is clearly an asymptotic almost-orbit of \(\mathcal{I} \).

\[\Box\]

Lemma 3.2. Assume \(\{M, \tau\} \) is compact and \(\{M, \rho, \tau\} \) satisfies the \(\tau \)-Opial condition. Then an almost-orbit \(u = \{u(t): t \in S\} \) of \(\mathcal{I} \) is \(\tau \)-convergent in \(M \) if \(\omega_{\tau}(u) \subset L(u) \).

Proof. Since \(\{M, \tau\} \) is compact, \(\omega_{\tau}(u) \neq \emptyset \) and hence \(L(u) \neq \emptyset \); therefore without loss of generality, we can assume that \(u \) is \(\rho \)-bounded. Assume \(u(t_\alpha) \xrightarrow{\tau} p \) and \(u(s_\beta) \xrightarrow{\tau} q \). Then by assumption \(p, q \in L(u) \). If \(p \neq q \), by using the \(\tau \)-Opial condition we have

\[
\lim_{t \in S} \rho(u(t), p) = \limsup_{\alpha} \rho(u(t_\alpha), p) < \limsup_{\alpha} \rho(u(t_\alpha), q) \\
= \lim_{t \in S} \rho(u(t), q) = \limsup_{\beta} \rho(u(s_\beta), q) \\
< \limsup_{\beta} \rho(u(s_\beta), p) = \lim_{t \in S} \rho(u(t), p)
\]

which is a contradiction. Therefore we must have \(p = q \) which implies that \(\omega_{\tau}(u) \) is a singleton. Since \(\{M, \tau\} \) is compact, this implies the \(\tau \)-convergence of \(u \) in \(M \). \[\Box\]

The following proposition plays a crucial role in the proof of our main result.
Proposition 3.3. Assume \(\{ M, \tau \} \) is compact and \(u \) is a \(\rho \)-bounded and \(\tau \)-asymptotically regular almost-orbit of \(\mathcal{S} \). Then \(\omega_\tau(u) \subset A F \) if either one of the following (i) or (ii) holds:

(i) \(\{ M, \rho, \tau \} \) satisfies the uniform \(\tau \)-Opial condition.

(ii) \(\{ M, \rho, \tau \} \) satisfies the locally uniform \(\tau \)-Opial condition and \(u \) is moreover \(\rho \)-asymptotically regular.

If \(\mathcal{S} \) is a nonexpansive semigroup, then we even have \(\omega_\tau(u) \subset F \) if \(\{ M, \rho, \tau \} \) satisfies the \(\tau \)-Opial condition.

Proof. We know \(\omega_\tau(u) \neq \emptyset \). Let \(p \in \omega_\tau(u) \) and \(\tau \)-lim_{\alpha \in A} u(t_\alpha) = p \); the \(\tau \)-asymptotic regularity of \(u \) implies that \(\tau \)-lim_{\alpha \in A} u(st_\alpha) = p \) for each \(s \in S \). Let \(a(t) = \sup_{s \in S} \rho(u(st), T(s)u(t)) \), then \(\lim_{t \in S} a(t) = 0 \); let \(c(s) = \limsup_{\alpha \in A} \rho(u(st_\alpha), p) \) and \(c = \inf_{s \in S} c(s) \). First assume that \(\{ M, \rho, \tau \} \) satisfies the \(\tau \)-Opial condition. Then we have

\[
c(hs) = \limsup_{\alpha \in A} \rho(u(hst_\alpha), p) \leq \limsup_{\alpha \in A} \rho(u(hst_\alpha), T(h)p) \leq \limsup_{\alpha \in A} \rho(u(hst_\alpha), T(h)u(st_\alpha)) + \limsup_{\alpha \in A} \rho(T(h)u(st_\alpha), T(h)p) \leq \limsup_{\alpha \in A} a(st_\alpha) + \limsup_{\alpha \in A} \rho(u(st_\alpha), p) + \epsilon(h, p) = c(s) + \epsilon(h, p).
\]

Keeping \(s \) fixed and taking the limit over \(h \in A \), we get \(\liminf_{t \in S} c(t) = c(s) \) for all \(s \in S \). This implies that \(\lim_{t \in S} c(t) = \inf_{s \in S} c(s) = c \).

Now let \(\{ \epsilon_n \} \) be an arbitrary sequence of positive numbers tending to zero (e.g., \(\epsilon_n = 1/n \)), and let \(\{ O_\gamma : \gamma \in \Gamma \} \) be the family of all \(\tau \)-open neighborhoods of \(p \). Let \(h \in S \) fixed. For each integer \(l \geq 1 \) we choose \(s_l \in S \) and \(\alpha^1_l \in A \) so that \(c(s_l) \leq c + \epsilon_l \) and \(a(t_{\alpha^1_l}) \leq \epsilon_l \) for all \(t \in S \) and \(\alpha \in A \) with \(\alpha \geq \alpha^1_l \).

Now we choose \(\alpha^2_l \in A \) with \(\alpha^2_l \geq \alpha^1_l \) so that \(\rho(u(s_l t_{\alpha^1_l}), p) \leq c + 2\epsilon_l \) and \(\rho(u(hs_l t_{\alpha^1_l}), p) \geq c - \epsilon_l \) for all \(t \in S \) with \(\alpha \geq \alpha^2_l \). Now for each \(\tau \)-neighborhood \(O_\gamma \) of \(p \) we choose \(\alpha^{h,l}_{\gamma} \in A \) with \(\alpha^{h,l}_{\gamma} \geq \alpha^2_l \) so that \(u(hs_l t_{\alpha^1_l}) \in O_\gamma \) for all \(\alpha \in A \) with \(\alpha \geq \alpha^{h,l}_{\gamma} \). This is possible, since for \(h \in S \) and \(l \geq 1 \) fixed, we have \(\tau \)-lim_{\alpha \in A} u(hs_l t_{\alpha^1_l}) = p \). We now consider the set \(I := N \times \Gamma \) directed by the relation

\[
(n_1, \gamma_1) \leq (n_2, \gamma_2) \quad \text{if and only if} \quad n_1 \leq n_2 \quad \text{and} \quad O_{\gamma_2} \subset O_{\gamma_1}.
\]

Then from our construction above, it is clear that for each \(h \in S \) fixed, we have \(\tau \)-lim_{(l, \gamma) \in I} u(hs_l t_{\alpha^{h,l}_{\gamma}}) = p \) and for each \(h \in S \), \(l \geq 1 \) and \(\gamma \in \Gamma \) we have the following inequalities:

\[
\rho(u(hs_l t_{\alpha^{h,l}_{\gamma}}), T(h)p) \leq \rho(u(hs_l t_{\alpha^{h,l}_{\gamma}}), T(h)s_l t_{\alpha^{h,l}_{\gamma}})) + \rho(T(h)s_l t_{\alpha^{h,l}_{\gamma}}), T(h)p).
\]
\[
\leq a(slt_{a_{h,l}}, p) + \rho(u(slt_{a_{h,l}}, p) + \epsilon(h, p) \\
\leq \epsilon_I + c + 2\epsilon_I + \epsilon(h, p) = c + 3\epsilon_I + \epsilon(h, p) \\
\leq \rho(u(slt_{a_{h,l}}, p) + 4\epsilon_I + \epsilon(h, p).
\]

(1)

First we note that if \(\mathcal{I} \) is a nonexpansive semigroup, then \(\epsilon(h, p) = 0 \) for all \(h \in S \). Therefore, taking in (1) the limit over \((l, \gamma) \in I\), we get

\[
\limsup_{(l, \gamma) \in I} \rho(u(slt_{a_{h,l}}, p), T(h)p) \leq \limsup_{(l, \gamma) \in I} \rho(u(slt_{a_{h,l}}, p), p) + \epsilon(h, p).
\]

which implies by the \(\tau \)-Opial condition that \(T(h)p = p \). Since \(h \in S \) was arbitrary, we therefore have \(p \in F \) and hence \(\omega_\tau(u) \subset F \), completing the proof to the last assertion of the proposition. Assume now that (i) holds. Then for fixed \(h \in S \), we get from (1) that

\[
\limsup_{(l, \gamma) \in I} \rho(u(slt_{a_{h,l}}, p), T(h)p) \leq \limsup_{(l, \gamma) \in I} \rho(u(slt_{a_{h,l}}, p), p) + \epsilon(h, p).
\]

Since \(\lim_{h \in S} \epsilon(h, p) = 0 \), the uniform \(\tau \)-Opial condition for \(\{M, \rho, \tau\} \) implies that \(\lim_{h \in S} \rho(T(h)p, p) = 0 \), i.e., \(p \in AF \). Hence \(\omega_\tau(u) \subset AF \) and the proof of (i) is now complete.

Now assume that (ii) holds. By the triangle inequality we have

\[
\rho(u(slt_{a_{h,l}}, p), p) \leq \rho(u(slt_{a_{h,l}}, p), p) + \rho(u(slt_{a_{h,l}}, u(slt_{a_{h,l}})), u(slt_{a_{h,l}}))
\]

and

\[
\rho(u(slt_{a_{h,l}}, T(h)p), T(h)p) \geq \rho(u(slt_{a_{h,l}}, p), T(h)p) \\
- \rho(u(slt_{a_{h,l}}, u(slt_{a_{h,l}}))).
\]

Hence for fixed \(h \in S \), we get from (1) and the \(\rho \)-asymptotic regularity of \(u \) that

\[
\limsup_{(l, \gamma) \in I} \rho(u(slt_{a_{h,l}}, p), T(h)p) \leq \limsup_{(l, \gamma) \in I} \rho(u(slt_{a_{h,l}}, p), p) + \epsilon(h, p).
\]

Now taking the limit over \(h \in S \), we get

\[
\limsup_{h \in S} \left[\limsup_{(l, \gamma) \in I} \rho(u(slt_{a_{h,l}}, p), T(h)p) \right] \leq \limsup_{(l, \gamma) \in I} \rho(u(slt_{a_{h,l}}, p), p).
\]

Since \(\{M, \rho, \tau\} \) satisfies the locally uniform \(\tau \)-Opial condition, by Lemma 2.4 we conclude that \(\lim_{h \in S} \rho(T(h)p, p) = 0 \), i.e., \(p \in AF \). Hence \(\omega_\tau(u) \subset AF \) and the proof of the proposition is now complete. \(\square \)

Now we can state our main result.

Theorem 3.4. Assume \(\{M, \tau\} \) is compact and \(u \) is a \(\rho \)-bounded and \(\tau \)-asymptotically regular almost-orbit of \(\mathcal{I} \). Then \(u \) is \(\tau \)-convergent in \(M \) if either one of the following (i), (ii) or (iii) holds:

\[
\limsup_{h \in S} \left[\limsup_{(l, \gamma) \in I} \rho(u(slt_{a_{h,l}}, p), T(h)p) \right] \leq \limsup_{(l, \gamma) \in I} \rho(u(slt_{a_{h,l}}, p), p).
\]
(i) \mathcal{I} is a nonexpansive semigroup and $\{M, \rho, \tau\}$ satisfies the τ-Opial condition.

(ii) $\{M, \rho, \tau\}$ satisfies the uniform τ-Opial condition.

(iii) $\{M, \rho, \tau\}$ satisfies the locally uniform τ-Opial condition and u is moreover ρ-asymptotically regular.

In (i), the τ-limit of u belongs to F. In (ii) and (iii), the τ-limit of u belongs to AF; it belongs to F if either $T(t)$ is ρ-continuous for each $t \in S$, or $T(t)$ is ρ-nonexpansive for some $t \in S$ and S satisfies the following property: $\forall h \in S$, $\exists n \geq 1$ such that $h \preceq t^n$.

Proof. By Lemma 3.1 we have $F \subset AF \subset L(u)$; by Proposition 3.3 we have $\omega_\tau(u) \subset F \subset L(u)$ in (i), and $\omega_\tau(u) \subset AF \subset L(u)$ in (ii) and (iii). Therefore an application of Lemma 3.2 gives the τ-convergence of u in all these cases.

By Proposition 3.3, we know that in (i) the τ-limit of u belongs to F, and in (ii) and (iii) it belongs to AF. If $T(t)$ is ρ-continuous for each $t \in S$, then clearly $AF = F$, since for $t \in S$ and $p \in AF$ we have

$$p = \rho-\lim_{s \in S} T(s)p = \rho-\lim_{s \in S} T(ts)p = T(t)\left(\rho-\lim_{s \in S} T(s)p\right) = T(t)p,$$

so the result follows in this case.

Now assume that $T(t)$ is ρ-nonexpansive for some $t \in S$. Then replacing h by t in the inequality (1) in Proposition 3.3 and noting that $\epsilon(t, p) = 0$, we conclude by using the τ-Opial condition for $\{M, \rho, \tau\}$ that $T(t)p = p$. Now by the property we assumed for S, we have $\rho-\lim_{n \to \infty} T(st^n)p = p$, $\forall s \in S$, since $p \in AF$. Therefore for each $s \in S$ we have

$$T(s)p = T(s)T(t^n)p = T(st^n)p = p,$$

i.e., $p \in F$. This completes the proof of the theorem. □

Remark 3.5. It is clear that every τ-convergent curve u in M is τ-asymptotically regular.

Remark 3.6. Theorem 3.4 gives an affirmative answer to an open question of Reich [23, p. 550] even in this very general context.

Remark 3.7. Theorem 3.4 extends recent results of Li [16] and Kim and Li [11, 17], as well as [5]; if M is a weakly (respectively weak*) compact subset of a Banach space and τ is the weak (respectively weak*) topology on M, then it extends many previously known results to asymptotically nonexpansive type mappings and semigroups, as mentioned in the Introduction.
4. Some open problems

Our discussion leaves the following problems open:

(1) In Theorem 3.4(ii) or (iii), does the conclusion hold if we assume only that \(\{M, \rho, \tau\} \) satisfies the locally uniform \(\tau \)-Opial condition?

(2) Is it possible to extend Theorem 3.4 to nonexpansive (respectively almost nonexpansive) curves in \(M \)? See [2–4] and references therein for appropriate definitions and an affirmative answer in the Hilbert space case. In this case, for \(t \in S \), \(T(t) \) is not defined anymore on \(\omega_\tau(u) \).

Acknowledgments

This work started during the first author’s visit to Kyungnam University. He thanks Professor J.K. Kim and the Department of Mathematics for their kind hospitality during his visit.

References

