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It is shown that a local reconstructionmethod from a nonuniform sampled data along with
discrete wavelet transform and a simple statistical method is applicable in a voice system.
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1. Introduction and background

Speech recognizers are used in some graphicswork stations as input devices to accept voice commands. The voice system
input can be used to initiate graphics operations or to enter data (see [1]). These systems operate by matching an input
against a predefined dictionary of words and phrases.
A dictionary is set up for a particular operator by having the operator speak the command words to be used into the

system. Each word is spoken several times, and the system analyses the word and establishes a frequency pattern for that
word in the dictionary along with the corresponding function to be performed. Later, when a voice command is given, the
system searches the dictionary for a frequency-pattern match.

Definition 1.1. Let ψ ∈ L2(R), ψj,k(x) = 2−
j
2ψ(2−jx− k), j, k ∈ Z. If {ψjk : j, k ∈ Z} forms an orthonormal basis for L2(R),

thenψ is called awavelet and {ψjk : j, k ∈ Z} awavelet basis in L2(R). Using this wavelet basis, any f ∈ L2(R) can bewritten
as

f =
∑
j,k

〈f , ψjk〉ψjk. (1.1)

The sequence {〈f , ψjk〉 : j, k ∈ Z} is called discrete wavelet transform (DWT) of f . The inversion formula of discrete wavelet
transform (IDWT) is given by the Eq. (1.1).

Definition 1.2. A orthogonal multi resolution analysis (MRA) is a sequence of closed subspaces Vj, j ∈ Z, in L2(R) such that

1. Vj ⊂ Vj−1 for all j ∈ Z
2.
⋃
Vj = L2(R) and

⋂
Vj = {0}

3. f ∈ Vj ⇔ f (2·) ∈ Vj−1
4. f ∈ Vj ⇔ f (· − k) ∈ Vj for all k ∈ Z.
5. There exists a scaling function ϕ ∈ V0 such that {ϕ(· − k) : k ∈ Z} forms an orthogonal basis for V0.
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Then ϕ satisfies

ϕ(x) =
∑
k

ckϕ(2x− k).

This is called scaling identity.

Theorem 1.3. Let {Vn, ϕ} denote a multiresoltion analysis. Then there exists a wavelet ψ defined by

ψ(x) =
√
2
∞∑

k=−∞

βk ϕ(2x− k), where βk = (−1)kᾱ1−k. (1.2)

where αk satisfies ϕ(x) =
√
2
∑
∞

k=−∞ αk ϕ(2x− k).

We refer to Daubechies [2] for a detailed study of wavelets.
Assume that ψ comes from an orthogonal MRA. Then one can implement the DWT repeatedly as follows: If cj(k) =

〈f , ϕjk〉, dj(k) = 〈f , ψjk〉 denote the coefficients associated with the scaling function and the wavelet at the jth resolution
(jth level), then the corresponding coefficients at j + 1th resolution (j + 1th level) can be obtained using the following
formulae:

cj+1(k) =
∑
l∈Z

h(l− 2k)cj(l) (1.3)

dj+1(k) =
∑
l∈Z

(−1)kh̄(2k− l− 1)cj(l) (1.4)

where h(k) satisfies the following: ϕ( x2 ) = 2
1
2
∑
k h(k)ϕ(x− k).

The coefficients cj(k) at resolution j (level j) can be obtained from the coefficients cj+1 and dj+1 at a coarser resolution
(level j+ 1) by the reconstruction algorithm

cj(k) =
∑
l∈Z

h(2l− k)cj+1(l)+
∑
l∈Z

(−1)kh̄(k− 2l− 1)dj+1(l) (1.5)

which is essentially the computational algorithm for inverting the DWT associated with MRAs. We refer to [3] for further
details.

Theorem 1.4 (Central Limit Theorem). If X is the mean of a sample of size n taken from a population having the mean µ and
the finite variance σ 2, then Z = X−µ

σ/
√
n is a random variable whose distribution function approaches that of the standard normal

distribution as n→∞.

Remark 1.5. 1. In practice, the normal distribution provides an excellent approximation to the sampling distribution of the
mean X for n as small as 25 or 30, with hardly any restrictions on the shape of the population.

2. The sample mean X and population mean µ differ from each other as follows. We can assert with probability 1− α that
the inequality −zα/2 ≤

X−µ
σ/
√
n ≤ zα/2 will be satisfied for the large sample with size n when n ≥ 30. In other words

|X − µ| ≤ zα/2 σ√n = E with probability 1 − α. The most practical values for 1 − α are 0.95 and 0.99. Graphically
α
2

denotes the area under the normal curve to the right of zα/2.

We refer to [4] for background in statistics.
The local reconstruction from a finite number of nonuniform samples is one of the most desirable properties for many

applications in signal processing. However, the local reconstruction problem has not been investigated except for the
spline space and shift invariant space with compactly supported generator ([5,6]). The natural question is to obtain a local
reconstruction method for functions belonging to shift invariant spaces with other generators. Recently in [7], the authors
discuss a local reconstructionmethod for functions belonging to a shift invariant spacewith the generator having polynomial
decay in time domain and moderate decay in frequency domain such that its Fourier transform is non vanishing on a unit
interval. In fact, the following results are proved in [7].
Let El(R) (l ≥ 2) denote the class of all complex valued continuous functions ϕ defined on R satisfying the following

conditions

(i) ϕ(x) = o
(
1
xl

)
and ∃ α > 1 such that ϕ̂(x) = O

( 1
xα
)
, where ϕ̂ denotes the Fourier transform of ϕ.

(ii) ϕ̂(x) 6= 0 for all x ∈ [b, b+ 1], for some b ∈ R.

Then one has the following results.
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Theorem 1.6. Let ϕ ∈ E2l(R) and f ∈ V (ϕ). Let [a, b] be an interval in R. Given ε > 0, there exists a positive integer M such
that ∣∣∣∣∣f (x)− ∑

k∈(a−M,b+M)∩Z

ckϕ(x− k)

∣∣∣∣∣ < ε

M l
∀ x ∈ [a, b].

In other words, f restricted to an interval [a, b] can be approximately determined by a finite number of coefficients ck locally.

Theorem 1.7. Fix l ≥ 2. Let ϕ ∈ E2l(R), f ∈ V (ϕ), [a, b] an interval in R and ε > 0. Let M be a positive integer satisfying
Theorem 1.6. Let X denote a sample set {xj}, xj ∈ [a, b] such that 2M + b− a− 1 ≤ #X ≤ M2l, where #X denotes the number
of elements in X . Define Ujk = ϕ(xj − k), 1 ≤ j ≤ #X, k ∈ [a−M + 1, B+M − 1] ∩ Z. If U possesses full column rank then
∃ gr ∈ V (ϕ) (the reconstructed function for f |[a,b] from the nonuniform sample X) such that

‖f |X − gr |X‖2 < ε(1+ ‖U‖‖(UTU)−1UT‖)+ O(ε2).

In this paper, we show that the above local reconstruction method along with a simple statistical method can be applied
to find a pattern match in voice system. Since in practice voice signals occur with noise, we use discrete wavelet transform
for the purpose of denoising. We also provide an algorithm and illustrations using Matlab. This method is advantageous
compared to the usage of statistical method alone as it reduces storage space a lot. In fact, for representing the signals
shown in Fig. 3 one originally uses around 10,000 sample data. On the other hand, we require only 250 samples.

2. The main result

Let us assume that the predefined dictionary consists of, say, n signal patterns, where in each signal pattern corresponds
to a particular word. In order to store a frequency pattern for a particular word, an operator has to speak several times. At
the same time we cannot expect the operator to speak the same word in exactly the same fashion. Therefore we have to
collect at least 30 different signal patterns (30 samples) for a particular word and then choose an ideal frequency pattern for
each word. In this way, we save nwords.
We assume that these frequency patterns are members of V (ϕ). The original frequency pattern of an ideal word is

obtained from m different signal patterns of the word. More precisely, each function value of the ideal word is taken as
the sample mean arising from these samples. Notice that these sample means are not true means. But we know that the
sample mean differs from the population mean at the most E mentioned in Remark 1.5.
Now the problem is stated as follows: Input a signal and test whether this signal finds a match with a signal in the

database which consists of nwords. We assume that all these signals are in V (ϕ). Each word (a signal h) need not be stored
in the database as such. We can save only some function values of h which will help us to reconstruct h. These function
values need not be taken uniformly. A nonuniform sample of h alone needs to be saved in the database so that h can be
reconstructed from these values with ‘ε’ error (which is a priori fixed based on the application). In other words we do the
following. Discretize h (a voice signal). i.e., Find a large number of uj so that h can be reconstructed more exactly from these
uj. These values h(uj), j = 1, 2, . . . ,N ′ generate a sample drawn from a normal population when N ′ ≥ 30. However in the
practical situation N ′ will be very large. But we need not take all these uj’s to obtain a sample. We choose the nonuniform
sample xj, j = 1, 2, . . . ,N1, from the sample uj, j = 1, 2, . . . ,N ′, so that h can be reconstructed from these h(xj) using
Theorem 1.7. Let ζ1 denote the sample ζ1 : yj = h(xj), j = 1, 2, . . . ,N1. Thus we save only ζ1 in the database instead of
h. Let g denote an input signal. Similarly find tj’s using which g can be reconstructed from g(tj). Let ζ2 (the sample of g) be
written as ζ2 : zj = g(tj), j = 1, 2, . . . ,N2. i.e., we input ζ2 only. Now, in order to say that h and g are matched, we need to
say that ζ1, ζ2 are drawn from the populations P1, P2 having the same mean µ1 = µ2 and variance σ 21 = σ

2
2 . Towards this

end, we adopt the following tests in statistics: Let ζ1 : y1, y2, . . . , yN1 and ζ2 : z1, z2, . . . , zN2 denote two samples.
Test for equality of mean
H0 : µ1 = µ2
H1 : µ1 6= µ2
Compute

z =
ȳ− z̄√
s21
N1
+

s22
N2

(2.1)

where ȳ =
y1+y2+···+yN1

N1
, z̄ =

z1+z2+···+zN2
N2

and s21, s
2
2 denote the sample variances. If the calculated value of z lies between

−z α
2
≤ z ≤ z α

2
, then we conclude that with (1− α)100% confidence that ζ1, ζ2 are drawn from the populations having the

same mean.
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Table 1
Comparison with signal 4(a).

Signal in database z F

(a) −1.7027 2.0866
(b) −2.3274 1.2433
(c) −2.1959 1.0195
(d) 3.2885e−004 1.0003

Fig. 1.

(a) Noisy signal. (b) Denoised signal using Db5 wavelet with 16 levels.

Fig. 2.

Test for equality of variance
H0 : σ 21 = σ

2
2

H1 : σ 21 6= σ
2
2

Compute

F =
s2max
s2min

(2.2)

where smax = max{s1, s2}, smin = min{s1, s2}where s21, s
2
2 denote the sample variances.

If the calculated value of F is less than f α
2 ,N−1,N−1

then we conclude with (1 − α)100% confidence that ζ1, ζ2 are drawn
from the populations having the same variance.
We can notice an advantage here. Originally one has to work with all uj’s but the procedure is carried out using xj’s only.

This is possible because the reconstruction is unique. Thus storage space for signals in the database as well as for input
signal is reduced.
Based on these tests if g is matched with a function h in the database, h is reconstructed and shown.
We also adopt the following strategy. Since the frequency patterns are obtained on different domains, for the sake of

convenience in order to find matching, we do the following: First, shift and scale the frequency patterns from their domains
to the interval [0, 1] and then store uniformly all of them on an interval [a, b]. In the same way, the input signal will also be
represented on the same interval [a, b].
Weprovide the algorithm in the next section. Asmentioned earlier, in practice theremay be an occurrence of noise along

with a voice signal. In such cases, we use denoising as pre-processing before inputting the signal or storing it in the database.

Given a signal, we apply discrete wavelet transform using (1.3) and (1.4). The resulting signal has two parts consisting
of low frequency components and high frequency components. In general, it is assumed that the appearance of noise is
exhibited in high frequency components only and hence we apply thresholding to the high frequency components to get
the compressed signal. Then we apply the inverse discrete wavelet transform using (1.5). The resulting signal may contain
less amount of noise compared to the original signal. Thus in order to obtain a denoised signal it may be necessary to apply
DWT Eqs. (1.3) and (1.4) repeatedly (by varying j) before applying thresholding. This method is illustrated in Fig. 1.

3. Algorithm and illustrations

Step-0. To reconstruct gr from the nonuniform samples of f using Theorems 1.6 and 1.7.
(1) Let yi = f (xi), i = 1, 2, . . . ,N . Let y = (y1 y2...yN)T , where T denotes the transpose and N = #X .
(2) Define the matrix U as Ujk = ϕ(xj − k) for 1 ≤ j ≤ N, k ∈ I.Write y = Uc. Here I = [a− M + 1, b+ M − 1] ∩ Z and
c = (ck)k∈I .
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Fig. 3. Signals in database.

(a) Input signal. (b) Reconstructed signal.

Fig. 4.

(3) Compute c̃ as c̃ = (UTU)−1UTy and calculate

gr(x) =
∑
k∈I

c̃k ϕ(x− k)

Step-1. To select an ‘‘ideal’’ word.

(i) Various frequency patterns denoting same word are input. Here n(≥ 30) such frequency patterns h1, h2, . . . , hn need
to be collected.

(ii) Applying scaling and translation wherever necessary and collect h1, h2, . . . , hn on a particular time domain [a, b].
(iii) Let h = h1+h2+···+hn

n . Then consider the nonuniform sample h(xj), where the sample set X = {x1, x2, . . . , xN1} satisfies
the required conditions as in Theorem 1.7, from which h can be reconstructed with the error ε.

(iv) Now store the nonuniform sample h(xj)with the sample points xj in the database. This represents our ideal word.

Step-2. Apply if necessary scaling and translation and store all ideal frequency patterns (denoting different words in a
predefined dictionary) on a fixed time domain [a, b]. Collect N(say 10) such signals in a data base.
Step-3. Input a new signal g which is to be matched. First shift it to the domain [a, b], after applying scaling if necessary.
Step-4.Now choose the sample set Y = {y1, y2, . . . , yN2} such that g can be reconstructed from the samples {g(yj) : yj ∈ Y }
with the error ε.
Step-5. Calculate z and F (see Eqs. (2.1) and (2.2)) for the input {g(yj) : yj ∈ Y } and for each ideal word in the database
{h(xj) : xj ∈ X}. Apply the test for equality of mean and variance. Based on these tests, if for some ideal word h in the
database and input signal g we can conclude that h and g are drawn from the population with the samemean and variance,
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Fig. 5.

Table 2
Comparison with signal 5.

Signal in database z F

(a) 0.6538 2.2131
(b) −0.3977 1.1722
(c) −0.1652 1.0404
(d) 2.0083 1.0609

we decide that h and g are matched and we display the original signal. Otherwise (if none of hmatches with g) we print the
message ‘‘Not matched with any of the signals in the database’’.
A signal in the presence of noise is shown in Fig. 2(a). The denoised signal is shown in Fig. 2(b), using discrete wavelet

transform with Db5 wavelet.
The Fig. 3(a), (b), (c) and (d) show the original (voice) signals, which are stored in the database as nonuniform samples

(as discussed in algorithm) with approximately 250 sample values (originally there were 10,000 sample values to describe
each of these functions). The input signal is shown in Fig. 4(a). This is being compared with each signal in the database. Out
of these signals one signal is matched with the input signal. The matched signal which is reconstructed from the database
is shown in Fig. 4(b). Similarly Fig. 5 is an input signal which does not find a match in the data base. The calculated values
of z and F are tabulated in Tables 1 and 2 respectively. Here we take 1− α = 0.95 for the testing the equality of means and
α = 0.01 for testing the equality of variance.
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