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1. Introduction 

This paper is the second of the set of papers dealing with the problem 
mentioned in the introduction of the previous paper 1). References to that 
paper will be indicated by I, followed by the section number or formula 
number. We shall use here the same notation. Here the G-problem is 
solved in two different ways. In section 2 the problem is solved by 
representing the Green's function by a Fourier integral, the integrand 
of which satisfies a certain functional relation. The latter functional 
equation has been considered in connection with the F-problem treated 
in the preceding paper (cf. I 4). This method is a streamlined version of 
VAN DANTZIG's method 2). In section 3 a few elementary cases are 
considered for which the method of the previous section can be success­
fully applied. In section 4 the G-problem is solved by a different method. 
The Green's function is now represented essentially as a Laplace trans­
form, the integrand of which is a sectionally holomorphic function. The 
boundary conditions lead eventually to a certain generalized Wiener-Hop£ 
problem. The latter problem may be formulated as follows. Let g1(w) 
be holomorphic in the strip f{Jl -!n ~ Im w ~ q;1 + !n and symmetric with 
respect to iq;1, let g2(w) be holomorphic in the strip q;2-!n~Im w~q;2+!n 
and symmetric with respect to iq;2. It will be assumed that 0 < rp2- f{Jl ~ :n; 

so that the two strips overlap or at least have a line in common. If in 
the common region R(q;2-!n~Im w~q;1 +!n) h1(w), h2(w) and k(w) are 
given functions, then the problem is to determine g1(w) and g2(w) from 
the following functional equation in R (cf. (4.14) with a slightly different 
notation). 

(1.1) h2(w) g2(w) + h1(w) Yt(w) = k(w). 

If q;2- f{Jl = :n; then R is a line and the problem is equivalent to a Hilbert 
problem in the z-plane, where z=sh w. The solution of (1.1) involves a 
factorisation problem of the quotient h1(w)jh2(w) which appears to be 
equivalent to the abovementioned functional equation of I 4. The final 

*) Report TW 6.6 of the Mathematical Centre, Amsterdam, Netherlands. 
1) Cf. H. A. LAUWERIER (1959b). 
2) Cf. D. VAN DANTZIG (1958). 
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form of the solution is given by (4.25) which may be transformed into 
the elegant form (4.28) or the series expansions (4.35). Contrary to the 
form of the solution obtained by the first method that obtained by the 
second method lends itself readily to the discussion of special cases. In 
section 5 we have considered the continuation of the Green's function 
across the sides of the angle in the Riemannian plane. The primary 
reflections of the logarithmic pole of the Green's function with respect 
to the sides are dipole tails upon which the continued function makes a 
jump. The secondary reflections are bundles of dipole tails. In the special 
case y1 = yz = 0 or Yl = yz =in the tails are absent and only the repeated 
reflections of the logarithmic pole remain, just as in the well-known 
Sommerfeld problem. 

The G-problem solved in this paper generalizes all sort of problems of 
diffraction. of acoustic, electromagnetic and hydrodynamic waves arising 
from a finite or infinite source. The well-known problem of the sloping 
beach has been treated in a similar way by the present author 3). 

2. The G-problem, first method 

Let G(r, cp, r0, cpo) be a function of Green satisfying (I l.l) and (I 1.2) 
which is continuous at r = 0 and which vanishes sufficiently rapidly for 
r -roo, e.g. as exp-cr where c is a positive constant. Then we take its 
complex Fourier transform 

00 

(2.1) W(w, q;)=n-lchw J exp (irshw)G(r, cp, r0, cpo)dr. 
0 

By partial integration it can easily be proved that 
00 

( ;:,2 ;:,2) _ f . 1 ( " )z ;:,2 ? (2.2) <lw2 +;:,'P2 W = n lchw exp (trshw) ( r '5r +;:,'P2 -r2~ Gdr. 
0 

Then it follows from (I 1.1) that 

(2.3) 

Hence in the (w, rp)-plane, where w is real, the function W(w, cp) is a 
harmonic function with a line-source at rp = cp0• Inversion of (2.1) gives 
the integral representation 

00 

(2.4) G(r, cp, ro, cpo) = i J exp ( -irshw) W(w, cp) dw. 
-00 

The variable win (2.1) may be complex with O~Im w~n. In this region 
the function W is regular. We note that the right-hand side of (2.4) 
vanishes for r < 0. 

If w is a real variable it will often be replaced by u. Then we may 

3) Of. H. A. LAUWERIER (l959a). 
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define functions U(u, T) and V(u, T) by means of 

(2.5) U(u, T) der t{W(u, T) + W( -u, T)} 

and 

(2.6) V(u, T) der ~ {W(u, T)- W( -u, T)}. 

They represent respectively the cosine transform and the sine transform 
of G. 

It follows from (2.4) that 

(2. 7) 

and 

(2.8) 

00 

G(r, T, ro, To)= I cos (rshu) U(u, T) du 
-00 

00 

G(r, T' ro, To)= I sin (rshu) V(u, T)du. 
-00 

Since W is harmonic in w and T we may put 

(2.9) 

where g1 and g2 are analytic functions of their arguments. Then it follows 
from (2.5) and (2.6) that we may put 

(2.10) 

and 

(2.11) 

2U(u, T)=g(u+iT)+g( -u+iT) 

2V(u, T) =g(u+iT) -g( -u+iT), 

where in both cases g(w) is an analytic function of the complex argument w. 
In view of the line-source at T =To the function is sectionally holomorphic 
in Tl <lm W<To and To<Im w<T2 with a jump line at Im W=To· It 
follows from (2.3) that W(w, T) is continuous but that its partial derivative 
with respect to T makes the following jump 

(2.12) 

In view of (2.5) and (2.6) we have similarly for U(u, T) and V(u, T) 

(2.13) 

and 

(2.14) oV I'Po+O . . 
~ = -n-1r0chusm (troshu). 

rp <p,-o 

Then it follows from (2.10) and (2.13) that 

(2.15) . I'Po+O ( • • h g(u+tT) =- m)--1 sm (r0s u). 
<p,-o 

Similarly it follows from (2.11) and (2.14) that 

(2.16) . I'Po+O . g(u+tT) = (m)-1 cos (r0shu). 
<p,-o 
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After these preliminaries we shall introduce the boundary conditions 
(I 1.2). Since the representation (2.4) implies (2.7) as well as (2.8) we 
consider (2.4) only. Then by using (2. 9) we find for j = 1 and j = 2 

00 

(2.17) f exp (-irshw) {ch(w-iyJ) g1(w+irp1)-
-00 

These conditions are satisfied if 

(2.18) 

In the remaining part of this section we shall treat the cases Re Yl;;;;; Re y2, 

and Re Yl > Re y2 separately. 

a. Re y1;;;;;Re Y2· 

In this case the cosine representation (2. 7) has certain advantages. 
In view of (2.9) and (2.10) we may put 

(2.19) 

We shall next introduce a new unknown sectionally holomorphic function 
P(w) by means of 

(2.20) g(w)=P(w) cf>(w) 

where the auxiliary function cf>(w) is given by (cf. (I 5.10)) 

(2.21) 

Then substitution of (2.20) in (2.18) gives for w=u with real u the 
symmetry relations 

(2.22) 

From (2.13) it follows that P(u+irp) makes the following jump at rp=rpo 

(2.23) P( . ) l'l'o+O _ -sin (r0shu) 
u + ~rp - . .1.( . ) • 

q>,-o :m"' u + upo 

In order to construct a solution of (2.22) and (2.23) we consider the 
following function 

00 

(2.24) F(w) def _2v. J /( ) shv(uo+itpo) d 
:m Uo chv(uo+itpo) -chvw Uo, 

-00 

where f(uo) is absolutely integrable in ( -oo, oo). This function is clearly 
holomorphic in the strips f[!l;;;;; Im w < rpo and rpo < Im w;;;,;; rp2, satisfies the 
symmetry relations (2.22) and makes the jump f(u) at the line w=u+irp0• 

Hence a solution of (2.22) and (2.23) is obtained by an appropriate 
choice of f(u) viz. 

00 

(2.25) P(w) = _!_ J sin (roshuo) shv(uo+ itpo) d 
2n2 ¢(uo+itpo) chv(uo+itpo)-chvw Uo. 

-00 
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Substitution of this result in (2.20), (2.10) and (2.7) gives finally 4) 

00 00 

1 I I . .p(u+ip) (2.26) G(r, rp, r0, rp0) = 20n cos (rshu) Sill (roshuo) .p(uo+ipo) · 
-00 -00 

-;--;--s:-hv(uo+ipo) d d 
chv(uo+ipo)- chv(u+ip) u Uo. 

b. Re y1>Re yz. 

In this case the homogeneous Helmholtz equation has a solution which 
is continuous at r=O (cf. (I 5.13)). Therefore the solution of the problem 
of Green is not unique. However, a unique Green's function may be 
determined by requiring that 

(2.27) G(O, rp, ro, rpo) = 0. 

Now the sine representation (2.8) is appropriate. In view of (2.9) and 
(2.11) we put 

(2.28) g1(w)= -gz(w)=ig(w) 

and next as in (2.20) 

(2.29) g(w) =P(w) rfo(w), 

where again rfo(w) is given by (2.21). For P(w) clearly the symmetry 
relations (2.22) are obtained but the jump condition at rp=rpo is here 

(2.30) P( . ) i"'•+O = cos (roshuo) 
u+~rp . .1.( • ) • 

<p0 -0 n1·'1' u+~tpo 

By a similar argument as in the previous case we find the solution 

00 

(2.31) P(w = _ ...2:__ I cos (roshuo) shvw du 
) 2n2 .p(uo+ipo) chv(uo+ipo) -chvw O· 

-00 

Substitution of this result in (2.29), (2.11) and (2.8) finally gives 5) 

00 00 

1 I I . .P(u+ip) (2.32) G(r, rp, r0 , rpo) = 20n sill (rshu) cos (roshuo) .P(Uo+ipo) · 
-00 -00 

shv(u+ip) d d 
chv(u+ip) -chv(uo+ipo) u Uo 

The results (2.26) and (2.32) can be obtained from each other by 
replacing Yl and y2 by - Yl and - y2, i.e. 

(2.33) 

The latter relation may also be derived from Green's theorem. 

4) Cf. D. VAN DANTZIG (1958), formula (5.10). 
5 ) Cf. D. VAN DANTZIG (1958), formula (5.11). 
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3. Examples. 

a. The following Green's function 

(3.1) G0(r, cp, ro, cpo) def (2n)-1Ko (Vr2 +ro2 -2rro cos (cp-cpo)) 

satisfies the Helmholtz equation (I 1.1) in the full r, cp-plane, i.e. for 
O~r<oo, O~cp~2n. We note that Go has also a meaning for negative 
values of r but that the reflection r ->- - r may be considered as equivalent 
to the translation cp ~ cp+n. According to (2.1) the complex Fourier 
transform TV0(w, cp) will be taken with only positive values of r. In order 
to carry out the transformation we need a few auxiliary formulae. We 
have the following integral representation of the modified Bessel function Ko 

00 

(3.2) K 0(Vx2 +:0)=t I exp -{ych(u+ic)+ixsh(u+ic)}du, 
-00 

where c is an arbitrary real\ constant. This expression converges in the 
halfplane x sin c < y cos c. By \changing c this halfplane may swing round 
the origin so that the full x, y-plane is covered. Substitution of polar 
coordinates x = - ro cos cp0 + r cos cp, y = - r0 sin cpo + r sin cp gives with either 
c=cp or C=cp+n the result 

(3.3) Ko(Vr2 +ro2 -2rro cos (cp-cpo)) = 
00 

= t I exp-{irshu-irosh(u+iJcp-cpoJ)}du. 
-00 

Using this we find for TV0(w, cp) without difficulty 
00 

-00 

This function is clearly holomorphic in the strip 0 ~ Im w ~ n and satisfies 
there the symmetry relation 

(3.5) TVo(w, cp)+ TV0(ni-w, cp)=O. 

Further we note that TV0(w, cp) is continuous at cp = cp0 . However, o TVofocp 
makes a jump at cp = cp0 the amount of which can be determined in the 
following way 

00 

o Wo l'l'o+ 0 ro J chwcht . ,- =- -2 2 • ht h exp (~rosht) dt = ucp <p,-o n ~ s - s w 
-00 

00 

rochw J exp iroz · h =- -2 2 · --h dz = -n-1rochw exp (~ros w), 
n~ z-s w 

-00 

which confirms (2.12). 
Any function of Green satisfying (I 1.1) and some boundary conditions 

can be considered as the sum of G0 , the singular part, and a function 
with continuous derivatives, the regular part. Since the complex Fourier 
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transform of the regular part is regular at g; = g;0 the preceding argument 
may be considered as an independent proof of the jump condition (2.12). 

In order to obtain from (3.4) an illustration of the property (2.9) we 
need the identity 

(3.6) 
chw et et 

sht-shw = et-ew- et+e-w· 

Then it can be easily derived that (2.9) holds with 
00 

(3.7) e J ew . h YJ(w) = -4 2 • t+" exp (e~ros t) dt, 
:n; t e •'Po-ew 

-oo 

where e = + for j = 1 and e = - for j = 2. 
Evidently g1(w) and g2(w) are sectionally holomorphic with the boundary 

line at Im w=q;o. Writing w=u+iq; with real u we have at q;=q;o 

(3.8) YJ(u+iq;) I'Po+O = e(2n)-1 exp (siroshu). · 
q>,-o 

b. If the complex Fourier transform W1(w, q;) is taken with positive 
and negative values of r we obtain 

) 
W1(w, q;)=n-lchw j exp (irshw)Godr= 

(3.9) -00 

= (2n)-1 exp {ir0sh(w + iJq;- q;oJ )}. 

This function is holomorphic in the strip - n ~ Im w ~ n but the relation 
(3.5) no longer holds. In this case we have (2.9) with 

( g1(w) = { 
0 for q;<q;o 

(3.10) 
(2n)-1 exp {ir0sh(w-iq;)} for q;>q;o, 

and 

(3.11) g2(w) = { 
(2n)-1 exp - {irosh(w-iq;)} for g;<q;o 

0 for q;>q;o. 

From this the jump condition (2.12) follows without difficulty. 

4. The G-problem, second method 

In this section the G-problem for the angle f[Jl <q;<q;2 will be solved 
by a different method. We shall start the discussion by assuming that 
(cf. (15.17)) 

(4.1) !n<O<n, Reyl<O-!n, Rey2>!n-O. 

In that case we know from (I 5.19) and (I 5.20) that the "reguhtr" 
solution of the F-problem can be written in the form 

oo+ic 
(4.2) F(r, q;) = f exp { -rch{w-iq;)} H(w) dw, 

-oo+ic 
where 

(4.3) f[Jl + Re Yt < c < q;2 + Re Y2· 
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The function H(w) is holomorphic in the strip given by (4.3) so that the 
representation (4.2) gives a regular solution in the larger angle (cf. (I 5.18)) 

(4.4) 

A Green's function may be considered as the sum of a singular part 
for which the function Go of (3.1) can be taken and a regular part which 
is a solution of the homogeneous Helmholtz equation (I 3.1). It will be 
tried to represent a function of Green satisfying (I 1.1) and (I 1.2) by 

oo+ic 

(4.5) G(r, rp, ro, rpo) = Go(r, rp, ro, rpo) + 4~ J exp{ -rch(w-irp)} g(w)dw, 
-oo+ic 

where g(w) is holomorphic in the strip (4.3) and of the order O(exp- eJRe wJ) 
as Rew~ ± =. 

In order to introduce the boundary conditions (I 1.2) in (4.5) we note 
that from (3.1) and (3.3) it follows that for j = 1, 2 at rp=rp1 

cos y1 :;: orp - sm y1 'ST o = 
) 

( 1 o . o) G 

= :~ _[ e-ie;rshwch(w+iyJ) exp {iejrosh(w+irpo-irpj)}dw, 

where eJ = + 1 for j = 1 and eJ = - 1 for j = 2. 

(4.6) 

Then the boundary condition at rp = Ti gives 
00 

(4.8) f e-ie;rshw gJ(w)dshw = 0, 
-oo 

where 

(4.9) 
~ gJ(W)chw def ch(w-iyJ) g(w-J-irpJ+eJ!in)-

( -ch(w+iyJ) exp {ieJrosh(w+irpo-irp1)}. 

The conditions ( 4.8) should be fulfilled for 1· > 0 only so that it is sufficient 
to assume that g1(w) is holomorphic in the lower strip 0 < Im w < n and 
g2(w) holomorphic in the upper strip -n<Im w< 0, that g1(w) is symmetric 
with respect to - fe1ni, and that g1(w) vanishes at Re w ~ ± =· 

The relation (4.9) gives either 

(4.10) g(w) = h1(w) g1(w- irp1- !in)+ k1(w) 

valid in the strip f{!I-!n<Im w<rp1 +in, 
or 

(4.11) 

valid in the strip f[!2- fn < Im w < rp2 + !n, 
where the functions h1(w) and k1(w) are defined by 

(4.12) h1(w) def sh(w-irpJ)/sh(w-irp1-in), 

and 

(4.13) k1(w) def exp {roch(w- 2irp1 +irpo)} sh(w- irp1 +iyJ)fsh(w- irpJ- iyJ). 
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From (4.10) and (4.11) there follows for the common strip 

(/!2- -!n < Im w < Cf!l + in 
that 

(4.14) h2(w) g2(w- icp2 +-!in)- h1(w) g1(w- icp1- -!in)= k1(w)- k2(w). 

The solution of the functional equation (4.14) is the crucial point of 
the method of this section. The problem (4.14) may be formulated as 
representing a generalization of a Hilbert problem or a Wiener-Hop£ 
problem. It does represent a Hilbert problem on a line in the special 
cases cp1 =--!nand cp2 = -!n. By transforming (4.14) from thew-plane into 
the complex z-plane by means of z=shw we obtain with a similar notation 

(4.15) 

valid for real z, where h1(z), h2(z) and k(z) are given functions and where 
it is required that g2(z) is holomorphic in the upper halfplane Im z > 0 and 
g1(z) is holomorphic in the lower halfplane Im z<O. Hence (4.15) 
represents a Hilbert problem on the real axis of the z-plane, the solution 
of which involves the Wiener-Hopffactorisation of the quotient h1(z)jh2(z). 

The more general problem (4.14) might be also interpreted in the 
z-plane which is now a Riemannian plane with branch points at Z= ±i. 
Therefore (4.14) may be considered as a Wiener-Hop£ problem in a 
Riema1mian plane. Its solution involves the following factorisation. To 
find functions Hi(w), j = 1, 2, which are free from poles and zeros in 
the strip Cf!i- -!n < Im w < Cf!i + -!n, which are symmetric with respect to 
icpj and which satisfy 

(4.16) h1(w)H1(w) = h2(w)H2(w) def H 0(w). 

From the symmetry relations of the Hi(w) we may derive a set of 
functional relations for H(w). We have by using (4.12) 

( 4.17) Ho(irp,+w) h;(irp;+w) sh(w+iy,) 
Ho(irp,-w) = h1(irp1 -w) = sh(w-iy,) · 

But these are exactly the functional relations of the function H(w) 
discussed in (I 5.20) and (I 5.22). 

Therefore the function H 0(w) can be identified with the latter function 
H(w). 

Hence a factorisation (4.16) is obtained by taking 

(4.18) 

As a verification of the fact that e.g. H 1(w) is free from poles and zeros 
in the strip (/!1- -!n < Im w < cp1 + -!n we note that the nearest zeros and 
poles of H1(w) are a zero i(cp1 +0) and a pole i(cp1 +0+y2) on the upper 
side and a zero i( cp1- 0) and a pole i(- cp1 - 0- y2) on the lower side. It 
may be remarked that at this point an essential use of the inequalities 
(4.1) is made. 
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By using the factorisation (4.16) the relation (4.14) can be brought 
in the following form 

(4.19) tp2(w) -tpt(w) = tp(w), 

where for j = 1 and j = 2 

(4.20) "PJ(w) def (Ji(w-irn-sJfin)JH,(w) 

and 

(4.21) 

The unknown function tp1(w) is holomorphic in the strip 
'PJ-in<lm W<!f'J+in and symmetric with respect to i'PJ· 

The problem (4.19), a simpler version of (4.14) may be interpreted in 
the following way. Let tp(w) be a given analytic function which is 
holomorphic in a strip tXt <1m w<1X2 with 1X2-1Xl <n. Then tp(w) should 
be split in two parts tpt(w) and tp2(w) as indicated by (4.19) where tpt(w) 
is holomorphic and symmetric in the lower strip tX2- n < Im w < 1X2 and 
tp2(w) is holomorphic and symmetric in the upper strip 1Xt <1m w<1Xt +n 

(see figure 1). 

--------------------'1>2 + 1- 1t 

_ .. 

.. .... .. ..... 
---------------------<0 . .!.yt T1 2 

Fig. I 

The equation (4.19) holds in the strip !p2-fn<lm W<!pt +fn. The 
symmetry relations of the functions tp1(w) are explicitly 

(4.22) tpJ{i!pJ +w) = tp1(i!p;- w). 

Then it is easily seen that (4.19) is solved by 

(4.23) ( v J shv(wo-iq>1) d 
"Pi w) = 2ni tp(wo) chv(wo-iq>1) -chv(w-iq>1) Wo, 

Li 

where Lt and L2 are contours in the region of regularity of tp(wo) with 
Re Wo running from - oo to + oo and where w is enclosed between 
L2 and L1 as shown in figure 2. 
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-----------------------IP. +l.lt 2 2 

~~--~---~--~-~--~--~-~--~ 

• i~.p 
2 

~ZlfA?Z/%7/:ttt :~~:: 
.... 2 2 

........ i 'P 
.... 1 
' .... .... .... 

'',e2illl-W 
L;~---~----~-~~--+--~--~~-~~--
-----------------------------'P-~lt 

1 2 

Fig. 2 

We shall assume that contours L1 can be found such that the integrals 
defining 'I{JJ(w) converge. 

Substitution of the expressions (4.20) and (4.21) in (4.23) gives 

From (4.5), (4.10) and (4.24) for j= 1 the following solution is obtained 

2:rr:G(r, cp, ro, cpo) = 
oo+ic 

= Ko( Vr2 + ro2 - 2rro cos (cp- cpo)) + l J e-rch(w-irp) k1(w)dw+ 
-oo+ic 

( 4.25) oo+ic 

+ 4:i J e-rch(w-irp) H(w)dw J kl(w~{:,:)2(wo). 
-oo+k ~ 

A similar expression may be obtained from ( 4.5), ( 4.11) and ( 4.24) for j = 2. 
In order to obtain an interpretation of ( 4.25) we consider the halfplane 

case ffJt=O, f{J2=n and next y1=y2=y. Then it follows from (4.13) that 
k1(w)=k2(w) so that (4.25) reduces to 

) 

2:rr:G(r, cp, ro, cpo) = Ko( Vr2 + ro2 - 2rro cos (cp- cpo)) + 

( 4.26) oo+ic . 

+ l J s~iw+~Yi exp { -rch(w-icp) +r0ch(w+icpo)}dw. 
s w-zy 

-oo+ic 

A more detailed interpretation of this important special case will be 
postponed to the following section but here we remark that with 
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Re y < c < n + Re y the integral on the right-hand side of ( 4.26) converges 
in the halfplane r cos (c- ff!) > r0 cos (c + ff!o) or (x- x0) cos c + (y+yo) sin c> 0 
(see figure 3). Hence it represents a kind of "oblique refleetion" of the 
singularity (x0 , yo) with respect to the X axis 

~\ 
T (xcuYo) 

\ ~ \ \ :, \ \ \ ~ 
\ \ \ \ \ l\ \ \ \ \ 

I 
I 

1 (><o,-Yo> 

Fig. 3 

Therefore the right-hand side of (4.25) represents the Green's function 
as the sum of the elementary Green's function Go of the full plane, its 
"oblique reflection" with respect to one side of the angle and a correction 

term. "· 
The expression (4.25) may be transformed in the following way. By 

using (4.13) and the functional relations (4.17) we have 

f k1(w0) -k2(wo) shv(wo-iqJl) dwo = 
H(wo) chv(wo-iqJl) -chv(w-iqJ1) 

L, 

= J ~ exp roch(wo- 2iqJl + iqJo) _ exp roch(wo- 2iqJ2 + iqJo}? . 
( H(- Wo + 2iqJl) H(- Wo + 2iqJ2) S 

L, 

shv(wo- iqJ1) d 
h . h ( . ) wo. c v(wo-~qJI) -c v w-~qJl 

If L1' is the reflection of the path L1 with respect to w0 =ifPI with Re wo 
running from + oo to - oo. and if L1" is the reflection with respect to 
wo = ifP2 with Re w0 running from - oo to + oo then the latter expression 
may be changed into 

(4 27) f exproch(wo-iqJo) shv(wo-iqJI) d 
H(wo) chv(wo-iqJI)- chv(w-iqJ1) Wo. 

The denominator chv(w0 -ifP1)-chv(W-ifP1 ) gives two poles Wo=W and 
w0 = 2iff!I-W lying between L 1' and L 1". There are no other poles in this 
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strip. If the expression ( 4.27) is substituted in the third term on the 
right-hand side of (4.25) the residues of the poles Wo=w; and Wo= 2icp1-w 
cancel the first and the second term on the right-hand side of ( 4.25). 
Therefore we obtain the result 

(4.28) 

( oo+~ 

) 2nG(r, cp, ro, cpo) = 4:i -ootc exp {- rch(w- icp)} H(w)dw 

? f { h( . )}H-l( shv(wo-irp1) d exp roc Wo-~cpo wo) h ( . ) h ( . ) Wo, c v Wo-~rpl -c l' w-~rp1 
L 

where the path L is of the form of I fig. 3. 
The expression (4.28) is no longer restricted to values of(), Yl and y2 

which satisfy the inequalities ( 4.1) but can easily be extended to all 
(), Yl and y2 values. 

By way of illustration we shall consider the special case Yl = y2 = 0, cp1 = 0 
and cp2 = () with () arbitrary. Then H(w) = l. If, moreover, vis an integer, 
say v=m, the contour L may be transformed into the lines L1' and L 2" 

for which we take Im w= ±n+cpo. Then the inner integral of (4.28) 
equals the sum of the contributions from L1' and L1" and a number 
of poles viz. 

(4.29) wo=±w+2j()i, j=O, 1, ... , m-l. 

The contributions from L1' and L1" are equal and opposite in sign so 
that finally 

m-1 oo+ic 
2nG(r,cp,ro,cpo)= ~! J exp{-rch(w-icp)+roch(wo-icpo)}dw, 

i~O -oo+ic 
or 

j G(r, cp, ro, cpo)= ~f {Go(r, cp, ro, cpo+2jnjm)+ 
(4.30) 3~0 

+Go(r, cp, ro, -cpo+2jnjm)}. 

This is in agreement with the result derived by a direct method in (I 3.5). 
If ('1=y2=0, tpt=O and tp2=0 but v not necessarily an integer, from 

(4.28) also the earlier result (I 3.6) can be derived. For Re wo> Re w 
we have the expansion 

00 

(4.31) shvwof(chvwo-·chvw) = ~ emchvw e-m•w•, 
m~o 

where eo= 1 and em= 2 for m ~ 1. 
A similar expansion holds of course for Re Wo<Re w. If (4.31) is 

substituted in ( 4.28) we obtain at first after some elementary reductions lvJ {h '} shvw0 d -2 . exp roc (wo-~cpo) h h Wo = 
:n~ c vwo-c vw 

(4.32) L oo 

= ~ emchmvw cos mvcpo · 2:, J exp { rochwo- mvwo} dwo, 
m~ll :n~ 

L+ 

where L+ is the right-hand part of L (cf. (I 5.25)). 
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The right-hand side of (4.32) equals 

(4.33) 
00 

2v 2 emchmvw cos mvg;o Im.(ro). 
m~o 

Substitution of this expression in ( 4.28) gives at once the required result 
00 

(4.34) G(r, g;, ro, g;o) = 0-1 2 em cos mvq; cos mvg;o Km.(r) Im.(ro). 
m~o 

This expansion on verges for r > ro. 
The same process can also be applied upon the general expression 

(4.28). Then we obtain eventually 
00 

(4.35) G(r, g;, ro, g;o)=0-1 2 emFm(r, q;)Fm*(ro, q;o), 

where (cf. (I 5.23)) Fm(r, g;) is defined by 
oo+ic 

(4.36) Fm(r, g;)=l J exp { -rch(w-ig;)}chmv(w-ig;1) H(w) dw, 
-oo+ic 

and (cf. (I 5.24)) with a=sgn Re w 

(4.37) F':,.(r, g;) = 4~i I exp {rch(w-ig;) -amv(w-iq;1)} H-1(w)dw. 
L 

We note that F m( r, q;) and F m * ( r, q;) both are solutions of the homogeneous 
Helmholtz equation {4-l)F = 0. However, F m(r, q;) satisfies the same 
boundary conditions as G but Fm*(r, g;) satisfies the adjoint boundary 
conditions with Yi -+ - Yi· The expansion ( 4.35) obviously converges 
for r>ro. In view .of the symmetry relation (2.33) from (4.35) at once a 
similar expansion valid for r < ro follows. It would be of interest to prove 
(4.35) by some direct method. 

5. Discussion of the results 

In the case of a halfplane with tp1=0, g;2=0, yJ.=y2 =y the solution 
of the G-problem is given by the expression (4.26). By this expression 
not only G(r, q;, ro, g;o) in the relevant halfplane is given but also its 
continuation in the complementary halfplane. For simplicity we shall 
assume that y is real and positive. It has been already noted in the previous 
section that (4.26) holds in the halfplane (x-xo) cos c+ (y+yo) sin c> 0. 
Hence by varying the parameter c the required continuation can be 
obtained. 

If we define 
oo+ic 

(5.1) R(x, y) def! I ~w+~ . . 
h( . ) exp (- xchw + ~yshw)dw, s w-~y 

-oo+ic 

the solution of the G-problem can be written as 

(5.2) G(x, y, xo, yo)=Go(x, y, xo, yo)+(2n)-1 R(x-xo, y+yo). 
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If differentiation in the direction l3l:+y with respect to the X-axis is 
symbolically written as D, the boundary condition at the X-axis viz. 

oG . oG (5.3) cosy-- sm y- = 0 at y= 0, oy ox 

may be written in the form 

(5.4) D,G=O at y=O. 

Now it follows at once from (5.1) that 

( 5.5) R(x, y) = D,Ko(V x2 + y2). 

Hence R(x, y) can be interpreted as the contribution from a line of dipoles 
which makes the angle -131: + y with the X -axis. The dipoles itself are 
making the reflected angle !31:-y with the X-axis. Therefore (5.2) 
represents the sum of contributions from a logarithmic pole at (xo, y0) 

and a dipole tail radiating from (xo, -yo) in the direction -!3l:+y (see 
figure 3). The dipole tail is equivalent to a line of normal dipoles plus a 
simple pole at its end. Geometrically this is obvious. Analytically this 
follows from the identity 

(5.6) sh(w+iy)/sh(w-iy)=cos 2y+i sin 2y cth (w-iy). 

Substitution of (5.6) in (5.1) gives 
- oo+ic 

(5.7) R(x, y)=cos 2yKo(Vxz+y2)+li sin 2y f cth (w-iy)· 
-oo+io 

·exp ( -xchw+iyshw) dw. 

The first term on the right-hand side represents a simple pole of strength 
cos 2y at the origin, the second term represents a tail of normal dipoles. 
By crossing this tail a jump is made, the amount of which obviously is 
determined by the pole w=iy of the integrand. Using polar coordinates 
(r, q;) we obtain 

(5.8) R(r, -l3!:+y+0)-R(r, -!3l:+y-0)=31: sin 2y. 

If y=O the boundary condition at y=O reduces to a simple Neumann 
condition. In that case we may say that according to (5.7) the dipoles 
annihilate each other and that only a single reflected pole at. (xo, - y0) 

remains. 
If y = !31: the dipole tail contains only normal dipoles. 
If y=l31: we have a Dirichlet condition at y=O. Again there are no 

dipoles and a single reflected pole of negative strength remains at 
(xo, -yo), or, as we may say, there is a source at (xo, yo) and a sink at 
(xo, -yo). 

A similar discussion applies to the general case the solution of which 
is given by (4.28). For simplicity we shall assume that Yl and y2 are real. 
The poles of · 

(5.9) {chv(wo- iq;t)- chv(w- iq;1) }-1, 
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which are given by 

(5.10) wo=w-2m8i and wo= -w+(2m8+2tp1)i 

where m is an integer, determine the position of the logarithmic pole 
(r0 , tpo) and its repeated reflections with respect to the sides tp=IJ?J of 
the angle. The geometric picture is of course a Riemannian plane in the 
form of a spiral staircase. 

By taking the residues we have formally 

oo+ic l
2nG(r, tp, ro, tpo) = 

(5·11) = ~-! J :(~!) exp { -rch(w-itp) +roch(wo-itpo)}dw. 
-oo+ic 

We shall show that each term on the right-hand side of (5.11) may be 
interpreted as the contribution from a bundle of dipole tails radiating 
from a simple pole which is one of the repeated reflections of (ro, tp). 
In order to show this we may as well take the simpler expressions 

(5.12) 

and 

R( ) def 1 
m r, 9? -2 

oo+ic 

f H(w) { . 
H(w _ 2mOi) exp -rch(w-~tp)}dw, 

-oo+ic 

oo+ic 

(5.13) R;,.(r, tp) def-! J H(-w~~~i+ 2rpti) exp { -rch(w-itp)}dw. 
-oo+ic 

From the functional relations ( 4.17) it follows that 

(5.14) 

and 

(5.15) 

H(w) 
~(w+20i) 

sh(w- irp1 + iyt) sh(w- itp1- iy2 + iO) 
sh(w- irp1- iyt) sh(w- irp1 + iy2 + iO) 

H(w) sh(w-irpt+iyt) 
sh(w-itpt-iyt)' 

Therefore in both cases (5.12) and (5.13) we obtain something like 

(5.16) 
1 oo+ic sh(w-i1XJ) . ' 
2 J IT h( -'{J)exp{-rch(w-~tp)}dw, 

-oo+ci 8 w ~ J 

where the IXJ and f3i easily follow from the relations (5.14) and (5.15). 
Instead o~ giving general formulae, the f3J for the first few cases are given 
below. 

position of pole 

R2' 2tp1 -tpo + 48 
R1 tpo+ 28 
R1' 2tp1 -tpo + 28 
Ro lj?O 
Ro' 2tp1 -tpo 

R-1 tpo- 28 

R-1 I 2tpt - tpo - 28 

lj?1 +y2+8 
lj?1 +y2+8 
9?1 +y2+8 

9?1 +y1 
9?1 +y1 
lj?1 +y1 

tp1-y1 +28 
tp1-y1 +28 

lj?I +y1-28 
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The values of l'XJ are determined by the same scheme with y1 and y2 
replaced by - Yl and - Y2· 

It can easily be verified that constants OJ, j = 0, 1, ... , n, exist such that 

II .. sh(w-i~XJ) O . ~ O h '{J (5.17) h( -'{J)= o+~£., 1 ct (w-~ 1). 
i=l s w ~ J i=l 

In fact we have 

(5.18) 

and 
(5 19) 0 =II sin ({Jm-1XJ) 

' m i*m sin ({Jm- fJJ)' 

The identity (5.19) is obviously a generalization of (5.6) and its conse­
quences are therefore similar to those . of the latter relation. 

Hence Rm±(r, rp) may be interpreted as the sum of contributions from. 
a simple pole at the origin and a bundle of tails of normally directed 
dipoles. The number and the direction of these tails is determined by 
the scheme given above. 

An illustration of the kind of reflections of the logarithmic pole (ro, rpo) 
with respect to the sides of the angle is given below in figure 4 6). We 
have chosen the following numerical values 0=45° and y1=y2= 15°. 

' 
' ' 

Fig. 4 

' ' ' ' ' 

9:45° 

l,· '1/2 .15" 

6) The author wishes to express his thanks to Dr. D. J. HoFSOMMER who care­
fully checked the table of reflection angles and constructed the geometrical illu­
stration of figure 4. 

25 Series A 
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