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SUMMARY

The 26S proteasome is a highly conserved multisubu-
nit protease that degrades ubiquitinated proteins in
eukaryotic cells. The 26S proteasome consists of
the proteolytic core particle (CP) and one or two 19S
regulatory particles (RPs). Although the mechanisms
of CP assembly are well described, the mechanism of
RP assembly is largely unknown. Here, we show that
four proteasome-interacting proteins (PIPs), Nas2/
p27, Nas6/gankyrin, Rpn14/PAAF1, and Hsm3/S5b,
bind specific Rpt subunits of the RP and interact
each other genetically. Lack of these PIPs resulted
in defective assembly of the 26S proteasome at an
early stage, suggesting that these proteins are bona
fide RP chaperones. Each of the RP chaperones
formed distinct specific subassemblies of the base
components and escorted them to mature RPs. Our
results indicate that the RP assembly is a highly orga-
nized and elaborate process orchestrated by multiple
proteasome-dedicated chaperones.

INTRODUCTION

The eukaryotic 26S proteasome is a multicatalytic enzyme

responsible for degradation of a large fraction of intracellular

proteins (Baumeister et al., 1998; Coux et al., 1996; Hershko

and Ciechanover, 1998). Most proteins destined for degradation

by the proteasome are marked with polyubiquitin chains, which

serve as a target signal for the 26S proteasome. The ubiquitin-

proteasome system (UPS) controls a diverse array of biologically

important processes, including cell-cycle progression, DNA

repair, signal transduction, and protein quality control. The 26S

proteasome acts at the final step of this pathway by degrading

polyubiquitinated protein substrates, ensuring the irreversibility

of the aforementioned biological processes. Defects in this

system result in the pathogenesis of several severe human

diseases (Schwartz and Ciechanover, 2009).

The 26S proteasome is composed of at least 33 different

subunits arranged in two complexes, the 20S core particle

(CP; also known as 20S proteasome) and one or two 19S regu-
900 Cell 137, 900–913, May 29, 2009 ª2009 Elsevier Inc.
latory particles (RPs). The RP binds to one or both ends of the

latent CP to form an enzymatically active 26S proteasome,

referred to as RP1CP and RP2CP, respectively. The proteolytic

sites are sequestered inside the CP and are accessible only

through a narrow channel so that substrate proteins must be

unfolded to reach the proteolytic sites. The RP recognizes the

polyubiquitin chains, deconjugates ubiquitin chains, unfolds

substrate proteins, and translocates them into the catalytic CP.

The CP is composed of two outer rings, each consisting of seven

a subunits, and two inner rings, each consisting seven b subunits.

Three of the seven b subunits have proteolytic sites that face the

inner chamber of the CP. On the other hand, the 19S RP contains

approximately 19 different subunits that can be subclassified

into two groups—regulatory particle ATPase (Rpt) subunits and

regulatory particle non-ATPase (Rpn) subunits—both of which

contain multiple proteins with molecular masses ranging from

10 to 110 kDa. The RP is composed of two major subcomplexes,

the base and lid (Glickman et al., 1998). The base consists of six

ATPase subunits (Rpt1–6) and three non-ATPase subunits

(Rpn1, 2, 13), while the lid is made up of nine non-ATPase

subunits (Rpn3, 5–9, 12, and Sem1/Rpn15) (Leggett et al.,

2005; Murata et al., 2009). The base-lid association is stabilized

by another subunit, Rpn10 (Glickman et al., 1998). In addition,

numerous proteasome-interacting proteins (PIPs) that regulate

the activities of the proteasome have been identified, including

extrinsic ubiquitin receptors Rad23 and Dsk2, deubiquitinating

enzyme Ubp6, and ubiquitin ligase Hul5 in yeast (Hanna and Fin-

ley, 2007; Leggett et al., 2002; Verma et al., 2000).

How the proteasome subunits organize themselves into such

a huge and complex structure is a fundamental question for our

understanding of intracellular proteolysis and dynamic changes

in the proteasome. The discovery of the 20S proteasome-

specific chaperones, Ump1 and PAC1-4, revealed that CP

biogenesis is a highly ordered multistep event rather than

a simple self-assembly (Kusmierczyk et al., 2008; Murata et al.,

2009; Ramos and Dohmen, 2008). In contrast, the process

involved in the assembly of the RP from its individual compo-

nents is largely unknown, although there is evidence that the

lid and base can be assembled independently of each other

(Isono et al., 2007). Nob1, an Rpn12-interacting protein, is

considered an assembly factor for the 26S proteasome (Tone

and Toh-e, 2002), but its significance in this role has been chal-

lenged (Fatica et al., 2003). Genetic data have indicated that the
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Hsp90 chaperone plays a role in the assembly and maintenance

of the 26S proteasome (Imai et al., 2003). In Schizosaccaromy-

ces pombe, Yin6, an ortholog of mammalian INT6, has been

proposed to incorporate Rpn5 into the 26S proteasome (Yen

and Chang, 2003), but INT6 also seems to regulate the lid-related

complexes COP9/signalosome and eIF3 (Rencus-Lazar et al.,

2008; Yahalom et al., 2008). Despite extensive genetic and

biochemical studies, the molecular mechanisms underlying the

RP assembly are mostly unknown.

We isolated previously the human p28 and its yeast ortholog

Nas6 as a putative subunit of the 26S proteasome (Hori et al.,

1998). p28 is also known as gankyrin that is overexpressed in

hepatocellular carcinomas (Dawson et al., 2002; Higashitsuji

et al., 2000). In our search for functions of Nas6, we found that

it interacted genetically with multiple PIPs: Nas2, Rpn14, and

Hsm3. In the absence of these PIPs, most 26S proteasomes

disappeared because of the assembly defect of the base sub-

complex, suggesting that these PIPs function as bona fide RP

chaperones. Each of the RP chaperones forms a distinct subas-

sembly of the base components and escorts them to mature RPs.

These results suggest that the chaperone-assisted RP assembly

is a highly ordered and elaborate process in eukaryotic cells.

RESULTS

Nas6, the Yeast Ortholog of Gankyrin, Affects
Proteasome Activity
Human gankyrin (alias p28) has been proposed to function as

a bridging factor between the proteasome and various

substrates such as pRb and p53 (reviewed in Lozano and Zam-

betti, 2005). Although the yeast ortholog Nas6 shares high

sequence homology with human gankyrin (Dawson et al.,

2002; Hori et al., 1998; Nakamura et al., 2007b), the precise

role of Nas6 in yeast cells is poorly understood. To investigate

the function of Nas6, we performed several genetic studies

and found that overproduction of NAS6 was toxic specifically

in the Drpn9 lid mutant cell (Figure 1A), which exhibits destabili-

zation of the 26S proteasome and accumulation of polyubiquiti-

nated proteins (Takeuchi et al., 1999). Although the NAS6

deleted strain grew normally (Dawson et al., 2002; Hori et al.,

1998), we noticed that the Dnas6 cell shows mild sensitivity to

the proline analog, L-azetidine-2-carboxylic acid (AZC), as

observed in other proteasome mutants, Drpn10 and Dpre9 cells

(Figure 1B). These genetic results suggest the involvement of

Nas6 in the UPS, similar to gankyrin in mammalian cells.

Rpn14 Is Functionally Related to Nas6
Because the Dnas6 single mutant cells showed only a mild defect

as described above, we hypothesized that other genes buffer the

single deletion. To test this, we crossed the Dnas6 strain with

a series of mutants that include the �40 known UPS-related

genes. Within the generated double mutants, the Dnas6 Drpn14

double-deletion strain showed a severe growth defect at 37�C

(Figure 1C). In yeast, Rpn14 is a putative RP subunit required

for the degradation of certain proteasome substrates (Samanta

and Liang, 2003; Seong et al., 2007). In contrast, its mammalian

ortholog, named proteasomal ATPase-associated factor 1
(PAAF1), is a negative regulator of the 26S proteasome and facil-

itates transcription in mammalian cells (Lassot et al., 2007).

We first analyzed the accumulation of polyubiquitinated

proteins in the Dnas6 Drpn14 double-deletion strain. Under

restrictive temperatures, the polyubiquitinated proteins accu-

mulated in the Dnas6 Drpn14 cells but not in the respective single

mutants (Figure 1D). This result suggests that the functions of

Nas6 and Rpn14 are redundant and that both Nas6 and Rpn14

positively regulate the degradation of ubiquitinated proteins.

Next, we analyzed the interaction between Nas6, Rpn14, and

proteasomal complexes using three tandem FLAG epitope-

tagged strains: C-terminal-tagged NAS6, N-terminal-tagged

RPN14, and a control strain 3xFLAG-tagged RPN11. Cell extracts

were prepared in the presence of ATP and then fractionated by

native-polyacrylamide gel electrophoresis (PAGE), followed by

western blotting with anti-Flag antibody (Figure 1E). As reported

previously in mammalian cells (Dawson et al., 2002), Nas6 was

detected in both free and complex forms. Interestingly, Rpn14

was also detected in free and complex forms, similar to Nas6

(Figure 1E). Both the Nas6- and Rpn14-containing complexes

were smaller than the 26S proteasomes (RP1CP and RP2CP)

and were identified as the RP and base complexes, respectively

(data not shown; see below also). Immunoprecipitates from

either the NAS6-3xFLAG or 3xFLAG-RPN14 strain contained

the RP subunits but lacked the CP subunits (Figures 1F and 1G).

In the Rpn14-containing complex, a relatively highly abundant

protein was detected and identified as Nas6 by mass spectrom-

etry (MS), suggesting that the Rpn14-containing complex also

contains Nas6 (Figure 1G). To further characterize the Nas6-

and Rpn14-containing complexes, the immunoprecipitates were

digested with trypsin and subjected to nano liquid chromatog-

raphy (LC)-coupled MS. From the immunoprecipitates of both,

we identified all of the RP subunits, especially the base subunits,

with high scores (Figure 1H), indicating that both Nas6 and Rpn14

associate mainly with the base subcomplex consistent with the

above result (Figure 1E). In addition to the RP subunits, other

PIPs, Nas2 and Hsm3, were unexpectedly identified from the

immunoprecipitates (Figure 1H). Extracts of NAS2-3xFLAG and

HSM3-3xFLAG cells were also analyzed by native-PAGE. Similar

to Nas6 and Rpn14, Nas2 and Hsm3 were detected in both free

and complex forms but not in 26S proteasomes (data not shown).

Four Distinct PIPs—Nas6, Nas2, Rpn14,
and Hsm3—Bind Specific Rpt Subunits
and Localize in Both the Cytosol and Nucleus
Nas2 is an ortholog of the p27 subunit of the mammalian protea-

some modulator, which consists of p27, Rpt4, and Rpt5

(DeMartino et al., 1996), whereas Hsm3 is a putative ortholog

of the mammalian RP subunit S5b, which can form a complex

with Rpn1, Rpt1, and Rpt2 in vitro (Deveraux et al., 1995).

Although both NAS2 and HSM3 are not essential (Russell

et al., 1999; Watanabe et al., 1998), the latter is involved in

correct DNA replication (Fedorova et al., 1998, 2004).

Although there are no obvious sequence similarities among

Nas2, Nas6, Rpn14, and Hsm3, each PIP has a distinct charac-

teristic module for protein-protein interactions. For example,

Nas2 contains a PDZ domain, Nas6 contains ankyrin repeats,

Rpn14 contains WD40 repeats, and Hsm3 contains HEAT
Cell 137, 900–913, May 29, 2009 ª2009 Elsevier Inc. 901
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repeats. The fact that all of these PIPs can bind simultaneously to

the base subcomplex (Figure 1) suggests that these PIPs bind

different specific base subunits. To test this, we investigated

the interactions between these PIPs and all nine base subunits

by using the yeast two-hybrid (Y2H) assay. As reported previ-

ously (Nakamura et al., 2007b), Nas6 specifically bound Rpt3

Figure 2. Nas6, Nas2, Rpn14, and Hsm3

Have Similar Properties

(A) Nas6, Nas2, Rpn14, and Hsm3 each bind

a specific Rpt subunit. Yeast cells (PJ69-4A) trans-

formed with the indicated combinations of bait

(pGBD) and prey (pGAD) plasmids were assayed

with HIS3-based selection. The cells were

streaked onto SC plates lacking uracil and leucine

(-UL) or lacking uracil, leucine, histidine, and 3

amino-triazole (-ULH+3AT) and incubated for 5–

14 days.

(B) Nas6, Nas2, Rpn14, and Hsm3 each specifi-

cally bind to the C-terminal region of the respec-

tive Rpt subunits. Various constructs of Rpt

subunits, depicted in light, were fused to a bait

plasmid and tested as in (A). SC plates lacking

uracil, leucine, histidine, and adenine (-ULHA)

were also used for more stringent condition than

SC-ULH.

(C) Nas6, Nas2, Rpn14, and Hsm3 each localize

mainly in the cytosol. Wild-type cells expressing

Rpn7-mCherry and either yEGFP1F-tagged

Rpn1, Nas2, Nas6, Rpn14, or Hsm3 (YYS1601,

Hiy128-131) were imaged by a confocal micro-

scope. Cells expressing Rpn7-mCherry

(YYS1392) only were also used as control.

(Figure 2A). Furthermore, specific PIP-

Rpt pairs were detected: Rpn14-Rpt6,

Nas2-Rpt5, and Hsm3-Rpt1 (Figure 2A).

We failed to detect the binding of the

other base subunits, Rpn1, Rpn2, and

Rpn13, with the four PIPs by Y2H (data

not shown). Moreover, these PIPs did

not bind with the purified lid complex in vitro (data not shown).

The eukaryotic proteasome contains six essential ATPase

subunits (i.e., Rpt1–6), which contain a conserved ATPase

domain and variable N-terminal and C-terminal domains (Pickart

and Cohen, 2004). Crystallographic studies have shown that the

C-terminal domain of Rpt3 is responsible for Nas6 binding
Figure 1. Genetic and Biochemical Analyses of Nas6 and Rpn14

(A) Overproduction of Nas6 is toxic in the proteasome mutant Drpn9 cells. Drpn9 (YYS290) and its wild-type strains carrying a high-copy plasmid for galactose-

inducible Nas6 expression (PGAL1-NAS6) or control vector (vector) were grown on SC-Ura or SGal-Ura plates at 25�C for 2–4 days.

(B) The Dnas6 cells are sensitive to amino acid analog. Wild-type (WT), Dnas6 (YYS381), Drpn10 (YYS530), and Dpre9 (#4765) cells were grown on YPD or YPD

containing the amino acid analog AZC at 25�C for 2–3 days.

(C) NAS6 genetically interacts with RPN14. Wild-type (WT), Dnas6 (YYS381), Drpn14 (YYS382), and Dnas6 Drpn14 (YYS383) cells were grown on YPD plates at

the indicated temperatures for 2–3 days.

(D) Accumulation of ubiquitinated proteins in Dnas6 Drpn14 cells under restrictive temperature. Cells cultured for 6 hr at 37�C were analyzed by western blotting

with anti-ubiquitin antibody.

(E) Both Nas6 and Rpn14 are not detected in 26S proteasomes. Crude lysate from RPN11-3xFLAG (YYS40), NAS6-3xFLAG (YYS402), and 3xFLAG-RPN14

(YYS528) strains were resolved with 4% native-PAGE followed by western blotting with anti-Flag antibody. Two isoforms of 26S proteasomes are indicated

as RP2CP and RP1CP.

(F) Nas6 and Rpn14 do not form complexes with the CP. Immunoprecipitates from the respective FLAG-tagged cells were analyzed by western blotting with

anti-Rpn5 (lid), anti-Rpt5 (base), anti-CP, and anti-Flag antibodies.

(G) SDS-PAGE analysis of the Nas6- or Rpn14-containing complex. Affinity-purified proteins from the respective Flag-tagged strains were subjected to

SDS-PAGE followed by silver staining.

(H) Two additional proteins were identified in the Nas6- and Rpn14-containing complexes. Affinity-purified proteins in (G) were digested with trypsin and

subjected to LC-coupled mass spectrometry (MS). Identified proteins with high confidence (>99.9%) are listed in descending order. The sequence coverages

of the identified proteins are indicated in parenthesis. Proteins that are not integral RP subunits are highlighted in bold text.

Cell 137, 900–913, May 29, 2009 ª2009 Elsevier Inc. 903



(Nakamura et al., 2007a, 2007b). To test whether the C-terminal

domains of Rpt subunits are also utilized for other PIPs-Rpt inter-

actions, we performed domain analysis by Y2H analysis. Interest-

ingly, the C-terminal domains were found to be required and suffi-

cient for all PIPs bindings (Figure 2B). Recent reports indicated

that the C-terminal tails of ATPase subunits are responsible for

CP activation by inserting themselves into intersubunit pockets

of the CP (Gillette et al., 2008; Rabl et al., 2008; Smith et al.,

2007). Hence, the C termini binding proteins, Nas6, Nas2,

Rpn14, and Hsm3, locate and occupy the CP binding surface

of the RP. This notion is consistent with the above result; i.e.,

these PIPs exist only in the base or RP but not in the 26S protea-

some (Figure 1D).

Next, we investigated the cellular distributions of Nas6, Nas2,

Rpn14, and Hsm3 because it has been proposed that there is

Figure 3. Loss of Nas6, Nas2, Rpn14, and

Hsm3 Results in Disassembly of the 26S

Proteasome

(A) Multiple deletions of NAS2, NAS6, RPN14, and

HSM3 exhibit temperature- and amino acid-

analog sensitivities. Ten-fold serial dilutions of

cells (W303a and YYS1201-1215) were spotted

onto YPD plates and incubated at 25�C, 33.8�C,

or 37�C. YPD plate supplemented with 5 mM

AZC was also tested.

(B) Multiple deletions of NAS2, NAS6, RPN14, and

HSM3 result in disassembly of 26S proteasomes.

The indicated cells (W303a and YYS1201-1215)

were cultured for 4 hr at 37�C. Extracts prepared

in the presence of ATP were resolved on 3.5%

native-PAGE. The gel was incubated with Suc-

LLVY-AMC in the presence of ATP to monitor

26S proteasomes and then in the presence of

0.05% SDS to visualize CP activity. The two iso-

forms of the 26S proteasome (RP2CP and

RP1CP), PA200-CP complex, and free CP are indi-

cated.

a tight link between nucleocytoplasmic

trafficking and the proteasome subcom-

plex assembly; each subcomplex of the

26S proteasome (i.e., the CP, base, and

lid) can be imported into the nucleus after

its formation (Isono et al., 2007). Each of

the PIPs was tagged chromosomally

with yEGFP1F tag that consists of yeast

enhanced green fluorescent protein

(yEGFP) and 3xFLAG tag. Note that all

of the tagged strains were functional

because the tagged genes can suppress

the phenotype of their null mutants

(Figure S1 available online). As a control,

the lid subunit Rpn7 was tagged with

monomeric red fluorescent protein

(mCherry). In the Rpn1-yEGFP1F Rpn7-

mCherry expressing cells, both proteins

were colocalized mainly in the nucleus

(Figure 2C), in agreement with the

previous study that the mature yeast

26S proteasome exists predominantly in the nucleus (Enenkel

et al., 1998; Isono et al., 2007; Wendler et al., 2004). In contrast,

Nas6-yEGFP1F, Nas2-yEGFP1F, yEGFP1F-Rpn14, and Hsm3-

yEGFP1F were observed in both the cytosol and nucleus at lower

intensities than that of Rpn1-yEGFP1F (Figure 2C), suggesting

that these PIPs function in the assembly pathway of the RP rather

than being involved in modulation of proteasomal activities.

Nas6, Nas2, Rpn14, and Hsm3 Are Required for 26S
Proteasome Assembly
The above results suggest a functional relationship among the

four PIPs (Nas6, Nas2, Rpn14, and Hsm3). To test this, we

crossed strains lacking NAS6, NAS2, RPN14, or HSM3 and

generated multiple-deletion strains. Although cells with simulta-

neous deletions of all the four PIP genes were viable at 25�C, the
904 Cell 137, 900–913, May 29, 2009 ª2009 Elsevier Inc.



Figure 4. Nas6, Nas2, Rpn14, and Hsm3 Are Important for Base Assembly

(A) Cells expressing Rpn1-yEGFP1F and Rpn7-mCherry (YYS1601-YYS1616) were cultured for 4 hr at 37�C. Extracts were resolved by native-PAGE. Fluores-

cence of the Rpn1-yEGFP1F (top-left) and Rpn7-mCherry (top-right) were imaged by a fluoroimager. The protein bands assigned to 26S proteasomes (RP2CP

and RP1CP), RP, base, lid, Rpn1-containing complex (Rpn1yEGFP1F-Rpt2 identified in [C]) and free Rpn1 are indicated. The unknown species of the 26S protea-

some, probably RP-CP-base, is indicated by an asterisk.

(B) SDS-PAGE analysis of the Rpn1 (n1)- or Rpn7 (n7)-containing complex from Dnas6 Dnas2 Drpn14 Dhsm3 (DDDD) cells. Rpn1- and Rpn7-containing

complexes were affinity purified from yEGFP1F-tagged cells (YYS1255, 1256, 1258, and 1259).

(C) Identification of subassemblies of the Rpn1- and Rpn7-containing complexes. The purified proteins were resolved on 3.5% native-PAGE followed by

Coomassie brilliant blue (CBB) staining. Visible bands were excised, digested with trypsin, and subjected to LC-MSMS. The sequence coverages of the identified

proteins are indicated in parenthesis.
Cell 137, 900–913, May 29, 2009 ª2009 Elsevier Inc. 905



Figure 5. Each Base Chaperone Plays a Distinct Role in Base Assembly

Cells expressing yEGFP1F-Rpt1 ([A], YYS1401-1416), yEGFP1F-Rpt4 ([B], YYS1441-1456), yEGFP1F-Rpt6 ([C], YYS1461-1476), and yEGFP1F-Rpn2 ([D],

YYS1501-1516), were cultured and analyzed as in Figure 4A. Characteristic complexes are indicated by dashed lines. See the main text for details.
cells exhibited the most severe growth defects against high

temperatures and amino acid-analog stresses among the

mutant cells (Figure 3A). The results suggested overlap in the

functions of these four PIPs. Furthermore, multiple genetic inter-

actions revealed several hierarchical clusterings within these PIP

genes. Dnas6 Drpn14 cells and Dnas2 Dhsm3 cells showed

severe growth defect at high temperatures, indicating that

each pair (NAS6-RPN14 and NAS2-HSM3) is redundant. In

contrast, no genetic interaction was found between NAS2 and

RPN14. On the other hand, the triple-mutant Dnas2 Drpn14

Dhsm3 cells grew better than the other triple mutants at

33.8�C, suggesting that Nas6 has somehow an overriding func-

tion among the four genes.

To determine the functional roles of these four PIPs, we moni-

tored the proteasome assembly by in-gel peptidase assay of

total cell extracts. The PIP mutant cells were cultured at 37�C

for 4.5 hr, corresponding to two-doubling time, and lysed in

the presence of ATP, and then the cleared lysate was resolved

by native-PAGE. The activities of the 26S proteasome, RP2CP

and RP1CP, were visualized with the chromogenic peptide,

succinyl-Leu-Leu-Val-Tyr-7-amide-4-methyl-coumarin (Suc-

LLVY-AMC), in the presence of ATP (Figure 3B, top panel) after
906 Cell 137, 900–913, May 29, 2009 ª2009 Elsevier Inc.
visualization of the latent CP in the presence of a detergent

(0.05% SDS) (Figure 3B, bottom panel). Surprisingly, the 26S

proteasome was hardly detected in the quadruple, triple, and

various double mutants (Figure 3B, top panel). In contrast,

the free CP accumulated at high levels in these mutants

(Figure 3B, bottom panel), presumably because of a defective

RP-CP interaction or RP assembly. These results suggest that

one function of the Nas6, Nas2, Rpn14, and Hsm3 is to facilitate

the assembly of the 26S proteasome.

Nas6, Nas2, Rpn14, and Hsm3 Are Bona Fide Base
Chaperones
We further investigated the mechanism by which Nas6, Nas2,

Rpn14, and Hsm3 function in 26S proteasome assembly. To

detect the complex at high resolution and with high sensitivity,

we used fluorescent protein (FP) imaging, in which the FP-tagged

proteins are detected in native-polyacrylamide gel (Lehmann

et al., 2008). To monitor the base, lid, RP, and their subassemblies

in the same gel, we assayed the total extracts of the Rpn1-

yEGFP1F- and Rpn7-mCherry-expressing cells (Figure 4A). Inter-

estingly, multiple species containing Rpn1-yEGFP1F were

detected even in the wild-type cell and were assigned to



RP2CP, RP-CP-PA200, RP1CP, free RP, free base, and three

Rpn1-containing species from top to bottom (Figure 4A, left

upper, lane 1). On the other hand, Rpn7-mCherry-containing

species were assigned to RP2CP, RP-CP-PA200, RP1CP, free

RP, and free lid (Figure 4A, right upper, lane 1).

Strikingly, in the quadruple-mutant cells, almost no 26S pro-

teasomes, no free RP, and no free base were detected; instead,

only the two small Rpn1-containing species and the free lid

accumulated in the cells (Figure 4A, lane 16). To identify the

Rpn1- or Rpn7-containing complexes, we performed affinity

purification by using the Flag tag of yEGFP1F (Figures 4B). All

of the RP subunits were copurified with both the Rpn1- and

Rpn7-yEGFP1F from the wild-type cells, whereas only a subset

of the RP subunits was copurified from the quadruple mutant

(Figure 4B). Further, the proteins were resolved by native-

PAGE and visible protein bands were analyzed by LC-MSMS

(Figure 4C). The fastest migrating protein band detected in

Rpn1-yEGFP1F strains contained only Rpn1 and EGFP (band I),

whereas a slower migrating band contained both Rpn1 and

Rpt2 (band II). In addition, the faint slowest band contained

Rpn1, Rpt2, and Ubp6 (band III). As expected, in the major

Rpn7-containing protein band from the quadruple mutant,

band IV, we identified eight of the nine lid subunits (Figure 4C,

lane 4).

Consistent with our previous report that the lid and base sub-

complexes can be assembled independently (Isono et al., 2007),

a defective base assembly can be accompanied by the produc-

tion of a free lid. As judged by the levels of free lid, modest to

severe impairment of RP assembly was also observed in the

single, double, and triple deletion of the NAS6, NAS2, RPN14,

and HSM3 (Figure 4A). Thus, we conclude that these four PIPs

function as chaperones for the base assembly.

Each Base Chaperone Plays a Distinct Role in Base
Assembly
The fact that the four base chaperones are structurally distinct

and bind specific Rpt subunits (Figure 2A) suggests that each

chaperone functions in a distinct step(s) of the base assembly.

In support of this notion, accumulation of the Rpn1-Rpt2 was

observed in all HSM3 deleted strains (Figure 4A, lanes 5, 8, 10,

11, 13–16). Conversely, a slower migrating Rpn1-containing

complex, probably consisting of Rpn1, Rpt1, and Rpt2, was

observed in Hsm3-expressing cells and even in the Dnas6

Dnas2 Drpn14 mutant (Figure 4A, lanes 1–4, 6, 7, 9, and 12).

To monitor other base subunits, we also chromosomally tagged

Rpt1, Rpt4, Rpt6, or Rpn2 with yEGFP1F and subjected it to FP

imaging. Multiple species, including small subassemblies, were

also detected, similar to the Rpn1-yEGFP1F strain (Figure 5).

As expected, a characteristic Rpt1-containing complex (i.e.,

Rpn1-Rpt1-Rpt2 complex) was detected only in the Hsm3-ex-

pressing cells (Figure 5A, dashed line). Thus, these results indi-

cate that Hsm3 assists the incorporation of Rpt1 into the

Rpn1-Rpt2 complex.

As for Nas2, the proteasome pattern of the Dnas2 single

mutant was indistinguishable from that of the wild-type strain

(Figures 4A and 5A–5D, lane 3). However, accumulation of an

Rpt4-containing complex was found in Nas2-expressing cells

that lacked other base chaperones (Figure 5B, dashed line).
Intriguingly, in both the Dnas6 and Drpn14 single-mutant cells,

the levels of free base and/or free RP were lower than those in

wild-type cells (Figures 4A and 5A–5D, lanes 2 and 4). Remark-

ably, accumulation of the Rpt6-containing complex with slower

migration was noted in Rpn14-expressing cells that lacked other

base chaperones (Figure 5C, dashed line). On the other hand,

Nas6-expressing cells showed no accumulation of specific

subassemblies but rather a disorganized RP-like complex that

contained at least Rpt6, Rpn2, and the lid, with a smear band

(Figures 4A, 5C, and 5D, lane 15).

Ordered Assembly of the RP
The above results suggest that the base assembly seemed to

start with the formation of a specific pair of the base subunits

and that the process involved the base chaperones. If the base

assembly was executed in an orderly fashion, each of the base

chaperones should function in a stepwise manner, and specific

intermediates that consist of the base chaperone and certain

base subunits should accumulate in specific mutants. To test

this, we first searched for intermediates that accumulate in

cells lacking other base chaperone by FP imaging (Figure S2).

However, we could not detect obvious chaperone-base interme-

diates except for Hsm3 (Figure S2). We assumed that the

possible intermediates did not focus well in the native-gel,

probably because of their structural diversity. In fact, several

clear bands were seen, but most Nas6- or Rpn14-containing

complexes appeared as smear in the native-gel (Figures 1E

and S2). To identify the possible intermediate, we performed

affinity purification from the yEGFP1F-tagged base chaperone

strains, followed by SDS-PAGE analysis (Figure 6A). Although

Nas2 was detected in the RP- and base-bound forms

(Figure S2A), only a few protein bands were detected in the

Nas2 immunoprecipitates (Figure 6A). Interestingly, protein

bands corresponding to all the RP subunits were visible in the

Rpn14- and Hsm3-containing complexes, but the protein bands,

especially some base subunits, appeared with high intensities

(Figure 6A). These observations suggest that the immunoprecip-

itates contain heterogeneous complexes including the putative

intermediates.

To quantify each RP subunit of the intermediates, we per-

formed quantitative MS using stable isotope labeling in culture

(SILAC): the Dlys2 background strains were grown in SILAC

medium supplemented with ‘‘heavy’’ lysine, 13C-Lys. To prepare

isotope-labeled RP that contained all the subunits stoichiometri-

cally, we cultured the PRE5-3xFLAGDlys2 cells, in which the CP

subunit Pre5 was tagged with 3xFLAG tag, in SILAC medium and

captured the 26S proteasome by anti-Flag agarose, and then

eluted the RP with high salt-containing buffer (Saeki et al.,

2000). Mixtures of each base chaperone-containing complexes

and the isotope-labeled RP were digested with lysil endopepti-

dase in solution and then subjected to LC-MSMS (Figure 6B).

Quantitative MS analysis allows determination of the precise

amount of each RP subunits even in the heterogeneous

complexes. The immunoprecipitates were also subjected to

native-PAGE, and visible protein bands were identified by

LC-MSMS (Figure 6B).

The major Nas2 complex was Nas2-Rpt4-Rpt5, which was

also identified by native-PAGE-MS (Figure 6C). In addition,
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908 Cell 137, 900–913, May 29, 2009 ª2009 Elsevier Inc.



a small amount of the lid subcomplex, 4%–5% of the total Nas2-

bound complexes, was detected by MS, suggesting that a small

population of Nas2 binds with the RP, until completion of the RP

assembly. In contrast, the Nas6 complexes could be divided into

two main parts;�70% was Nas6-RP and�20% was Nas6-base

(Figure 6D). The remaining�10% of the total complex was Nas6-

Rpt3-Rpt6 and a more heterogeneous complex. Interestingly,

the Rpn14 complexes were divided into four distinct complexes

by MS, Rpn14-Rpt3-Rpt6, Rpn14-Rpt3�Rpt6-Rpn2-Rpn13,

Rpn14-base, and Rpn14-RP (Figure 6E). Although the latter

two complexes were easily detected by the native-PAGE anal-

ysis, the former two were not. These observations add support

to our assumption above. On the other hand, three distinct

Hsm3 complexes were identified by both the native-PAGE-MS

and quantitative MS: Hsm3-Rpt1-Rpt2-Rpn1, Hsm3-base, and

Hsm3-RP (Figure 6F). The results of quantitative MS analysis

indicate that the base assembly seemed to be executed in

a highly orderly fashion, beginning with the formation of the

base subunit-chaperone pairs (Figure 7B; see the Discussion).

The Base Chaperones Regulate the Newly Synthesized
Subunits
Why didn’t the base chaperone-lacking cells show any growth

defect at permissive temperatures, considering that the 26S pro-

teasome is essential for cell growth (Figure 3A)? To address the

question, we compared the proteasome profiles at permissive

temperatures with those at restrictive temperatures. The wild-

type or the base chaperone quadruple-mutant cells expressing

Rpn1-yEGFP1F were analyzed by FP imaging and in-gel pepti-

dase assay (Figure 7A). In the quadruple-mutant cells, faint

signals of 26S proteasome activities were detected in cells

cultured at 25�C, while the 26S proteasomes completely disap-

peared upon a shift to 37�C for 4 hr, corresponding to two

doubling time. Interestingly, in the quadruple-mutant cells,

formation of RP was noticeable at 25�C, and it converted subse-

quently into the 26S proteasome after heat shift (Figure 7A).

These results suggest that the observed RP is a functional

species, but the RP assembly did not proceed without the

base chaperones at the restrictive temperature. In contrast, the

26S proteasome in the wild-type cells did not show any obvious

changes at both temperatures, suggesting that the base chaper-

ones work to maintain the RP levels in growing cells. During

treatment of cells with cyclohexamide (CHX), by which the cell

growth was stopped, the dynamic changes in the proteasome

profiles were not observed (Figure 7A). Considered together,
these results suggest that the base chaperones regulate

assembly of the newly synthesized base subunits.

DISCUSSION

The base subcomplex contains six paralogous Rpt subunits and

three Rpn subunits (Leggett et al., 2005; Murata et al., 2009).

How do the nine different subunits assemble in the base? In

the assembly pathway of the CP, two dimeric chaperones,

PAC1-2 and PAC3-4, arrange the seven a-subunits into defined

positions in the a-ring (Kusmierczyk and Hochstrasser, 2008;

Murata et al., 2009; Ramos and Dohmen, 2008). Because the

six ATPases of the base are thought to form a ring structure

like the CP a-ring, it is reasonable to suppose that specific

factors may help the base assembly.

In this study, we identified four proteasome-interacting

proteins, Nas2, Nas6, Rpn14, and Hsm3, as plausible chaper-

ones for the base assembly; (1) absence of these PIPs caused

the defect of the base assembly, (2) each PIP specifically binds

its partner Rpt subunit and forms a distinct subassembly of the

base, and (3) none of these PIPs are present in the 26S protea-

some. Because each base chaperone has a distinct structure,

it was surprising that they function in the same pathway. Our

conclusions regarding Nas2/p27 and Hsm3/S5b are consistent

with those of a previous report that both p27 and S5b can form

specific subassemblies (DeMartino et al., 1996; Deveraux

et al., 1995). As for Nas6/gankyrin and Rpn14/PAAF1, our

genetic study clearly suggests that these proteins functions in

the base assembly, contrary to previous observations in

mammalian cells (Dawson et al., 2002; Higashitsuji et al., 2000;

Lassot et al., 2007; Park et al., 2005). Possibly, mammalian gan-

kyrin and PAAF1 may have species-specific functions, although

either gankyrin or PAAF1 could suppress the temperature sensi-

tivity of the Dnas6 Drpn14 strain (data not shown). During the

preparation of this manuscript, Le Tallec et al. also identified

Hsm3/S5b as a base chaperone in an elegant genetic screening

study (Le Tallec et al., 2009). As evident from the results of the

present study, Hsm3 is only part of a larger group of chaperones

that are required for the orderly process of base assembly

(Figures 3–7).

Base Chaperones Regulate the Highly Structured
Assembly of the 19S Regulatory Particle
Our Y2H and quantitative MS analyses identified the mecha-

nisms involved in the base assembly (Figures 2 and 6). The
Figure 6. Quantitation of the Base Chaperone-RP Subunit Intermediates by MS

(A) SDS-PAGE analysis of the base chaperone-containing complexes. Affinity-purified proteins from the respective yEGFP1F-tagged strains (YYS1541, 1591,

1621, 1631) were subjected to SDS-PAGE followed by CBB staining. As a control, the isotopically labeled RP (13C-Lys) was also prepared from the PRE5-3xFLAG

strain (YYS1297). Protein bands corresponding to the bait protein are indicated by red asterisks. In the case of NAS2-yEGFP1F, an N-terminally truncated form of

Nas2 is also identified by MS.

(B) Depiction of overall workflow.

(C–F) Left panels: Identification of the base chaperone-RP subunit intermediates by native-PAGE. The affinity-purified proteins in (A) were resolved in 3.5%

native-PAGE, followed by CBB staining. Visible protein bands were analyzed by LC-MSMS. Contaminant proteins, identified as ribosomal proteins, are indicated

by asterisks. From the band with relatively high intensity indicated by the double asterisk, only Nas2-yEGFP1F was identified. Right panels: Quantitation of the

base chaperone-bound RP subunits. The affinity-purified proteins in (A) were mixed with the isotope-labeled RP and analyzed by LC-MSMS. The relative

amounts of the RP subunits were determined by comparison of the intensities of multiple SILAC ion pairs (light [L] versus heavy [H] ions). The L/H ratios of

each RP subunits are shown with mean values of three experiments in the graph (SD < 0.05). Because the L/H ratios of all nine lid subunits were essentially

of the same value, we simply note the lid. Multiple complexes were ranked by the relative levels and are indicated by dashed red line.
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Figure 7. The Assembly Pathway of the RP by Base Chaperones

(A) Base chaperones regulate newly synthesized proteasomes. Wild-type (WT) or Dnas6 Dnas2 Drpn14 Dhsm3 (DDDD) cells expressing Rpn1-yEGFP1F

(YYS1255 or 1258) were cultured at 25�C, then shifted at 37�C for 2–4 hr. Proteasomes were imaged as in Figures 3B and 4A. As a control, cyclohexamide

(+CHX, 400 mg/ml) was added before the heat shift.
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base assembly seems to begin with the formation of specific

complexes between the Rpt subunit and base chaperones

such as Rpt1-Hsm3, Rpt3-Nas6, Rpt5-Nas2, and Rpt6-Rpn14,

followed by the formation of relatively stable intermediates:

Rpn1-Rpt2-Rpt1-Hsm3, Rpt4-Rpt5-Nas2, and Nas6-Rpt3-

Rpt6-Rpn14. Subsequently, all intermediates and the remaining

base subunits, Rpn2 and Rpn13, are assembled to form the base

subcomplex (see the model illustrated in Figure 7B). After the

completion of the base assembly, the base binds the lid and

Rpn10 and forms the 19S RP (Figure 7B).

Because NAS6 and RPN14 are epistatic to NAS2 and HSM3

(Figure 3A), the Nas6-Rpt3-Rpt6-Rpn14 complex might serve

as the seed for the base assembly. Although Nas2 might function

in the incorporation of Rpt4-Rpt5 into the base, the proteasome

profiles in the Dnas2 strain were essentially the same as that of

wild-type strain (Figures 4 and 5). The incorporation of Rpt4-

Rpt5 might occur spontaneously or might not be the limiting

step in the assembly in the Dnas2 cells. Nevertheless, our

genetic study suggests that NAS2 is indispensable when lacking

other base chaperones (Figure 3A).

The mechanism for how each base chaperones is released

remains unclear. Although all the base chaperones seemed to

associate with the base and RP, their binding properties were

somehow different (Figures 6 and S2). Only a small fraction of

Nas2 and Hsm3 is associated with base and completed RP.

On the other hand, Nas6 was associated with both the base

and RP, whereas Rpn14 is associated mainly with the base. It

is likely that the completion of base assembly may stimulate

Nas2 and Hsm3 release and that the lid-binding may stimulate

Rpn14 displacement. Finally, Nas6 is released upon the CP

binding (Figure 7B). Further studies, such as a reconstitution

assay using purified proteins or structural studies, are needed

to solve the precise mechanisms of action of the base chaper-

ones.

At present, there is little information on the assembly of the lid

subcomplex. Consistent with the finding of a previous report

(Isono et al., 2007), the lid assembly appears to occur indepen-

dently of the base assembly (Figures 4 and 5). Although Hsp90

chaperone seemed to be involved in this process (Imai et al.,

2003), more specific lid-dedicated chaperones may still exist.

Finally, Rpn10, which stabilizes the lid-base interaction (Glick-

man et al., 1998), is apparently incorporated into the RP, prob-

ably after the lid-base binding (Figure 7B).

Biological Significance of the Base Chaperones
Although loss of the base chaperones resulted in significant

reductions in 26S proteasome levels, the quadruple-mutant cells

grow normally under normal conditions (Figures 3A and 7A). The

result suggests that alternative mechanism(s) for the base

assembly, though it seems to be ineffective, still exists in the

cells. For example, it has been proposed that the CP itself, prob-

ably the a ring, functions as an assembly factor for the base

assembly (Kusmierczyk et al., 2008). Likewise, the lid subcom-

plex may act as a scaffold for the base assembly, although these
subcomplexes can be formed independently (Isono et al., 2007).

Alternatively, the base subunits may have intrinsic ability to form

the base subcomplex spontaneously.

Under urgent conditions that require 26S proteasome activity,

such as heat stress, the base chaperones are indispensable in

the maintenance of the amount of the 26S proteasome at levels

sufficient for cell viability (Figure 3A). It should be noted that the

protein levels of the base chaperones are at least 20-fold lower

than the integral proteasome subunits (Ghaemmaghami et al.,

2003), suggesting that the base chaperones exert the compli-

cated task to maintain 26S proteasome levels as needed.

EXPERIMENTAL PROCEDURES

Yeast Strains, Plasmids, and Media

For descriptions of yeast strains, plasmids, and media, see the Supplemental

Experimental Procedures.

Protein Purification and Mass Spectrometry

Affinity purifications of the 3xFlag- or yEGFP1F-tagged PIP complexes were

performed essentially as described for the preparation of the 26S yeast protea-

some (Saeki et al., 2005). In brief, cell extract prepared in the presence of ATP

and the FLAG-tagged protein was recovered by adsorption to an anti-FLAG

M2 agarose (Sigma), followed by elution with 3xFLAG peptide. Protein

samples were analyzed by LC-coupled MALDI-TOF mass spectrometry with

a 4800 MALDI TOF/TOF analyzer (Applied Biosystems, Foster City, CA)

coupled with DiNA MaP system (KYA tech, Japan) as described previously

(Saeki et al., 2009; Tanaka et al., 2008). For quantitative MS analysis, proteins

were denatured with 0.5% RapiGest (Waters) in 50 mM Tris-HCl (pH 8.8) and

digested with 100 ng/ml lysil endopeptidase (Wako) for 16 hr at 37�C. The re-

sulting peptides were subjected to LC-MALD. MS and MS/MS data were pro-

cessed by ProteinPilot software 2.0 (Applied Biosystems).

Microscopy

Cells that chromosomally expressed the yEGFP1F- and/or mCherry-tagged

proteins were grown in YPD medium to logarithmic phase at 25�C. Then

they were washed twice with phosphate buffered saline and imaged with

a BX52 fluorescence microscope (Olympus, Tokyo) with a UPlanApo 1003/

1.45 objective (Olympus) equipped with a confocal scanner unit CSU20 (Yoko-

gawa Electric, Japan) and a C9100 EMCCD camera (Hamamatsu Photonics)

as described previously (Isono et al., 2007).

Native-PAGE and Fluorescent Imaging

The cells were disrupted with glass beads as described previously (Saeki et al.,

2005). The lysates were clarified by centrifugation at 15,000 rpm for 5 min at

2�C, and the supernatants were further centrifuged at 15,000 rpm for 15 min

at 2�C. The resultant supernatant (30 mg, typically 3 ml) was mixed with 43

native sample buffer and then subjected to 3.5% native-PAGE, unless other-

wise noted (Elsasser et al., 2005). For the FP imaging, the gel was poured in

nonluminescent glass plates (Biocraft, Japan). After electrophoresis, FP fluo-

rescence was imaged by a Typhoon9400 fluoroimager (GE Healthcare Biosci-

ences, Uppsala, Sweden). In-gel peptidase assay was performed as

described previously (Saeki et al., 2009).

Western Blotting

Western blotting was performed as described previously (Saeki et al., 2005)

with the following antibodies: horseradish peroxidase-conjugated anti-Flag

antibody (M2, Sigma), anti-ubiquitin antibody (P4D1, Santa Cruz Biotech-

nology, Santa Cruz, CA), anti-Rpt5 antibody (Affiniti Research), anti-Rpn5 anti-

body (Isono et al., 2007), and anti-CP antibody (Tanaka et al., 1988).
(B) Current model for the assembly pathway of the yeast RP. The intermediates identified by native-PAGE-MS are indicated in green box. The intermediates

identified by the quantitative MS are boxed in green dotted line. Note that Rpn and Rpt subunits are abbreviated as ‘‘n’’ and ‘‘t,’’ respectively. See the main

text for details.
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