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This paper is concerned with some qualitative analysis for a coupled system of 
three reaction diffusion equations which arises from certain chemical reactions first 
discovered by Belousov and Zhabotinskii. The analysis includes the existence of a 
bounded global time-dependent solutions, the stability and instability of the zero 
solution, and the existence and nonexistence of a positive steady-state solution, 
including a global attractor of the system. The global existence and stability 
problem is determined by the method of upper and lower solutions, and the 
existence of a positive steady-state solution is based on the fixed point index and 

bifurcation theory. This analysis leads to a necessary and sufficient condition for the 
existence and nonexistence of a positive steady-state solution in relation to the 
various physical parameters of the system. c 1992 Academic Press, Inc. 

1. INTRODUCTION 

The Belousov-Zhabotinskii reaction is a class of oscillatory metal-ion- 
catalized oxidations of organic compounds by bromate ion. The reaction 
was first discovered by B. P. Belousov and A. M. Zhabotinskii, and since 
then the reaction system has been extensively studied both from chemical 
and mathematical points of view (cf. [2-6, 9, 10, 131). The original mathe- 
matical model consists of ten chemical reactions with seven intermediates. 
Due to the complicated chemical kinetics of the system Field and 
Noyes later abstracted a modified model of three variable equations, called 
oregonator (cf. [2]). This simplified system retains most of the important 
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features of the original mechanism yet much more tractable mathemati- 
cally. The chemical reaction scheme of this simplification is given by 

A+Y+X, x+ Y+P, B+X+2X+Z 

2X+ Q, Z+yY 

where A and B are reactants, P and Q are products, y is a reaction 
constant, and X, Y, and Z are concentrations of the intermediates HBrO, 
(bromous acid), Br (bromide ion), and Ce(IV) (Cerium), respectively, 
Under the condition that the concentrations of reactants are held constant 
and uniform the dimensionless form of the equations are given by 

u, - D,V2u = ~(a; - b’u - c; v) + q; v 

v,-D2V2v= -c;uv+d;w-q;v (f>O,XESZ) (1.1) 

w,-DJ’w=b;u-dd;w, 

where u, v, and w represent the respective concentrations X, Y, and Z, the 
D;s are the diffusion coefficients, and 52 is the diffusion medium which is 
a bounded domain in R”. The constants a(, b,f, cl, d I, and qi, i= 1,2, 3, 
are all positive. 

Considerable attention has been given to the system (1.1) but it is mostly 
devoted either to the well-stirred system in which problem (1.1) is reduced 
to a system of ordinary differential equations or to the case of one spatial 
dimension for the traveling wave solution (cf. [2-61). In this paper we use 
the method of upper-lower solutions and bifurcation theory to treat some 
qualitative aspects of the system in an arbitrary bounded domain 52 in R” 
(cf. [7-9, 11, 123). The boundary condition under consideration is given by 

Bu=O, Bv=O, Bw=O (t>O,x~aQ) (1.2) 

and the initial condition is 

4% x) = %(X), 4% x) = v,(x), 46 x) = w,(x) (x E a), (1.3) 

where %2 is the boundary of 0, B= a,8/lav + p, is a linear boundary 
operator, and a/& is the outward normal derivative on &2. This qualitative 
analysis includes the existence of a bounded global solution of (l.l)-(1.3), 
the asymptotic behavior of the solution, and the existence and nonexistence 
of a positive solution of the steady-state problem 

-V*u=u(a,-b,u-c,v)+q,v, Bu=O 

-V2v= -c,uv+d,w-q2v, Bu=O (1.4) 

-V2w=b3u-d)w, Bw=O, 
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where 

a, =a’,lD,, b, = bj/Di, c; = c;/D;, d,=d;lD,, 
(1.5) 

qi=q:JDi, i= 1, 2, 3. 

Of special concern is the bifurcation of the trivial solution to a positive 
solution of (1.4). It is assumed that Q is of class C* “, a, and PO are non- 
negative constants with a,+ p, > 0, and uo, u,, and w, are nonnegative 
functions in Cl(Q). The consideration of the boundary operator B includes 
the Dirichlet condition (a, = 0, PO = l), the Neumann condition (a, = 1, 
fi, = 0), and the Robin condition (a, = 1, /I, > 0). 

The plan of the paper is as follows: In Section 2 we use the method of 
upper and lower solutions to show the existence of a bounded global solu- 
tion to (1.1 )-( 1.3) and establish its convergence property as t -+ 00. It is 
shown that under the condition (2.15) every time-dependent solution 
converges to the trivial solution as t + cc while under the reversed condi- 
tion (2.19) the solution tends to a global attractor. Based on the theory of 
bifurcation and fixed point index we show in Section 3 that condition 
(2.19) is a necessary and sufficient condition for the existence of a positive 
solution to the steady-state problem (1.4). This condition yields a bifurca- 
tion point in relation to the physical parameters where the solution 
bifurcates from the trivial solution to a unique positive solution. 

2. THE TIME-DEPENDENT SYSTEM 

In this section we use the method of upper and lower solutions to show 
the existence of a bounded global solution to (l.l)-( 1.3). The construction 
of upper-lower solutions yields a necessary and sufftcient condition for the 
asymptotic convergence of the time-dependent solution to the zero steady- 
state solution. To obtain this result it is convenient to set 9 = [0, co) x $2, 
Y - [0, co) x a52, and write Eq. (1.1) in the form 

a,u,-V2u=u(a1-b,u-c,u)+q,u 

(~~v,-V’v= -c2uv+d2w-q,v in 9 (2.1) 

03w,-V*w=b+-dd3w, 

where bi = 0;’ and ai, b,, etc.., i = 1,2, 3, are given by (1.5). Since the 
reaction function in (2.1) does not possess a quasimonotone property when 
q, > 0 it is necessary to modify the definition of upper and lower solutions 
as follow. 
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DEFINITION 2.1. A pair of smooth functions (ii, 17, $5) (ti, B, 6) are called 
coupled upper and lower solutions of (2.1), (1.2), (1.3) if (ii, 6, @) 2 (6, 6, 6) 
and if they satisfy the differential inequalities 

(2.2) 

and the boundary and initial inequalities 

Bi.i>O>Bii, BC>O> Bo^, BG>O> Bti on Y 

ii>U,39, u”>V,>B, ~,>,W,~~ at i=O, ~~52. 
(2.3) 

Notice that the above definition is different from the usual definition for 
mixed quasimonotone functions since both i? and 0 are involved in the dif- 
ferential inequalities for rl and li. The purpose for the above definition is to 
obtain two monotone sequences from the following iteration processes 

L,~(k)=Y,~(k-I)+~(k-I’(al-bl~‘k-”-c,_v’k-”)+q,~‘k-” 

L2~(k)=(Y2-q2)~(k-1)_C2_U(k~1)~(k-l)+d2~(k~1) (2.4) 
L, ,$(k) = b, &k - 1) 

and 

L,~(k)=yl~(k-‘)+U(k-“(a,-blU’k-l)_CI~(k-~))+q1_D(k-~) 

L,$k’= (y2 -q2)p(k-l) _ +$k- 1+/k- 1) + d2,#- 1) (2.5) 

L, y(k) = ,f&k- ‘) 

for k = 1, 2, . . . . where L, , L2, and L, are the operators given by 

Li = (a$/& -V’ + y,), i= 1, 2, 3 

and the y;s are any positive constants satisfying 

y,~max(2b,u+c,u-a,;lidu~~,o^~udv’} 

y2ac2fi+q2 and ys=4 
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The initial iterations are (U’“‘, I?‘“‘, $(0’) = (ii, o”, $) and (_u(O’, _v’“‘, w”“) = 
(ti, 0, G), and the boundary and initial conditions are given by 

We show that the two sequences given by (2.4)-(2.6) both converge 
monotonically to a unique solution of (2.1) (1.2) ( 1.3). 

THEOREM 2.1. Let (i?, i?, E) and (6, ti, G) be a pair of nonnegative coupled 
upper-lower solutions of (2.1), (1.2), (1.3). Then the two sequences 
{u ,v fk’ -WI, Wfk’ ), {gtk’, gck’, I@)} given by (2.4)-(2.6) conoerge monotonically 
to a unique solution (u, v, w) and 

(fi, d, a) < (u, v, w) 6 (ii, 6, S) in 9. (2.7) 

Proof Let (yr, y2, y,)= (CC”‘, @“, I+“~‘)- (CC”, U”‘, G(“). By (2.2), 
(2.4), and (UC”‘, P’, Q”) = (i& 6, $), 

L,y, =(o,UjO’-V2u(“‘+y,u(“‘) 

- [y, U(” + ii’“‘(a, -b, U”” - c,_v’O’) + q1 V’“)] 

=a,li,-V’d-ii(a,--b,ii-c,C)-qqlC>,O 

L, y, = (cJ,I?j”’ - V2$0’ + y2p’) 

- [(y2 - q2)UC0’ - c2tj’%+” + dzWCo)] 

=azv’,-V2G(-q+cC2tiC+d2G)30 

L, y, = (03 @I”’ - V2&“’ + y3 ,(“‘) - b, &” 

=a3~,-V2~+dd3)2)-l+i>0. 

Since by (2.3), (2.6), 

By,=Bii>O, By2= Bv’>O, By3= BiG,O 

Y,(o,x)=qo,x)-uu,30, yz(O,x)=i@, x)- v,>,o, 

y,(O, x) = qo, x) - w, 2 0 

the maximal principle implies that y, b 0, y, z 0, and y3 > 0 in 9. This 
proves the relation (I?“, iP’, G(“) < (P’, of@, w(O)). A similar argument, 
using the property of a lower solution, gives (u”‘, II”‘, w”‘)> 
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(g”‘, _v@‘, by’“)). Let (z,, z2, z3) = (P(l), U(l), tiCI)) - (_u(‘), _u(‘), #I)). By (2.4), 
(2.5), and the property of yl, yz, and y3, 

L,z, = [y1 +a, -b,(u’“‘+_u’“‘)-c,_o’“‘](U’“‘-_u’”’) 

+ (Cl ,(O’ + ql)(V’“’ -_o’“‘) > 0 

L2z2= [(y2-q2)-cz~(~)](u(~)--(~))+c*_v(~)(u(~)--(~)) 

+ d2 (G’ - lp’) > 0 

LjZ3 = b,(U’“‘- @) > 0. 

Since Bz, = 0 and Zi(O, x) = 0 for each i = 1, 2, 3, it follows that zi > 0 in 9. 
This shows that the sequences 

{i’k’} E {u W, $k), G(k) L {lp} z (_U’k’, g(k), lp’} 

possess the property $‘I < q(‘) d U (l’<ii(o’ in 9. It is easily shown by an 
induction argument that 

for every k = 0, 1, 2, . . . . This implies that the pointwise limits 

lim(Gk), tick), W’k’) = (ii, 5, W) 
as k-rco 

lim(_u (k’, _v(k’, &Jk’) = (tl, _y, by) 
(2.9) 

exist and (U, V, W) 2 (_u, _v, w) in 9. By the same regularity argument as 
given in [7, 81 the limits in (2.9) coincide and yield a unique solution to 
(2.1), (1.2), (1.3). This leads to the conclusion of the theorem. d 

It is seen from Theorem 2.1 that to ensure the existence of a global solu- 
tion to (2.1), (1.2), (1.3) it suffices to find a pair of coupled upper-lower 
solutions. For this purpose we consider the coupled system 

a,U,-V2U=U(a,-b,U)+q,V 

a2V,-V2V=d2 W-q,V in 9 

a,W,-V=W=bJJ-d3W 

(2.10) 

under the boundary and initial conditions 

BU=O, BV=O, BW=O 0nY 

U(O, x) = MO, w, x) = Ml, wo, x) = M2 

in51 (2.11) 
7 
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where M,, M,, and M, are any constants satisfying the condition 

(2.12) 

We first show that a unique positive solution to (2.10), (2.11) exists and is 
uniformly bounded in 9. 

LEMMA 2.1. Given any positive constants M,, MI, and M2 satisfying 
condition (2.12) the coupled system (2.10), (2.11) has a unique solution 
(U, V, W) such that 

(0, 0, 0) < (U, K w < (Mm M, 1 M,) in $3. (2.13) 

Proof. Since the nonlinear function at the right side of (2.10) is 
quasimonotone nondecreasing in (V, V, IV) E R3 the existence of a unique 
solution to (2.10), (2.11) is assured if there exists a pair of ordered upper- 
lower solutions in the usual sense. Here (0, r, m) is an upper solution if 
it satisfies all the relations in (2.10), (2.11) when the equality sign = is 
replaced by the inequality sign 2. Similarly, (0, p, I@) is a lower solution 
if it satisfies the reversed inequality <. It is clear from this definition that 
(0, 9, If’) = (0, 0,O) is a lower solution. Moreover, since the constant 
function (0, v, @) = (M,, M,, M,) satisfies the boundary and initial 
inequalities it is a positive upper solution if 

0 2 M,(a, - b,M,) + ql Ml 

0 2 d,M, - qzM, 

O>b,M,-d,M,. 

The above inequalities are clearly satisfied by the relation (2.12). It follows 
from the existence-comparison theorem for quasimonotone nondecreasing 
functions that the system (2.10), (2.11) has a unique solution (U, V, IV) 
which satisfies the relation (2.13) (cf. [7,8]). This proves the lemma. 1 

Using the result of the above lemma we obtain the following global 
existence result for the problem (l.l)-( 1.3). 

THEOREM 2.2. Given any (u,, v,, w,) 2 (0, 0,O) there exist positive 
constants M,, M, , and M, such that the problem (1.1 t( 1.3) has a unique 
global solution (u, v, w) which satisfies 

(03 050) Q (4 0, w) d (U, v, W) Q (M,, M,, M2) in 9, 

where (U, V, W) is the unique solution of (2.10) (2.11). 

(2.14) 
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Prooj Let M,, M,, M, be any positive constants such that 
(MOT M,, JJf2)2 (u,, vo, wO) and satisfy the relation (2.12). Then by direct 
computation the pair 

(ii, l7, G) = (U, v, W) and (ti, 8, 6) = (0, 0, 0) 

satisfy all the differential and boundary-initial inequalities in (2.2), (2.3), 
and therefore they are coupled upper-lower solutions of (2.1), (1.2), (1.3). 
The conclusion of the theorem follows from Theorem 2.1, Lemma 2.1, and 
the equivalence between the systems (1.1) and (2.1). 1 

We next show that the solution (u, u, w) converges to (0, 0,O) as t -+ co 
if 

(2.15) 

where 1, is the principle eigenvalue of the problem 

V2d+A4=0 inQ, lhj=O ona0. (2.16) 

In view of the relation (2.14) it suffices to show that (U, l’, W) -P (0, 0,O) 
as t--t cc. Consider the coupled system 

-V’U=U(a,-b,U)+q,V, BU=O 

-V2V=d2W-q2V, BV=O (2.17) 

-V’W=b,U-d, W, BW=O 

which is the steady-state problem of (2.10), (2.11). Clearly this problem has 
the trivial solution (0, 0,O). The following lemma gives the uniqueness 
property of the trivial solution. 

LEMMA 2.2. Under the condition (2.15) the only nonnegative solution of 
the problem (2.17) is the trivial solution (0, 0, 0). 

ProoJ Let (Us, V,, W,) be any nonnegative solution of (2.17) and let 
4 be the positive eigenfunction of (2.16) corresponding to 1,. Since by 
Green’s identity and the boundary condition in (2.17), 

where Z, stands for U,, V,, or W,, the relations (2.16) and (2.17) imply 
that 
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Iv, jQW&=j gl(d,W.s-q,V,)dx R 

&I j 4W,dx= j d&U,-djW.,)dx. 
52 R 

Elimination of the integral for 4 W, from the second and third equations 
gives 

j R ~V,dx=(b,d,l(~,+d,)(3,,+q,)) joW,dx. 

By substituting this relation into the first equation we obtain 

In view of condition (2.15) the above relation can hold only when U.y = 0 
in Q. It follows from the last equation in (2.17) that W,, = 0 in ?C2 and conse- 
quently V, c 0 in Q. This shows that every nonnegative solution of (2.17) 
is necessarily the trivial solution (0, 0,O). 1 

The uniqueness result of Lemma 2.2 leads to the following global 
stability of the trivial solution. 

THEOREM 2.3. Let the condition (2.15) hold. Then for any (u,, u,], w,) 3 
(0, 0,O) the solution (u, u, w) of (l.l)-( 1.3) satisfies the relation 

Wu(t, xl, u(t, x), w(t, x)) = (0, 0, 0) as t-boo. (2.18) 

Proof. Let (U, V, W) be the nonnegative solution of (2.10), (2.11) and 
for any constant 6 > 0 let 

(U,, v,, W,) = (U(t, x) - U(t + 6, x), V(4 x) 

-V(t+h,X), W(t,x)- W(t+S,x)). 

By the mean-value theorem, (U,, V,, W,) satisfies the relation 

a,(Ud)I-V2U,=(a,-26,rl)U,+q,V, 

az(V,),-V2V6+q2Vg=dzWg 

a,(Ws),-V2Wd+d3W6=b3U6 
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and the boundary condition in (2.1 l), where q 5 ~(t, x) is an intermediate 
value between U(t, x) and U(t + 6, x). Since ql, &, and 6, are positive and 

U,=M,-U(&x)>O, V,=M,- V(&x)>O, W,=M,- W(&x)>O 

at t = 0 the well-known comparison theorem for linear systems implies that 
(U,, Vs, W,) 2 (0, 0,O) (cf. [8, 143). Hence for each x EQ, (U, V, W) is 
monotone nonincreasing in t, and therefore it converges to some non- 
negative function (U,, V,, W,) as t --t co. By the same regularity argument 
as in [8, 91, (U,, V,, W,) is a solution of the steady-state problem (2.17). 
It follows from Lemma 2.2 that (U,, V,, W,) = (0, 0,O). This shows that 
(U, V, W) converges monotonically to (0, 0,O) as t -+ co. The conclusion of 
the theorem follows from the relation (2.14). I 

The result of Theorem 2.3 states that under the condition (2.15) the 
trivial solution (0, 0,O) is globally asymptotically stable (with respect to 
nonnegative perturbations), and therefore the steady-state problem (1.4) 
cannot sustain a positive solution. However, if the reversed inequality of 
(2.15), that is, 

(4, -a,)(& + 4)& + 4 <h&q, (2.19) 

holds, then a straight forward application of the linearization method 
shows that the trivial solution (0, 0,O) is unstable. We show in this situa- 
tion that the problem (l.l)-(1.3) has a global attractor which is given by 

Y= co, USI x co, V,l x co, WJ, (2.20) 

where (US, Y,, W,) is the unique positive solution of (2.17). The existence 
of the positive solution (U,, V,, W,) will be proven in the next section 
(see Theorem 3.1 with ci = c2 = 0). In the following lemma, we show its 
uniqueness. 

LEMMA 2.3. Let the condition (2.19) hold. Then the problem (2.17) has at 
most one nontrivial nonnegative solution. 

ProoJ Let ( U1, V, , W,) and (U,, VZ, W,) be any two nontrivial non- 
negative solutions of (2.17). It is easily seen by the maximum principle that 
if any one of the components Ui, Vi, and Wi is not identically zero, then 
they are all positive in Jz. This implies that any nontrivial nonnegative 
solution of (2.17) is necessarily positive in 9. Since the function at the right 
side of (2.17) is quasimonotone nondecreasing for (U, V, W) 2 (0, 0, 0), 
and for any positive constants M,, M,, and Mz satisfying (2.12), 
(OS,, rs,, ws) = (M,, M,, M2) is a positive upper solution, it follows that 
there exists a maximal solution (Us,, Vs,, Ct,) such that (0, 0,O) < 
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(O,, P,, W’s)<(Mo,MI,M,) (cf. [7,81). By choosing (M,, M,, MZ)>, 
( Ui, vi, Wi) and considering ( Ui, Vi, Wi) as a lower solution, the maximal 
property of (rf,, P,, W’,) ensures that 

to,, vs,, JR) 3 (U,, v,, Wi) for i=l,2. (2.21) 

It is clear that if either d, = 0 or b3 =O, then v, = 0 and the inequality 
(2.19) is reduced to a, > /2,. Since for a, > &, the scalar boundary value 
problem 

-V20= i7(a, -b, 8), St?=0 

has a unique positive solution 0, it follows that U, = Uz = 0 when pJ = 0. 
This implies that I/, = Y, = 0 and W, = W, which shows the uniqueness 
result when b,dz =O. Assume b,d, #O. By (2.17) and Green’s identity, 

0 = 
s 

( i7,V2U, - UiV20,J dx 
Q 

= 
J 

[UJ,(-b,(O,- U,))+ql(V;Q ViO,y)] dx 
R 

O=j (~J2V,- V,V’FJdx=j d,(lPsVi- Wip,)dx 
R R 

0 = 
s 

( F,V2 Wi - WiV2P,) dx (2.22) 
$2 

O=j (@‘J”Vj- ViV2Ws)dx 
R 

= (-d2~JWi+q2~sVi+b,V;8,-d3V,@‘s)dx, 
I R 

where i = 1, 2. Addition of the last two equations gives 

In view of the second equation in (2.22), the above relation is reduced to 

J (ViO,- 5,Ui)dx=0. 
R 
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Using this relation in the first equation in (2.22) yields 

b, s UiDs(Ds- U,) dx=O. 
R 

(2.23) 

It follows from the positive property of Vi and 0s that Ds = Ui, and by 
(2.17), Vs = Vi and @: = Wi for i= 1, 2. This shows that (U,, V,, W,) = 
(U,, V,, W,) which proves the lemma. 1 

As a consequence of Lemma 2.3 we show that the set S in (2.20) is a 
global attractor of the problem (l.l)-( 1.3). 

THEOREM 2.4. Let the condition (2.19) hold and let (Us, V,, W,) be the 
positive solution of (2.17). Then for any (u,, u,, w,) > (0, 0, 0), the solution 
(u, o, w) of (l.l)-( 1.3) satisfies the relation 

iii-l (44 xl, u(t, xl, w(t, x)) < (U,, v,, W,). (2.24) 
r+m 

ProojI Let (U, V, W) be the nonnegative solution of (2.10), (2.11) 
where (M,, M,, MJ satisfies (2.12) and the relation 

Using the same argument as in the proof of Theorem 2.3 and the unique- 
ness property of (Us, V,, W,), the solution (U, V, W) is monotone non- 
increasing in t and converges to (Us, V,, W,) as t + co. Therefore, by 
Theorem 2.2, 

lim (u,u,w)< lim (U, V, W)=(U,, V,, W,) ,-Co r-02 

which gives the relation (2.24). 1 

3. POSITIVE STEADY-STATE SOLUTIONS 

In view of Theorem 2.3, a necessary condition for the existence of a 
nontrivial-nonnegative solution (u,, u,, w,) to (1.4) is (2.19), that is, 

(~,-al)(lo+d~)(l,+q,)<b,d,q,. (3.1) 

Clearly, u, f 0, for otherwise, u, = 0 and W, = 0, which is absurd. Knowing 
u, & 0, the maximum principle implies that w,>O in Q and consequently 
u, > 0, u, > 0 in Q. This shows that condition (3.1) is a necessary condition 
for the existence of a positive solution. In this section we show that 
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condition (3.1) is also sufftcient for the existence of a positive solution. To 
this end, we first consider a, as a parameter and establish an existence 
result in relation to a I. This will be achieved by a bifurcation theorem from 
a simple eigenvalue of the corresponding operator L which is defined by 

Lu=V2u-au (u E X), (3.2) 

where u = (u, v, w), a is a positive constant satisfying a < min{ q2, d, }, and 

X= ((q,, q2, q3);qiEC2(SZ)and Bq;=O, i= 1, 2, 3). (3.3) 

It is clear from a > 0 that the operator L has a compact inverse L - ’ on 
R(L), the range of L. Set 

%=a,-ua,+a, A.*=A,+a, q=q2-a, d=d3-a, 
(3.4) 

a,=l*-b,d,q,/(A*+d)(A*+q). 

Then A* is the principle eigenvalue of the equation 

-LIP=& B(fl=O (3.5) 

and condition (3.1) is equivalent to a > 0. Let F( .; a) be the Nemytskii 
operator given by 

F(u;a)=(-u(a+a,-b,u-c,u)-q,u, 

c,uv+qv-d,w, -h,u+dw). (3.6) 

In terms of F, the steady-state problem (1.4) becomes 

Lu-F(u;a)=o (u E X). (3.7) 

It is clear that (L-F)EC*(XXR; Y) where Y=[C(Q)]‘. Define 
operators 5?!, dp, by 

2, = D,( L - F)(o; 0) 

cY2 = D,D,(L - F)(o; 0), 
(3.8) 

where D,, D, are the Frechet derivatives with respect to u and tl, 
respectively. By direct computation 

D,(L - F)(u; a)) = L - J(F)(u; a), 
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where J(F) is the Jacobian of F which takes the form 

--a-ua,+2b,u+c,u c,u-q, 0 

J(F)(u; a) = c2v c,u+q -d, . (3.9) 
-b, 0 d I 

This implies that 1 [ 0 

0 0 
T2 = -D,J(F)(o; 0)= 0 

0 0 

0 1 . 

0 

Denote by N(Y,) the null space of L?~, and set 

(3.10) 

(3.11) 

where a is considered as a parameter. Then 

9, = 9JL - F)(o; 0) - L + A, 

and A, is given by (3.11) with a =O. The following bifurcation result from 
[ 121 will be needed. 

PROPOSITION 3.1. Let Z be any closed subspace of X such that 
X = M(Yl) @ Z and let the following conditions hold: (i) N(dR1) has dimen- 
sion one, (ii) R(Yl) has co-dimension one, and (iii) g2u, 4 R(S?,), where u, 
is any spanning vector of N(9,). Then there is a 6 >O and a Cl-curve 
(d(s); a(s)): (--&a) + 2 x [w such that d(O) = o, a(O) = 0, and 

(L - FMu + d(s)); a(s)) = 0 for IsI < 6. 

Furthermore, there is a neighborhood of (0, 0) such that any zero of (L - F) 
either lies on this curve or is of the form (0, ~1) for any a. 

In view of Proposition 3.1, to show the existence of a nontrivial steady- 
state solution to (1.4), it suffices to verify the conditions (i)-(iii). We first 
determine a spanning vector II, of N(Y1). It is easily seen that the 
characteristic equation of A, is given by 

(a, - A)(2 + q)(n + d) + b3d2ql = 0. (3.12) 

By (3.4), A=1* is an eigenvalue of A,. Hence there exists an invertible 
matrix P such that PA, P-’ = A where A is the canonical form of A, with 
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A* at its (1, 1) position. We show that the vector <* E P-‘z, is a spanning 
vector of N(Y, ), where z, = (#0, 0,O) and $, is the positive eigenfunction 
of (3.5) corresponding to A *. The notation P-‘z, is the usual product 
between matrices and column vectors. 

LEMMA 3.1. Let z,= (d,, 0, 0) and c* z F’z,. Then J-(9,) has 
dimension one and is spanned by &*. 

Proof. Let q’=Iz*+q, d’=l.*+d, and s’=d2b3q,/d’q’. It can be 
shown by direct computation that the solutions of (3.12) are given by 
A, =I* and 

I,, I, = I* - $(s’ + d’ + q’) 

) f[(s’ + q’ + d’)‘- 4(s’q’ +s’d’ + d’q’)]“‘. 

Since s’q’ + s'd' + d’q’ 2 0, it follows that Re(A,) < Re(A*) and Re(l,) < 
Re(A*). Hence I, and A, are not eigenvalues of the operator L. This 
ensures that the canonical form A of A, can be written in the form 

ArPA,Pp’= (3.13) 

where y = 0 if A, is diagonalizable and y = 1 if A, is not diagonalizable. Let 
z- (z,, z2, z3) be any solution of the equation 

Lz+Az=O. (3.14) 

Since A2 and I, are not eigenvalues of L, z2 = 0 and consequently z3 = 0. 
Therefore, it is necessary that z = cz, = c(fj,, 0,O) for some constant c. 
Now, for any u E A’(Zr), 

Lu+A,u=O (3.15) 

which implies that z = PG is a solution of (3.14). This shows that u = P-‘z 
and z= c(4,, 0,O) for some constant c. Hence ,V(.YI) is spanned by 
P-lz,. 1 

We next verify the conditions (ii) and (iii) in Proposition 3.1. 

LEMMA 3.2. Let 9,) Yl be defined by (3.8). Then R(6y1) has co-dimen- 
sion one and Y2[* $ R( 9,). 
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Proof: Let ? = (vi, qZ, y13) E X and let v. and 4, be defined by 

ylo = I, v I 40 dx/JQ 40 dx, 

ill =‘11 --‘lo. 

Then from the relation 

the function 4, is orthogonal to 4,. By the Fredholm alternative theorem, 
the equation 

Ly,+A*y,+q,=o 

has a solution y, E C*(Q). Since AZ and A, are not eigenvalues of A,, the 
equations 

J5Y2+~2Y2+rl*=O, LY,+&Y3+YY*+vl3=0 

possess solutions y, and y, in C’(Q). This implies that the vector 
y = ( y , , y,, y3) is a solution of the equation 

L~+n~=-(rj,,rl*,rl~)=-q+~l~e, 

in X where 6 = (LO, 0). Let u = Pp ly and ?I = Pi& where 5 is any vector 
in X. Then 

Lu+A,u=P-‘(Ly+Ay)= -P-‘vl+~~P-‘e, 

= -~+fjOPp’e,. 

This leads to 
G= -=!Z1u+~,P-‘e,ER(~,)+span{P-‘e,} 

which shows that R(9,) has co-dimension either one or zero. To prove 
co-dim R(sl) = 1, it s&ices to show that there exists z E Y such that 
z$R(9,). We do this by showing that J.?*C* $R(5Z1), where c* = P-‘z,. 
Since z, = (d,, 0, 0), G* = (c,#,, cZbO, c,#,) for some constants ci, 
i= 1, 2, 3. In view of r* E N(Z,) and (3.15), 

-cj-Vo= (&cl -dc&$o, -czL4,= (4c3-qczMo. 

Using -L~,4,=2*4,, the above relations yield 

c2 = c1bjd2/(A* + d)(A* + q), cj = c, b,/(E.* + d). (3.16) 

This shows that cr # 0. 
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Let P=(pii). From (3.11) and (3.13), the first row of the relation 
PA, = LIP gives 

(3.17) 

It is obvious that pi, # 0, for otherwise, the second and third equations 
would imply pi2 =pi3 = 0, which contradicts the nonsingular property of P. 
We show that (c, $,, 0,O) $ R(Y,). If this were not true, then there exists 
ueX such that Y~u=(c,~~,O,O), or equivalently, LG +A,u= 
(c,d,, 0,O). Let z = Pu. Then z is a solution of the equation 

Lz+Az=c,(Pe,)fj,. 

The first equation of the above system has the form 

Lz, + /l*z, = e,, 

where 8, is the first component of c, (Pei)b, which is c, pI1 tiO. In view of 
pll #O and cl #O, 8, #O, and 

Hence, by the Fredholm alternative theorem, (3.18) has no solution. This 
leads to a contradiction which shows that Yzl;* $ R(9,). 1 

The results of Lemmas 3.1 and 3.2 yield the following conclusion. 

LEMMA 3.3. There exists a positive number 6 > 0 such that for all 
a, E (a, - (T, u, - o + 6) the problem (1.4) has a unique positive solution. 

Proof: Using the notations in (3.4), the problem (1.4) is reduced to 
(3.7) and the relation a, E (~,--a, a,--af6) is equivalent to aE (0,6), In 
view of Proposition 3.1 and Lemmas 3.1 and 3.2, there exist a 6 > 0 and a 
Cl-curve (d(s), a(s)) E: Xx 68 such that for each s E ( - 6,6), Eq. (3.7) with 
a = a(s) has a solution u(s) 3 s(&* + b(s)), where d(o) = o. We show that by 
a suitable choice of P, the solution u(s) is positive for s E (0,6). In view of 
4(o) = o, it suffices to show that &* > 0. Since &* = (c,d,, czdO, c,4,) and 
ci ~0, the relation (3.16) implies that the constants c,, c2, and c3 have the 
same sign. Hence &* is positive when c, > 0. In case c, < 0, a replacement 
of P by -P gives the same conclusion. Since by Theorem 2.3, the only 
nonnegative solution of (3.7) is the trivial solution when a < 0, it follows 

409/169/l-I2 
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that there exists a positive 6, ~6 such that CI(S) >O for SE (0, 8,). This 
proves the existence of a positive solution. The uniqueness of the positive 
solution follows from Proposition 3.1. 1 

The result of Lemma 3.3 ensures the existence of a positive steady-state 
solution to (3.7) when c1 is in a positive neighborhood of 0. Our main goal 
is to show that Eq. (3.7) has a positive solution for all tl> 0. Let ,c? and &? 
be the positive cone and the unit ball in the Banach space Y, respectively, 
and let 6’ = S\ (o} and ~5$ = B n (pa), where p is a positive constant and 
,o@= {ZE r; JIZJI Gp}. I n view of (3.9) and (3.11), D,F(o; a)= -A, and 

9uL-‘f’(o; a)= -L-‘A,. (3.19) 

Since L-’ is a compact operator in Y, Eq. (3.19) implies that GSULr,-‘F(o; a) 
is also a compact operator in Y. The following proposition from [l] gives 
some results about the fixed point index i(L-‘F( ., CX), pp), which will be 
needed for the proof of our existence theorem. 

PROPOSITION 3.2. If a is a positive constant such that 

(i) every nonnegative eigenvector of -L-IA, has its eigenvalue not 
equal to one, and 

(ii) there is a nonnegative eigenvector of -L-‘A, whose corre- 
sponding eigenvalue is greater than one, 

then there exists a positive constant p0 such that for every p E (0, p,], 
i(L-‘F( ., IX), .C?$) = 0. 

Using this result, we prove the following 

LEMMA 3.4. Zf CI >O, then there exists a constant p,, > 0 such that for 
everypE(O,p,], i(L-‘F(.;a),Y~)=O. 

Proof: In view of Proposition 3.2, it suffices to show the properties (i) 
and (ii). Assume by contradiction that there exists u - (a,, u2, ug) E 9 such 
that u = - L-‘A,u. Since u2, a3 satisfy the relations 

-Lu,= -qu,+dzu,, -Lu,=b,u,-duj 

it follows that u, f 0, for otherwise, u2 = u3 =0 which contradicts u E@. 
This implies that the vector z* defined by z* = (CYU,, 0,O) is in 8, and by 
(3.11) 

u+L-‘A 0 u= -L-‘z*. 

Since - L-‘z* is also in 8, the spectral radius of -L-IA, is less than one 
and is the only eigenvalue which has a nonnegative eigenvector (cf. Cl]). 
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However, since L* E 6’ and satisfies -L&* = A,(*, it follows that i = 1 is 
an eigenvalue of -L-IA,, whose corresponding eigenvector is nonnegative. 
This leads to a contradiction, which proves the property (i). 

To show the property (ii), we observe from (3.4) that the function 

h(j*)=(I-‘(cc+a,)-A*)(A*+d/~)(j.* +q/l)+h,d,q,/2 

ispositivewheni=l.Sinceh(~)~(-~*)3<Oas~--tCO,thereisa~,>1 
such that h(l, ) = 0. Define 

It is easily seen by direct computation that w satisfies the relation 
1 Iv = - L - ‘A, W. This shows that w is a nonnegative eigenvector of 
-L--IA, whose eigenfalue is I, > 1. Hence the property (ii) is proven. fl 

The next lemma gives the boundedness of the steady-state solution of 
(3.7) with respect to the parameter ~1. 

LEMMA 3.5. There is a positive increasing function M(a) in R + such that 
any solution u=(u,, u2, uj) of (3.7) satisfies ui(x)< M(a) (i= 1, 2, 3). 

Proof. Let u( ., CX) = (ul( ., a), u2( ., a), uj( ., a)) be a solution of (3.7) 
and let (U, V, W) be the solution of (2.10), (2.11) with (M,, M,, M,) 2 
u(x; a) where c( = a, -a, + cr is considered as a parameter. Since Eq. (3.7) 
is equivalent to (1.4), the solution u( .; a) may be considered as a solution 
of (l.l)-(1.3) with (u,, u0,w0)=(u,,u2,uj). By using (z&i& G)=(U, V, W) 
and (6, 6 ti) = (0, 0,O) in Theorem 2.1, the uniqueness property of the 
time-dependent solution ensures that 

(0, 0, 0) G (u,, u2, u3)G(U K w for tZ0, XEQ, 

From the proof of Theorem 2.3, (U, V, W) is nonincreasing and converges 
to a nonnegative steady-state solution U,= (V,, V,, IV,). This leads to 
(u1,u2,u3)G(Us, v,, W,) in Q. Define M(a)=max(lIU,II, lIV,ll, lIW,ll}. 
Then ui(x, a) < M(a) for i= 1,2, 3. To complete the proof, it s&ices to 
show that M(a) is an increasing function of a for c1> 0. Let a2 > a1 > 0 
and let U,( ., a) be the positive solution of (2.17) with a, = a+ a,- C. 
Then by the quasimonotone nondecreasing property of the reaction 
function, U, ( . , a, ) is a lower solution of (2.17) when a, = a2 + a, - CT. Since 
(M,, M 1, M2) is an upper solution, the uniqueness property of the positive 
solution implies that U,( ., a2) 2 U,( ., aI). This leads to M(a,) 3 M(a,) 
which proves the lemma. 1 

We are now in a position to prove our main result for the steady-state 
problem (1.4). 
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THEOREM 3.1. A necessary and sufficient condition for the existence of a 
positive solutioti to problem (1.4) is that condition (3.1) holds. 

Proof: The necessary part of the theorem is a consequence of 
Theorem 2.3. To prove the sufficient part, it suffices to show that under the 
condition c( > 0, Eq. (3.7) has a solution in 9. Assume by contradiction 
that Eq. (3.7) has no solution in @ for some CC > 0. Let p = M(k) + 1 and 
agj= (5-Y 11511 Y=P}? and for each positive p < p, define subsets C, S, 
of YxR, by 

z = {(II; c(); u is a solution of (3.7) with CI < CI) 

s, = (dYp x co, El) u (-y&T\Pp x {q,, 

where M(cl) is given by Lemma 3.6. It is obvious that S, is a closed 
bounded subset of Y x R + . Moreover X is a closed subset of Y x R, , for 
if ((u,, IX,)} is a sequence in z such that (II,,, a,) + (II, a) in Yx IR, as 
n + co, then by the continuity of L-‘F and u, = L-‘F’(u,; CI,), the limit 
(u; a) satisfies u = L-‘F(u; c(). This shows that (u; CI) E z, and therefore z is 
closed. Let 

K- max(IF(u; a)l; ([ul( G M(E), u < c(} 

and let gK = K.98 where 9 is the unit ball in Y. Then for any (u, a) E C, the 
relation u = L-‘F(u; a) implies that u E L-‘BK. Hence C is a subset of 
L-‘SYKx [o, 61 which shows that it is a compact subset of Y x R,. Now 
by Lemma 3.5 each (II, LX) E z satisfies the relation ~~u~~ <M(i) < p. This 
leads to Cn (a$$ x [o, Cr])= 4 which together with Cn (9x {C)} = 
{ (0; cl)} ensures that 

CnS,=l+4 for each p E (0, p). (3.20) 

It follows from the above properties of z and S, that there is a bounded 
open set Qc YxR, such that ZcQ and ens,=&. 

Let Z, = {c; (4, tl)~ Q} be the slice of Q at a. By the homotopy 
invariance and the excision property of the fixed point index 

i(L-‘F( .; CI), Yp) = i(L-‘F( .; tl), Zi) 

=i(L-‘F(a;o),Z,)=i(L-‘F(.;o),9,), (3.21) 

where 9, = Bn g (cf. Cl, Corollary 11.2 and Theorem 11.31). Since by 
Theorem 2.3, the problem (1.4) has only the trivial solution when CL = 0, we 
see that tL-‘F( .; 0) has only the trivial fixed point in 9 for each t E [0, 11. 
This means that 

tL-‘F(u; 0) #u for all t E [0, 11, u E JPi 
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It follows from the homotopy invariance property that the index 
i(tL-‘F( .; 0), Pi) is independent of t E [0, 11. Moreover by the normaliza- 
tion property (with t = 1 and t = 0) 

i(L-‘F( .) 0); P, = i(0, 9,) = 1. 

This relation and (3.21) leads to 

for O<p <p. (3.22) 

However, by Lemma 3.4 and Cr>O, there exists a p,>O such that 

i(C’F(.;a);.c!g=O for all p d p, 

we obtain a contradiction. This shows for all CI E (0, co), Eq. (3.7) has at 
least one solution in @. The equivalence between (1.4) and (3.7) and the 
fact that every solution of (3.7) in & is necessarily positive in 52 imply that 
problem (1.4) has at least one positive solution. 1 

It is to be noted that since the problem (2.17) is a special case of (1.4) 
with c1 = c2 =0 and the condition (3.1) is independent of c, and c2 the 
existence of a positive solution in Theorem 3.1 is directly applicable to 
problem (2.17). This fact has been used in the proof of Theorem 2.4. 
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