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In this paper, we consider the Cauchy problem for Klein–Gordon
equation with a cubic convolution nonlinearity in R

3. By making
use of Bourgain’s method in conjunction with a precise Strichartz
estimate of S. Klainerman and D. Tataru, we establish the Hs (s < 1)
global well-posedness of the Cauchy problem for the cubic convo-
lution defocusing Klein–Gordon–Hartree equation. Before arriving
at the previously discussed conclusion, we obtain global solution
for this non-scaling equation with small initial data in Hs0 × Hs0−1

where s0 = γ
6 but not γ

2 − 1, for this equation that we consider is
a subconformal equation in some sense. In doing so a number of
nonlinear prior estimates are already established by using Bony’s
decomposition, flexibility of Klein–Gordon admissible pairs which
are slightly different from that of wave equation and a commuta-
tor estimate. We establish this commutator estimate by exploiting
cancellation property and utilizing Coifman and Meyer multilinear
multiplier theorem. As far as we know, it seems that this is the first
result on low regularity for this Klein–Gordon–Hartree equation.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

We study the following Cauchy problem for the Klein–Gordon-Hartree equation:{
�φ + φ + (|x|−γ ∗ |φ|2)φ = 0 in R × R3,

φ|t=0 = φ0, ∂tφ|t=0 = φ1.
(1.1)

Here φ(t, x) is a complex valued function defined in space time R1+3, and � = ∂tt − �.
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Recently the Cauchy problem (1.1) has been extensively studied in the case with initial data
(φ0, φ1) ∈ H1(Rn)× L2(Rn). The well-posedness and the asymptotic behavior of solution to the Cauchy
problem (1.1) have been studied by Menzala and Strauss [16,17] and Machihara, Nakanishi, and
Ozawa [14]. On the other hand, the nonlinear Schrödinger equation and the Dirac equation with
interaction term (|x|−γ ∗ |φ|2)φ has also been extensively studied, see [9,20,21,15]. Ginibre and Velo
in [9] gave the scattering theory of Hartree equation for the energy subcritical case. For the energy
critical case and mass critical, one can refer to [20,21] with radial initial data.

Many authors [3,7,10,18,27] have studied the local well-posedness (as well as global well-
posedness) in fractional Sobolev spaces for the Cauchy problem of general semilinear wave or
Schrödinger equations under minimal regularity assumptions on the initial data. For example, Tao [27]
established the sharp local well-posedness of nonlinear wave equation. Kenig, Ponce, and Vega [10]
had established the global well-posedness under the energy norm for the Cauchy problem of non-
linear wave equations with rough initial data (in particular, in Ḣ s(R3), 3

4 < s < 1 for cubic wave
equation). They used the Fourier truncation method discovered by Bourgain [4]. And also [18] ex-
tended Kenig–Ponce–Vega’s result to the dimension n � 4. Recently, I. Gallagher and F. Planchon [7]
presented a different proof of the result in [10] for 3

4 < s < 1. H. Bahouri and J.-Y. Chemin [2] proved
global well-posedness for s = 3

4 by using a nonlinear interpolation method and logarithmic estimates
from S. Klainerman and D. Tataru [12]. We also find Roy [23] obtains the global well-posedness for
rough initial data in Ḣ s , 13

18 < s < 1 by following the I-method [5] and scaling transformation. How-
ever, if one similarly deals with Klein–Gordon equation by using I-method, he or she may meet a
problem caused by the lack of the scaling property. More studies and discussions on the low regular-
ity of nonlinear wave or dispersive Schrödinger equations could be found in [4,28]. However, as far as
we know, very few authors are engaged in studying the global well-posedness of the Cauchy problems
(1.1) with less regular initial data. It is natural to ask whether a similar or better result holds for the
problem (1.1).

This paper endeavors to find a global well-posedness solution to the Cauchy problem (1.1) with
initial data (φ0, φ1) ∈ Hs(R3) × Hs−1(R3) for some s >

γ
4 with γ ∈ (2,3). Now we should remark

some differences between (1.1) and cubic wave equation. If one views (1.1) as a wave equation by
dropping the massive term and then makes some scaling analysis, we will find this nonlocal nonlin-

ear term shares the scaling property of the nonlinearity |u| 4
5−γ u. One can check that k := 4

5−γ + 1 < 3
when 2 < γ < min{n,4} with n = 3 and this result shows that the equation which we consider is in
subconformal case. To obtain the global well-posedness theory, some previous literatures also show
the subconformal equations are slightly different from the superconformal ones. For instance, Lind-
blad and Sogge [13,24] have shown the global existence and scattering theory for small data in a less
regularity space for the superconformal case, while not for the subconformal case. Inspired by [7],
we also split the initial data into low frequency part data in H1 and high frequency part data in Hs0

with a suitable s0. Since the problem (1.1) is global well-posed for large data in H1 and small data
in Hs0 , one may be tempted to follow a general principle of nonlinear interpolation and claim the
problem (1.1) is global well-posed between them. Compared with the cubic wave equation, speaking
of the Strichartz estimate, we believe that the global solution with high frequency data should exist
in H

γ
2 −1. It is well known that the Strichartz estimate is associated with scaling transform and it is

scaling invariant. Unfortunately, the equation that we consider is a subconformal one, and its concen-
tration effects take over scaling. Since the Strichartz estimate is applied to our subconformal equation,
hence this brings about some loss to get a better result. In order to get a better result, one should
establish an estimate which is conformal invariant. Fortunately, we can take 0 � θ � 1 as a parameter
for the flexible admissible pairs (see Definition 2.3) to make the Strichartz estimate of Klein–Gordon
more flexible than wave equation. This helps us to get a global solution with the high frequency data,
at the cost of 0 � θ = 6

γ − 2 � 1 which weakens the Strichartz estimate and causes 2 < γ < 3. One
can refer the detail in Section 3.

We point out that it is easy to have the result for γ
3 − 1

6 < s < 1 by rough Hölder’s inequality.
But how to get our low bound γ

4 < s < 1? A good way to think about this is via precise Strichartz
estimate to obtain index s as low as possible. The nonlinearity including a formal negative derivative
brings us some difficulties caused by the fact that the negative derivative acts on the low frequency
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part. And this leads us to restricts s >
γ
4 rather than s > max{ 1

2 ,
γ
2 − 3

4 }. At the end of this section,
we also give some intuitive analysis to show our result is reasonable. As a limited case, our result
recovers the result of [7,10] when γ tends to 3.

During the process of proving our key estimate Lemma 5.1, the nonlocal nonlinearity brings about
some essential difficulties when we try to make use of the precise Strichartz estimate. Compared
with the general semilinear nonlinearity, the convolution nonlinearity not only essentially represents
a negative derivation in it but also has a difference construction of nonlinearity. These differences and
difficulties prevent us from obtaining directly our expected result s >

γ
4 by restricting the range of

the parameter r. To overcome these difficulties, we firstly construct a commutator and establish this
commutator estimate by exploiting cancellation property and utilizing Coifman and Meyer multilinear
multiplier theorem and then go on our process through using precise Strichartz estimate.

Now we state our main result:

Theorem 1.1. Let γ
4 < s < 1 with 2 < γ < 3. If (φ0, φ1) ∈ Hs(R3) × Hs−1(R3), then there exists a unique

global solution φ of (1.1) such that φ ∈ C(R+; Hs(R3)).

We conclude this section by giving a sketch of the proof of Theorem 1.1 and one shall read more
detailed information in the rest of this paper. Without loss of generality, we only consider φ as a real
function for simplicity from now on. Since the problem (1.1) is global well-posed for large data in H1

and small data in Hs0 with s0 = γ
6 , one may be tempted to follow a general principle of nonlinear

interpolation and believe the problem (1.1) to be global well-posed between them, as well as the
cubic defocusing wave equation [7]. To make sense of this heuristic, we proceed it in the following
steps.

Step 1. The purpose of this step is to show the global well-posedness for the high frequency part.
We split the initial data:

φi = (I − S J )φi + S J φi
def= vi + ui, i = 0,1

where I is the identity operator and S J is the Littlewood–Paley operator, referring to Section 2. It is
easy to see that

‖u0‖H1 � 2 J (1−s)‖φ0‖Hs , ‖u1‖L2 � ‖φ1‖L2

and

‖v0‖Hβ � 2 J (β−s)‖φ0‖Hs , ‖v1‖Hβ−1 � 2 J (β−s)‖φ1‖Hs−1 for all β � s.

Thus it follows that

Eh,σ � 2 J (σ−s)Es, for σ � s, (1.2)

E	,1 � 2 J (1−s)Es, for s � 1, (1.3)

where

Es
def= ‖φ0‖Hs + ‖φ1‖Hs−1 , (1.4)

Eh,σ
def= ‖v0‖Hσ + ‖v1‖Hσ−1 , (1.5)

E	,σ
def= ‖u0‖Hσ + ‖u1‖Hσ−1 . (1.6)
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Choosing J large enough, one can achieve Eh,s0 small enough, in other words, initial data of the
following problem {

�v + v + (|x|−γ ∗ v2)v = 0 in R × R3,

v|t=0 = v0, ∂t v|t=0 = v1
(1.7)

is small enough in Hs0 (R3) × Hs0−1(R3) where s0 < s. Due to some technique difficulties and this
equation is subconformal one, we are restricted to choose s0 = γ

6 while not γ
2 − 1 proposed by

scaling analysis or γ
4 − 1

4 proposed by conformal analysis. We will get a global well-posed solution to
the Cauchy problem (1.7), see Section 3 for details.

Step 2. In order to recover a solution to our problem (1.1), we solve a perturbed equation with
large initial data in H1 × L2,{

�u + u + I
(
u2)u + 2I(uv)u + I

(
v2)u + I(u2)v + 2I(uv)v = 0,

u|t=0 = u0, ∂t u|t=0 = u1,
(1.8)

where the operator I is the operator (−�)
γ −3

2 . We will prove there exists a unique local solution to
(1.8) in C([0, T ]; H1).

Step 3. To complete the proof of Theorem 1.1, the key is how to extend the local solution to
a global solution. We should establish a priori bound on the energy of the local solution u. In fact,
the energy estimate yields

1

2

(∥∥u(t)
∥∥2

H1 + ∥∥ut(t)
∥∥2

L2

) + 1

2

∫
R3×R3

|x − y|−γ u2(y, t)u2(x, t)dy dx

� 1

2

(‖u0‖2
H1 + ‖u1‖2

L2

) + 1

2

∫
R3×R3

|x − y|−γ u2
0(y)u2

0(x)dy dx

+
∣∣∣∣∣

t∫
0

∫
R3

I
(

v2)(x, τ )u(x, τ )∂τ u(x, τ )dx dτ

∣∣∣∣∣
+ 2

∣∣∣∣∣
t∫

0

∫
R3

I(uv)(x, τ )v(x, τ )∂τ u(x, τ )dx dτ

∣∣∣∣∣
+

∣∣∣∣∣
t∫

0

∫
R3

I
(
u2)(x, τ )v(x, τ )∂τ u(x, τ )dx dτ

∣∣∣∣∣
+ 2

∣∣∣∣∣
t∫

0

∫
R3

I(uv)(x, τ )u(x, τ )∂τ u(x, τ )dx dτ

∣∣∣∣∣.
Let HT (u) := supt<T H(u)(t) where

H(u)(t)
def=

(
1

2

∥∥u(t)
∥∥2

H1 + 1

2

∥∥ut(t)
∥∥2

L2 + 1

2

∫
3 3

|x − y|−γ u2(y, t)u2(x, t)dy dx

)

R ×R
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and then by making use of Hölder’s inequality and Sobolev embedding, it follows that

HT (u) � H(u)(0) + HT (u)

T∫
0

∥∥v(τ )
∥∥2

L
6

4−γ
dτ + H

3
2
T (u)

T∫
0

∥∥v(τ )
∥∥

L
6

7−2γ
dτ

� H(u)(0) + HT (u)T
7−γ

6 ‖v‖2
Xβ + H

3
2
T (u)T

5−γ
3 ‖v‖Xα

� 22 J (1−s) + HT (u)T
7−γ

6 22 J (β−s) + H
3
2
T (u)T

5−γ
3 2 J (α−s)

where α = 2γ −4
3 , β = γ −1

3 and the space Xα is defined in the coming section. What we want to do is

to control HT (u) for arbitrarily large T . As long as s > (α +1)/2 = γ
3 − 1

6 , by choosing J large enough,
bootstrap argument yields

HT (u) � 22 J (1−s).

One can see that, if s >
γ
3 − 1

6 , the argument is trivial, since the above mentioned result can be
deduced from some rough estimates such as the Hölder estimate. On the other hand, since the scaling
suggests us that X

γ
2 −1 is the lowest regularity space which v could belong to, it is tempting and

reasonable to believe that the best result obtained by this method is s > (
γ
2 − 1 + 1)/2 = γ

4 instead
of α by γ

2 − 1. To obtain this optimal result s >
γ
4 , we adopt some more sophisticated tools such

as precise Strichartz estimate, Bony’s paraproduct estimates and twice Bony’s decomposition. This
result is achieved under an assumption of a core estimate which will be shown through the precise
Strichartz estimate and a commutator estimate.

The paper is organized as follows: In the coming section, we recall some notations and recollect
some well-known results on Besov spaces in conjunction with the Littlewood–Paley theory which
will be used in the course of the proofs. Meanwhile, we also introduce the precise Strichartz esti-
mate. Section 3 provides the global well-posedness of original equation evoking the high frequency
part of initial data in Hs0 . In Section 4, we prove a local well-posedness of perturbed equation
with the low frequency of the initial data in H1 by the standard fixed point theorem. In Sec-
tion 5, we give an energy estimate for the low frequency part provided an assumption the key
estimate in Lemma 5.1. We extend the local well-posedness of the perturbed equation to globally
well-posed by the bootstrap argument in Section 6. In the final section, we prove our essential and
key lemma by the precise Strichartz estimate, commutator estimate and Coifman and Meyer multi-
plier theorem.

2. Preliminaries

In this section, we shall present some well-known facts on the Littlewood–Paley theory and in-
troduce some notations, definitions and estimates which are needed in this paper. Let S(R3) be the
Schwartz class of rapidly decreasing functions. Given f ∈ S(R3), its Fourier transform F f = f̂ is de-
fined by

f̂ (ξ) = (2π)−
3
2

∫
R3

e−ix·ξ f (x)dx, F −1 f = f̂ (−ξ).

Choose two nonnegative radial functions χ , ϕ ∈ S(R3) supported respectively in B = {ξ ∈ R3, |ξ | � 4
3 }

and C = {ξ ∈ R3, 3
4 � |ξ | � 8

3 } such that
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χ(ξ) +
∑
j�0

ϕ
(
2− jξ

) = 1, ξ ∈ R3,

∑
j∈Z

ϕ
(
2− jξ

) = 1, ξ ∈ R3\{0},

and

suppϕ
(
2− j·) ∩ suppϕ

(
2− j′ ·) = ∅, | j − j′| � 2,

suppχ(·) ∩ suppϕ
(
2− j·) = ∅, j � 1.

Now we are in position to define the Littlewood–Paley operators S j , Ṡ j , � j and �̇ j which are used
to define Besov space

� ju
def=

⎧⎨⎩
0, j � −2,

F −1(χ(ξ)û(ξ)), j = −1,

2 jn
∫

Rn(F −1ϕ)(2 j y)u(x − y)dy, j � 0,

S ju
def=

∑
j′� j−1

� j′ u = 2 jn
∫
Rn

(
F −1χ

)(
2 j y

)
u(x − y)dy,

�̇ ju
def= 2 jn

∫
Rn

(
F −1ϕ

)(
2 j y

)
u(x − y)dy, j ∈ Z,

Ṡ ju
def=

∑
j′� j−1

�̇ j′ u.

One easily shows that �̇ j = Ṡ j+1 − Ṡ j for j ∈ Z and

�−1 = S0, �̇ j = � j, j � 0.

Now we give the Littlewood–Paley’s description of the Besov spaces.

Definition 2.1. Let s ∈ R, 1 � p,q � ∞. The homogeneous Besov space Ḃs
p,q is defined by

Ḃs
p,q = {

f ∈ Z ′(R3): ‖ f ‖Ḃs
p,q

< ∞}
,

where

‖ f ‖Ḃs
p,q

=
{

(
∑

j∈Z
2 jsq‖�̇ j f ‖q

p)
1
q , for q < ∞,

sup j∈Z 2 js‖�̇ j f ‖p, for q = ∞,

and Z ′(R3) can be identified by the quotient space S ′/P with the space P of polynomials.

Definition 2.2. Let s ∈ R,1 � p,q � ∞. The inhomogeneous Besov space Bs
p,q is defined by

Bs
p,q = {

f ∈ S ′(R3): ‖ f ‖Bs < ∞}
,

p,q
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where

‖ f ‖Bs
p,q

=
{

(
∑

j�0 2 jsq‖� j f ‖q
p)

1
q + ‖S0( f )‖p, for q < ∞,

sup j�0 2 js‖� j f ‖p + ‖S0( f )‖p, for q = ∞.

If s > 0, then Bs
p,q = L p ∩ Ḃs

p,q and ‖ f ‖Bs
p,q

≈ ‖ f ‖p + ‖ f ‖Ḃs
p,q

. We refer the reader to [1,22,29] for

details.
In order to investigate the low regularity solution of the Cauchy problem (1.1), we require the use

of the smoothing effect described by the Strichartz estimates and precise Strichartz estimates. For the
purpose of conveniently making use of the Strichartz estimate, we introduce the admissible definition
and the resolution space.

Definition 2.3. We shall say that a pair (q, r) is admissible, for 0 � θ � 1, if

q, r � 2, (q, r, θ) �= (2,∞,0) and
1

q
+ 2 + θ

2r
� 2 + θ

4
.

Remark 2.1. The above admissible pairs in Definition 2.3 is more flexible than wave admissible pairs,
since θ can vary from 0 to 1. Obviously, an admissible pair in Definition 2.3 will become a wave
admissible pair when θ = 0. When we consider the global existence for the high frequency part, we
shall use θ = 6

γ − 2 since the equation that we consider is a subconformal one.

The resolution space is defined in the following way based on the admissible definition:

Xμ(I) :=
⋂

0�θ�1

Xμ
θ (I)

where

Xμ
θ (I) :=

{
u: u ∈ (

C ∩ L∞)(
I; Hμ

) ∩ Lq(I; Bσ
r,2

)
, (q, r) is admissible,

1

q
= (3 + θ)

(
1

2
− 1

r

)
+ σ − μ

}
.

We go on this section by recalling the classical Strichartz estimate and the precise Strichartz es-
timate. This kind of estimate goes back to Strichartz [26], and has been proved in its generality by
Ginibre and Velo [8], and Keel and Tao [11]. The Strichartz estimates for the Klein–Gordon equation
by using the above flexible admissible pairs can be found in [19].

Proposition 2.1. Let u be a solution of

�u + u = f in R × R3 with u|t=0 = u0, ∂t u|t=0 = u1.

Then, for any admissible pairs (q1, r1) and (q2, r2), we have that

‖� ju‖Lq1 (Lr1 ) + 2− j‖∂t� ju‖Lq1 (Lr1 )

� C2
j( 3+θ

2 − 3+θ
r1

− 1
q1

)(‖� ju0‖L2 + 2− j‖� ju1‖L2

)
+ C2

j[(3+θ)(1− 1
r1

− 1
r2

)− 1
q1

− 1
q2

−1]‖� j f ‖
Lq′

2 (Lr′2 )
. (2.1)
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We shall see that the classical Strichartz estimates are not enough to control some nonlinearities,
and this leads us to resort to the following precise Strichartz estimates which were established by
S. Klainerman and D. Tataru [12].

Proposition 2.2. Let u be a solution of

�u + u = 0 with u|t=0 = u0, ∂t u|t=0 = u1.

Assume that the supports of the Fourier transform of u0 and u1 are included in a ball B(ξ j,h2 j) with |ξ j | ∈
[2 j−2,2 j+2] and h < 1

8 . Then we have that, for any admissible couple (q, r),

‖u‖Lq(Lr) + 2− j‖∂t u‖Lq(Lr) � C2 j( 3
2 − 3

r − 1
q )h

1
2 − 1

r
(‖u0‖L2 + 2− j‖u1‖L2

)
. (2.2)

Let us recall the Hardy–Littlewood–Sobolev inequality [22,25] and a proposition of contraction
which is generalization of Picard’s theorem. We denote operator I by

I u
def= (−�)

γ −3
2 u = |x|−γ ∗ u,

then

‖I u‖Lq(R3) � C p,q‖u‖L p(R3) (2.3)

for

0 < γ < 3, 1 < p < q < ∞, and
1

q
= 1

p
− 3 − γ

3
.

Proposition 2.3. Let X be a Banach space and let B : X × X ×· · ·× X → X be an m-linear continuous operator
(m � 2) satisfying

∥∥B(u1, u2, . . . , um)
∥∥

X � M‖u1‖X‖u2‖X · · · ‖um‖X , ∀u1, u2, . . . , um ∈ X

for some constant M > 0. Let ε > 0 be such that m(2ε)m−1 M < 1. Then for every y ∈ X with ‖y‖X � ε the
equation

u = y + B(u, u, . . . , u) (2.4)

has a unique solution u ∈ X satisfying that ‖u‖X � 2ε. Moreover, the solution u continuously depends on y in
the sense that, if ‖y1‖X � ε and v = y1 + B(v, v, . . . , v), ‖v‖X � 2ε then

‖u − v‖X � 1

1 − m(2ε)m−1M
‖y − y1‖X . (2.5)

For the sake of convenience, we conclude this section by giving some notations. The solution φ to
the Cauchy problem (1.1) is given by the following integral equation:

φ(t, x) = K̇ (t)φ0 + K (t)φ1 + B(φ,φ,φ)
def= T φ

where
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K (t) := sin(t
√

I − �)√
I − �

,

B(u1, u2, u3) := −
t∫

0

K (t − τ )
(|x|−γ ∗ (u1u2)

)
u3 dτ .

Throughout this article we shall denote by the letter C all universal constant and ε > 0 is an arbitrary
small data. We shall sometimes replace an inequality of the type f � C g by f � g . Also, we shall
denote by (c j) j∈Z any sequence of norm less than 1 in 	2(Z).

3. Global existence for the high frequency part

Let us consider the Cauchy problem with the high frequency data,{
�v + v + (|x|−γ ∗ v2)v = 0, (t, x) ∈ R × R3,

v|t=0 = v0, ∂t v|t=0 = v1, x ∈ R3.
(3.1)

and then its integral formation becomes

v(t, x) = K̇ (t)v0(x) + K (t)v1(x) −
t∫

0

K (t − τ )
(|x|−γ ∗ v2)v dτ

def= K̇ (t)v0(x) + K (t)v1(x) + B(v, v, v). (3.2)

Our goal in this section is to prove the global well-posedness of (3.1) or (3.2). More precisely, we have
the following proposition:

Proposition 3.1. Let s0 = γ
6 and suppose that (v0, v1) ∈ Hμ × Hμ−1 for any 0 � μ � 1. There exists a

constant ε0 > 0 such that if

‖v0‖Hs0 + ‖v1‖Hs0−1 � ε0,

then there exists a unique global solution v to (3.1) or (3.2) in X s0(R) ∩ Xμ(R). Moreover,

‖v‖Xμ � Cμ

(‖v0‖Hμ + ‖v1‖Hμ−1

)
.

Remark 3.1. We focus on μ = 2γ −4
3 and μ = γ −1

3 in the coming section.

It is well known that the global existence theory for small initial data is a straightforward result
of nonlinear estimate, thus how to obtain a suitable nonlinear estimate is essential. Before proving
this proposition, we make some analysis on nonlinear estimate. As mentioned in the introduction, the
nonlocal nonlinearity shares the scaling with a subconformal nonlinearity when γ < 3 and this may
bring some troubles when we make a choice of a suitable resolution space X s0 . Take 0 � θ � 1 as
a parameter in the flexible admissible pairs (see Definition 2.3), and we make analysis on the rela-
tionship between θ and s0. The Strichartz estimate, Hölder inequality and Hardy–Littlewood–Sobolev
inequality imply that, for σ � 0,

∥∥B(v, v, v)
∥∥

Xs0 �
∥∥(|x|−γ ∗ |v|2)v

∥∥
Lq′

1 (B−σ
r′ ,2

)
� ‖v‖Lq2 (B−σ

r2,2)‖v‖2
Lq3 (Lr3 )

,

1
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satisfying

1

q1
= (3 + θ)

(
1

2
− 1

r1

)
+ σ + s0 − 1,

1

q2
= (3 + θ)

(
1

2
− 1

r2

)
− σ − s0,

and

1

q3
= (3 + θ)

(
1

2
− 1

r3

)
− s0,

1 = 1

q1
+ 1

q2
+ 2

q3
,

2 = γ

3
+ 1

r1
+ 1

r2
+ 2

r3
,

then

s0 = γ

2
− 1 + γ θ

6
.

We find the fact index s0 is increasing when the parameter θ increases. It is tempting to choose θ = 0
to get the smallest s0 = γ

2 − 1 proposed by scaling. However, in addition the admissible condition
implies that

2

q1
� (2 + θ)

(
1

2
− 1

r1

)
,

2

q2
� (2 + θ)

(
1

2
− 1

r2

)
,

2

q3
� (2 + θ)

(
1

2
− 1

r3

)
.

Then a direction computation gives that

2

(
1

q1
+ 1

q2
+ 2

q3

)
� (2 + θ)

(
2 − 1

r1
− 1

r2
− 2

r3

)

which yields that

3

γ
� 1 + θ

2
.

If we choose θ = 0, then we are forced to γ � 3 which contradicts with our requirement γ < 3. But
if we choose θ = 6

γ − 2 and then s0 = γ
6 and we are allowed by 2 � γ � 3.

Proof of Proposition 3.1. Thanks to Strichartz estimate, we have∥∥B(v, v, v)
∥∥

Xμ �
∥∥(|x|−γ ∗ |v|2)v

∥∥
Lq′

1 (B−σ
r′ ,2

)
� ‖v‖Lq2 (B−σ

r2,2)‖v‖2
Lq3 (Lr3 )

,

1
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where (
1

q1
,

1

r1

)
=

(
3

3 + γ
(1 − μ − σ),

1

2
− γ

3 + γ
(1 − μ − σ)

)
,

and (
1

q2
,

1

r2

)
=

(
3(μ + σ)

3 + γ
,

1

2
− γ (μ + σ)

3 + γ

)
,

(
1

q3
,

1

r3

)
=

(
γ

2(3 + γ )
,

9 + 3γ − γ 2

6(3 + γ )

)
.

When 0 � μ � 1
2 + γ

6 , we choose σ = 0; while 1
2 + γ

6 < μ � 1, we choose σ = 1
2 + γ

6 − μ. Thus,

∥∥B(v, v, v)
∥∥

Xμ � ‖v‖Xμ‖v‖2
Xs0 . (3.3)

Combining this nonlinear estimate, Proposition 3.1 follows from a standard contraction argument and
small initial data condition. �
4. Local existence for the low frequency part

In this part, we shall study the following perturbed problem in R × R3:{
�u + u + I

(
u2)u + 2I(uv)u + I

(
v2)u + I(u2)v + 2I(uv)v = 0,

u|t=0 = u0, ∂t u|t=0 = u1.
(4.1)

Proposition 4.1. Let α = 2γ −4
3 , β = γ −1

3 and assume that v be in Xα ∩ Xβ and (u0, u1) ∈ H1 × L2 , then
there exists a positive time T such that a unique solution u to (4.1) satisfying

u ∈ C
([0, T ]; H1).

Proof of Proposition 4.1. In practice, solving (4.1) on [0, T ] is equivalent to solving the following
integral equation

u = K̇ (t)u0 + K (t)u1 +
t∫

0

K (t − τ )
[

I
(
u2)u + 2I(uv)u + I

(
v2)u + I

(
u2)v + 2I(uv)v

]
dτ

� T̃ u.

Using the Strichartz estimate, we have

∥∥∥∥∥
t∫

0

K (t − τ )I
(
u2)udτ

∥∥∥∥∥
L∞

T (H1)

�
∥∥I

(
u2)u

∥∥
L1

T (L2)
.

On one hand, we make use of Hölder’s inequality and Hardy–Littlewood–Sobolev inequality to deduce
that

∥∥I
(
u2)u

∥∥
L1

T (L2)
� C

∥∥I
(
u2)∥∥

L
3
2 L

9
γ

‖u‖
L3 L

18
9−2γ

� C‖u‖3

L3 L
18

9−2γ
� C T ‖u‖3

L∞
T H1 . (4.2)
T T T
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For the rest of terms, arguing similarly as above, it can be obtained that

∥∥I(uv)u
∥∥

L1
T (L2)

� C‖u‖2
L∞

T L6‖v‖
L1

T L
6

7−2γ
� C T

5−γ
3 ‖u‖2

L∞
T H1‖v‖Xα , (4.3)

∥∥I
(

v2)u
∥∥

L1
T (L2)

� C‖u‖L∞
T L6‖v‖2

L2
T L

6
4−γ

� C T
4−γ

3 ‖u‖L∞
T H1‖v‖2

Xβ , (4.4)

∥∥I
(
u2)v

∥∥
L1

T (L2)
� C T

5−γ
3 ‖u‖2

L∞
T H1‖v‖Xα , (4.5)∥∥I(uv)v

∥∥
L1

T (L2)
� C T

4−γ
3 ‖u‖L∞

T H1‖v‖2
Xβ . (4.6)

A combination of (4.2), (4.3)–(4.6) and the Strichartz estimate in Proposition 2.1 lead to the estimate

‖u‖L∞
T (H1) � ‖u0‖H1 + ‖u1‖L2 + T ‖u‖3

L∞
T (H1)

+ T
5−γ

3 ‖u‖2
L∞

T H1‖v‖Xα

+ T
4−γ

3 ‖u‖L∞
T H1‖v‖2

Xβ .

As long as choosing T is small enough, T̃ is a contraction mapping in ball B(0,2C E	,1). By means
of Picard’s fixed point argument we have a unique solution u to (4.1) in L∞([0, T ]; H1). Therefore,
Proposition 4.1 is proved by the standard argument. �
5. Energy estimate for the low frequency part

In order to extend the local solution to a global solution, we shall prove a prior estimate for the
Hamiltonian of u in this section. Let us recall the definition of Hamiltonian of u defined by

H(u)(t)
def=

(
1

2

∥∥u(t)
∥∥2

H1 + 1

2

∥∥ut(t)
∥∥2

L2 + 1

4

∫
R3×R3

|x − y|−γ u2(y, t)u2(x, t)dy dx

)
.

Similarly we give another notation of the energy of u, which is denoted by

E(u)(t)
def= 1

2

∥∥u(t)
∥∥2

H1 + 1

2

∥∥ut(t)
∥∥2

L2 .

Let

HT (u)
def= sup

t�T
H(u)(t), ET (u)

def= sup
t�T

E(u)(t).

To extend the local existence to global existence, we have to do a number of nonlinear a priori esti-
mates provided that ET (u) � 2C H(u)(0), see Proposition 5.1 and Lemma 5.1. As a direct consequence
of the above assumption, we get an important relationship between E(u) and Es defined in the intro-
duction

ET (u) � 22 J (1−s)(E 2
s + E 4

s

)
� 22 J (1−s). (5.1)

In fact, it follows from the Hardy–Littlewood–Sobolev inequality and the definition of u0 that∥∥(|x|−γ ∗ u2
0

)
u2

0

∥∥
L1 � ‖u0‖4

12
6−γ

� ‖S0φ0‖4
12

6−γ

+
∑

0� j� J

‖� jφ0‖4
12

6−γ

.
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And then the right hand of the above inequality can controlled that as soon as 1 > s >
γ
4 by utilizing

Bernstein inequality

‖S0φ0‖4
L2 +

∑
0� j� J

2 j4(
γ
4 −s)2 j4s‖� jφ0‖4

L2 � 22 J (1−s)E 4
s .

From now on, we assume (5.1) to hold in our subsequence proof.

Proposition 5.1. Assume that (u0, u1) ∈ H1 × L2 , then the following estimate holds for s0,α,β defined in
Proposition 3.1 and Proposition 4.1,

HT (u) � H(u)(0) + T
4−γ

3 2−2 J (s−β)ET (u) + T
5−γ

3 2− J (4s−α−2s0−1)ET (u)

+ (
T

1
2 + 1

r1 2
−2 J [s−(

γ
2 − 3

4 + 1
2r1

)] + T
1
2 + 1

r2 2
−2 J [s−(

γ
2 − 3

4 + 1
2r2

)] + T 2−2 J (s− 1
2 )

)
ET (u)

for max{2, 1
3−γ } < r1 < 2

3−γ and 4
γ −2 � r2 < ∞.

Proof. Multiplying (4.1) by ∂t u and integrating over x and t , we have

1

2

(∥∥u(t)
∥∥2

H1 + ∥∥ut(t)
∥∥2

L2

) + 1

2

∫
R3×R3

|x − y|−γ u2(y, t)u2(x, t)dy dx

� 1

2

(‖u0‖2
H1 + ‖u1‖2

L2

) + 1

2

∫
R3×R3

|x − y|−γ u2
0(y)u2

0(x)dy dx

+
∣∣∣∣∣

t∫
0

∫
R3

I
(

v2)(x, τ )u(x, τ )∂τ u(x, τ )dx dτ

∣∣∣∣∣
+ 2

∣∣∣∣∣
t∫

0

∫
R3

I(uv)(x, τ )v(x, τ )∂τ u(x, τ )dx dτ

∣∣∣∣∣
+

∣∣∣∣∣
t∫

0

∫
R3

I
(
u2)(x, τ )v(x, τ )∂τ u(x, τ )dx dτ

∣∣∣∣∣
+ 2

∣∣∣∣∣
t∫

0

∫
R3

I(uv)(x, τ )u(x, τ )∂τ u(x, τ )dx dτ

∣∣∣∣∣.
By taking the supremum over t � T , we have

HT (u) � H(u)(0) + ∥∥I
(

v2)u∂t u
∥∥

L1
T L1 + ∥∥I(uv)v∂t u

∥∥
L1

T L1

+
∣∣∣∣∣

T∫
0

∫
R3

I
(
u2)v∂t u dx dt

∣∣∣∣∣ +
∣∣∣∣∣

T∫
0

∫
R3

I(uv)u∂t u dx dt

∣∣∣∣∣
def= H(u)(0) + I + II + III + IV. (5.2)



C. Miao, J. Zhang / J. Differential Equations 250 (2011) 3418–3447 3431
The proof is broken down into the following several steps.
(i) Firstly, we estimate I and II. Making a similarly argument as (4.4) in the proof of Proposition 4.1,

it can be obtained that

I �
∥∥I

(
v2)u

∥∥
L1

T L2‖ut‖L∞
T L2 � T

4−γ
3 ET (u)‖v‖2

Xβ ,

and then keeping in mind v has been estimated in Proposition 3.1, this together with (1.2) yields that

I � T
4−γ

3 ET (u)E 2
h,β � T

4−γ
3 ET (u)2−2 J (s−β)E 2

s . (5.3)

Arguing similarly, we easily get

II � T
4−γ

3 ET (u)2−2 J (s−β)E 2
s . (5.4)

(ii) Secondly, we estimate the terms III and IV . As mentioned in the introduction, one can get the
same type of estimate as above for the terms I and II, but that will lead to s > α

2 + 1
2 , which is worse

than the exponent given in Theorem 1.1. To improve the lower bound on s, we have to utilize more
precise estimate on III and IV .

We first split III and IV into two different pieces, respectively. One can write

v = v F + B(v, v, v),

where v F is its free part and the other one comes from nonlinear term. For the nonlinear part, it
follows from (3.3) that

∥∥B(v, v, v)
∥∥

Xα � ‖v‖Xα‖v‖2
Xs0 .

This along with (4.5), one can see that

∥∥I
(
u2)B(v, v, v)ut

∥∥
L1

T L1 �
∥∥I

(
u2)B(v, v, v)

∥∥
L1

T L2‖ut‖L∞
T L2

� T
5−γ

3 ‖u‖2
L∞

T H1

∥∥B(v, v, v)
∥∥

Xα‖ut‖L∞
T L2

� T
5−γ

3 ET (u)
3
2 ‖v‖Xα‖v‖2

Xs0 .

Moreover, we get by (1.2),

∥∥I
(
u2)B(v, v, v)ut

∥∥
L1

T L1 � T
5−γ

3 E
3
2
T (u)2− J (3s−α−2s0)E 3

s . (5.5)

By the same way as leading to (5.5), we easily infer that

∥∥I
(
uB(v, v, v)

)
uut

∥∥
L1

T L1 � T
5−γ

3 E
3
2
T (u)2− J (3s−α−2s0)E 3

s . (5.6)

Thus, it is sufficient to estimate these terms including free part v F since (5.5) and (5.6). The following
lemma gives estimates for the nonlinearity including free part v F .
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Lemma 5.1. Let v F be a solution of the free Klein–Gordon equation, and u be such that ET (u) � 22 J (1−s) .
Then, for max{2, 1

3−γ } < r1 < 2
3−γ and 4

γ −2 � r2 < ∞,

∣∣∣∣∣
T∫

0

∫
R3

I
(
u2)v F ut dx dt

∣∣∣∣∣ �
(
T

1
2 + 1

r1 2
−2 J [s−(

γ
2 − 3

4 + 1
2r1

)] + T
1
2 + 1

r2 2
−2 J [s−(

γ
2 − 3

4 + 1
2r2

)]

+ T 2−2 J (s− 1
2 )

)
ET (u), (5.7)∣∣∣∣∣

T∫
0

∫
R3

I(uv F )uut dx dt

∣∣∣∣∣ � T
1
2 + 1

r2 2
−2 J [s−(

γ
2 − 3

4 + 1
2r2

)]
ET (u). (5.8)

Hence these together with (5.5)–(5.6) yield that

III + IV � T
5−γ

3 ET (u)2− J [4s−α−2s0−1]E 4
s

+ (
T

1
2 + 1

r1 2
−2 J [s−(

γ
2 − 3

4 + 1
2r1

)] + T
1
2 + 1

r2 2
−2 J [s−(

γ
2 − 3

4 + 1
2r2

)] + T 2−2 J (s− 1
2 )

)
ET (u). (5.9)

Therefore, we complete the proof of Proposition 5.1 provided that we had proved Lemma 5.1, whose
proof is postponed in the last section. �
6. Proof of Theorem 1.1

Since the Cauchy problem (1.1) is split into Eq. (3.1) which is globally well-posed by choosing J
enough to make Eh,s0 < ε0 and Eq. (4.1) which is locally well-posed (see Proposition 3.1 and Proposi-
tion 4.1), we have to show that the local solution to Eq. (4.1) can be extended globally.

Let us denote T ∗
J the maximum time of existence in Proposition 4.1. Theorem 1.1 will be proved if

lim
J→+∞ T ∗

J = +∞.

Let us consider T J the supremum of the T < T ∗
J such that

ET (u) � 2C H(u)(0).

Thus, for any T < T J , Proposition 5.1 gives us that

ET (u) � H(u)(0)
(
C + C1T

4−γ
3 2−2 J (s−β)E 2

s + C2T
5−γ

3 2− J (4s−α−2s0−1)E 4
s

+ C3T
1
2 + 1

r1 2
−2 J [s−(

γ
2 − 3

4 + 1
2r1

)]E 2
s + C4T 2−2 J (s− 1

2 )E 2
s

+ C5T
1
2 + 1

r2 2
−2 J [s−(

γ
2 − 3

4 + 1
2r2

)]E 2
s

)
.

By the assumption of Theorem 1.1 s >
γ
4 , one easily verifies that

s > max

{
β,

α

4
+ s0

2
+ 1

4
,

1

2
,
γ

2
− 3

4
+ 1

2r1
,
γ

2
− 3

4
+ 1

2r2

}
if choosing r1 sufficiently close to 2

3−γ and r2 large enough. We infer that T J � T̃ J if we choose T̃ J

such that
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T̃ J
def= min

{(
22 J (s−β)

5C1 E 2
s

) 3
4−γ

,

(
24 J (s− 1

4 α− s0
2 − 1

4 )

5C2 E 4
s

) 3
5−γ

,

(
2

2 J [s−(
γ
2 − 3

4 + 1
2r1

)]

5C3 E 2
s

) 2r1
r1+2

,

22 J (s− 1
2 )

5C4 E 2
s

,

(
2

2 J [s−(
γ
2 − 3

4 + 1
2r2

)]

5C5 E 2
s

) 2r2
r2+2

}
.

By the definition of T J , we get T ∗
J � T̃ J . Obviously, T̃ J tends to infinity when J tend to infinity. This

completes the proof of Theorem 1.1.

7. Proof of Lemma 5.1

In order to make conveniently use of the precise Strichartz estimate on which mostly the following
proof relies, we begin this section by introducing a family of balls of center (ξ

j,k
ν )ν∈Λ j,k of radius 2k

and a function χ ∈ C∞
c (B(0,1)) such that for j � 0,

∀ξ ∈ 2 j C,
∑

ν∈Λ j,k

χ
(
2−k(ξ − ξ

j,k
ν

)) = 1 and C−1
0 �

∑
ν∈Λ j,k

χ2(2−k(ξ − ξ
j,k
ν

))
� C0.

Let us define that, for some constant c,

�ν
j,ka

def= F −1((ϕ(
2− jξ

)
χ

(
2−k(ξ − ξ

j,k
ν

)))
â(ξ)

)
,

�̃ν
j,ka

def= F −1((ϕ̃(
2− jξ

)
χ

(
c2−k(ξ + ξ

j,k
ν

)))
â(ξ)

)
.

As the support of the Fourier transform of a product belongs to the sum of the support of each Fourier
transform, we have

� ja =
∑

ν∈Λ j,k

�ν
j,ka, � jb =

∑
ν ′∈Λ j,k

�ν ′
j,kb.

In view of the fact that if k � j − 2,

�k

∑
ν,ν ′∈Λ j,k

�ν
j,ka�ν ′

j,kb

is vanishing when ξ
j,k
ν is close to ξ

j,k
ν ′ , without loss of generality, we can write

�k(� ja� jb) ≈ �k

∑
ν∈Λ j,k

�ν
j,ka�̃ν

j,kb. (7.1)

For the sake of convenience, we also fix the notation in this section that, for 0 �= f (t, x) ∈ L2
T L2,

ck = 2kσ (‖�k v0‖L2 + 2−k‖�k v1‖L2

)
E −1

h,σ , c̃k =
‖�k f ‖L2

T L2
x

‖ f ‖L2
T L2

with σ = 1/2 + 1/r for 2 � r < ∞.
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Proof of Lemma 5.1. We first prove (5.7). In view of the fact that v̂ F only has high frequencies, Bony’s
decomposition implies that there exists constant N0 such that

I
(
u2)v F ut =

∑
j� J−N0

S j+2 v F � j I
(
u2)ut +

∑
j� J−N0

S j−1 I
(
u2)� j v F ut . (7.2)

Since the negative derivative I acts on the high frequency for the former term while on the low
frequency for the latter one, the first term is much better than the second one. We shall estimate
the first term by using merely the Hölder inequality, Bernstein inequality and classical Strichartz esti-
mates. Firstly, we see that, for 2 � r < ∞,

∑
j� J−N0

∥∥S j+2 v F � j I
(
u2)∥∥

L2
x
�

∑
j� J−N0

∑
j′� j+1

‖� j′ v F ‖L∞
x

∥∥� j I
(
u2)∥∥

L2
x

�
∑

j� J−N0

∑
j′� j+1

2 j′ 3
r ‖� j′ v F ‖Lr 2 j(γ − 7

2 )‖u‖2
L∞

T H1 .

The Bernstein inequality and (2.1) in Proposition 2.1 with 1
p + 1

r = 1
2 for all 2 � r < ∞ imply that

∥∥∥∥ ∑
j� J−N0

∥∥S j+2 v F � j I
(
u2)∥∥

L2
x

∥∥∥∥
L1

T

� T 1− 1
p ‖u‖2

L∞
T H1

∑
j� J−N0

∑
j′� j+1

2 j′ 3
r ‖� j′ v F ‖L p

T Lr 2 j(γ − 7
2 )

� T 1− 1
p ‖u‖2

L∞
T H1

∑
j� J−N0

2 j(γ − 7
2 )

∑
j′� j+1

2 j′( 3
2 − 1

p −σ )2 j′σ (‖� j′ v0‖L2 + 2− j′ ‖� j′ v1‖L2

)
.

The right hand of the above inequality can be controlled by

T 1− 1
p ‖u‖2

L∞
T H1

∑
j� J−N0

2 j(γ − 7
2 )

∑
j′� j+1

2
j′
2 c j′ Eh,σ

and moreover it follows from (1.2), the definition of Eh,σ and Sobolev embedding that

∥∥∥∥ ∑
j� J−N0

∥∥S j+2 v F � j I
(
u2)ut

∥∥
L1

x

∥∥∥∥
L1

T

� T 1− 1
p Eh,σ ‖u‖2

L∞
T H1

∑
j� J−N0

2 j(γ −3)‖ut‖L∞
T L2

� T
1
2 + 1

r 2−2 J [s−(
γ
2 − 3

4 + 1
2r )]E 2

s ‖u‖2
L∞

T (H1)
, (7.3)

for 4
γ −2 � r < ∞.

Let us estimate the second term in (7.2) by the precise Strichartz estimates. Since this term
contains that the negative derivative acts on the low frequency part S j−1(u2), it leads to our new pa-
rameter r < 2

3−γ by some technique difficulties. Noting that Fourier–Plancherel formula and Hölder’s
inequality, we can see that
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∑
j� J−N0

T∫
0

∫
R3

S j−1 I
(
u2)� j v F ut dx dt

�
∫ ∑

j� J−N0

∑
−1�k� j−2

�k I
(
u2)� j v F � jut dx dt

≈
∑

k�−1

∫
�k I

(
u2)�k

∑
k� j−2, J−N0� j

(� j v F � jut)dx dt

�
∥∥u2

∥∥
L∞

T (B
1
2
2,1)

T∫
0

sup
k�−1

2k(γ − 7
2 )

∥∥∥∥�k

∑
k� j−2, J−N0� j

(� j v F � jut)

∥∥∥∥
L2

dt. (7.4)

On one hand, we have

T∫
0

∥∥∥∥�−1

∑
J−N0� j

(� j v F � jut)

∥∥∥∥
L2

dt �
∑

j� J−N0

‖� j v F � jut‖L1
T L1

� T
1
2

∑
j� J−N0

‖� j v F ‖L∞
T L2‖� jut‖L2

T L2

� T
1
2

∑
j� J−N0

2−sjc j c̃ j Eh,s‖ut‖L2
t,x

.

If (7.4) is controlled by the term at k = −1, we can see that

∑
j� J−N0

∥∥S j−1 I
(
u2)� j v F

∥∥
L2

T L2 � T
1
2 2−2 J (s− 1

2 )E 2
s ‖u‖L∞

T (H1). (7.5)

On the other hand, one denotes gk := �k
∑

k� j−2(� j v F � jut) to estimate

∑
k�0

2k(γ − 7
2 + 3

r )‖gk‖
L1

T L
2r

r+2
.

Let us write that

gk =
∑

k� j−2

�k

∑
ν∈Λ j,k

�ν
j,k v F � jut .

As the support of the Fourier transform of a product is included in the sum of the support of each
Fourier transform, we obtain

gk =
∑

k� j−2

�k

∑
ν∈Λ j,k

�ν
j,k v F �̃ν

j,kut,

as well as in (7.1). Using the Hölder inequality, we get
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‖gk‖
L

2r
r+2

�
∑

k� j−2

∑
ν∈Λ j,k

∥∥�ν
j,k v F

∥∥
Lr

∥∥�̃ν
j,kut

∥∥
L2

and the Cauchy–Schwarz inequality and the L2 quasi-orthogonality properties yield that

‖gk‖
L

2r
r+2

�
∑

k� j−2

( ∑
ν∈Λ j,k

∥∥�ν
j,k v F

∥∥2
Lr

) 1
2
( ∑

ν∈Λ j,k

∥∥�̃ν
j,kut

∥∥2
L2

) 1
2

�
∑

k� j−2

( ∑
ν∈Λ j,k

∥∥�ν
j,k v F

∥∥2
Lr

) 1
2

‖� jut‖L2 . (7.6)

Precise Strichartz estimate implies that, for 1
p + 1

r = 1
2 with 2 � r < ∞,

‖gk‖
L1

T (L
2r

r+2 )
� T

1
2 − 1

p
∑

0�k� j−2

2(k− j)( 1
2 − 1

r )2 j( 3
2 − 3

r − 1
p )

×
(( ∑

ν∈Λ j,k

∥∥�ν
j,k v0

∥∥2
L2

) 1
2

+ 2− j
( ∑

ν∈Λ j,k

∥∥�ν
j,k v1

∥∥2
L2

) 1
2
)

‖� jut‖L2
t,x

and observe the quasi-orthogonality properties again, this can be dominated by

T
1
2 − 1

p
∑

0�k� j−2

2(k− j)( 1
2 − 1

r )2 j( 3
2 − 3

r − 1
p )(‖� j v0‖L2 + 2− j‖� j v1‖L2

)‖� jut‖L2
t,x

.

Keeping the definitions of Eh,σ and c j in mind, one can see that

‖gk‖
L1

T (L
2r

r+2 )
� T

1
2 − 1

p 2k( 1
2 − 1

r )
∑

k� j−2

2− 2 j
r c j c̃ j Eh,σ E

1
2
T (u) � T

1
2 − 1

p 2k( 1
2 − 3

r )Eh,σ E
1
2
T (u).

Therefore, we get that

∑
k�0

2k(γ − 7
2 + 3

r )‖gk‖
L1

T (L
2r

r+2 )
� T

1
2 − 1

p
∑
k�0

2k(γ −3)Eh,σ E
1
2
T (u)

which implies nothing but

∣∣∣∣∣
T∫

0

∫
R3

∑
j� J−N0

S j−1 I
(
u2)� j v F ut dx dt

∣∣∣∣∣ � T 1− 1
p Eh,σ E

3
2
T (u). (7.7)

Finally, we get that, for 4
γ −2 � r < ∞,

∣∣∣∣∣
T∫

0

∫
3

∑
j� J−N0

S j−1 I
(
u2)� j v F ut dx dt

∣∣∣∣∣ � T
1
2 + 1

r 2−2 J [s−( 3
4 + 1

2r )]E 2
s ET (u).
R
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However, although the r ranges 4
γ −2 � r < ∞, the above estimate still needs s > 3

4 to continue our
proof. If we only consider the high frequency k � J , the (7.7) can be modified by

∣∣∣∣∣
T∫

0

∫
R3

∑
j� J−N0

S j−1 I
(
u2)� j v F ut dx dt

∣∣∣∣∣ � T 1− 1
p 2 J (γ −3)Eh,σ E

3
2
T (u) (7.8)

and then we can obtain a better result

∣∣∣∣∣
T∫

0

∫
R3

∑
j� J−N0

S j−1 I
(
u2)� j v F ut dx dt

∣∣∣∣∣ � T
1
2 + 1

r 2−2 J [s−(
γ
2 − 3

4 + 1
2r )]E 2

s ET (u),

which implies the bad influence comes from the low frequency part and this is consist of the effect
of negative derivative acts on the low frequency. But if we choose σ̃ = γ − 5

2 + 1
r instead of σ , we

can improve (7.8), at cost of restricting r such that max{2, 1
3−γ } < r < 2

3−γ while not 2 � r < ∞. Now
we turn to details. It follows from similar argument that

‖gk‖
L1

T (L
2r

r+2 )
� T

1
2 − 1

p 2k( 1
2 − 1

r )
∑

k� j−2

2− j(γ −3+ 2
r )c j c̃ j Eh,σ̃ E

1
2
T (u)

where σ̃ = γ − 5
2 + 1

r with 1
r < 3 − γ < 2

r . We get

∑
k�0

2k(γ − 7
2 + 3

r )‖gk‖
L1

T (L
2r

r+2 )
� T

1
2 − 1

p
∑
k�0

∑
k� j−2

2(k− j)(γ −3+ 2
r )c j c̃ j Eh,σ̃ E

1
2
T (u)

which implies nothing but

∣∣∣∣∣
T∫

0

∫
R3

∑
j� J−N0

S j−1 I
(
u2)� j v F ut dx dt

∣∣∣∣∣ � T 1− 1
p Eh,σ̃ E

3
2
T (u)

by Young’s inequality. Note that σ̃ � γ
4 < s when r sufficiently closes to 2

3−γ , therefore

∣∣∣∣∣
T∫

0

∫
R3

∑
j� J−N0

S j−1 I
(
u2)� j v F ut dx dt

∣∣∣∣∣ � T
1
2 + 1

r 2−2 J (s− σ̃+1
2 )E 2

s ET (u).

Combining this with (7.3) and (7.5), we complete the proof of (5.7) by obtaining

∣∣∣∣∣
T∫

0

∫
R3

∑
j� J−N0

S j−1 I
(
u2)� j v F ut dx dt

∣∣∣∣∣
�

(
T

1
2 + 1

r1 2
−2 J [s−(

γ
2 − 3

4 + 1
2r1

)] + T
1
2 + 1

r2 2
−2 J [s−(

γ
2 − 3

4 + 1
2r2

)] + T 2−2 J (s− 1
2 )

)
E 2

s ET (u)

with max{2, 1
3−γ } < r1 < 2

3−γ and 4
γ −2 � r2 < ∞.
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We secondly prove (5.8) which is different from (5.7). To this end, we need to make Bony’s decom-
position more than once and establish a commutator estimate, which helps us to complete our proof.
In view of the fact that v̂ F only has high frequencies again, it follows from Bony’s decomposition that
there exists N0 such that

I(uv F )uut =
∑

j� J−N0

I(S j+2 v F � ju)uut +
∑

j� J−N0

I(� j v F S j−1u)uut
def= I + II. (7.9)

In order to estimate the term I , we split it into two pieces with N1 � N0 > 0,

I =
∑

j� J−N0

∑
k

uut�k I(S j+2 v F � ju)

=
∑

j� J−N0

∑
k� J−N1

uut�k I(S j+2 v F � ju) +
∑

j� J−N0

∑
k� J−N1

uut�k I(S j+2 v F � ju)

def= I1 + I2.

The estimate of I1 is broken down into the following two cases.

Case 1. 2 < γ � 5
2 .

In this case, to our purpose, we obtain the following coarse estimate by Hölder’s inequality

‖I1‖L1
x
�

∑
j� J−N0

∑
k� J−N1

∥∥�k I(S j+2 v F � ju)
∥∥

L3‖u‖L∞
T L6‖ut‖L∞

T L2

�
∑

j� J−N0

∑
k� J−N1

2k(γ −2)
∥∥�k(S j+2 v F � ju)

∥∥
L

3
2

ET (u)

�
∑

j� J−N0

∑
k� J−N1

2k(γ −2)‖S j+2 v F ‖L6‖� ju‖L2 ET (u)

�
∑

k� J−N1

2k(γ −2)
∑

j� J−N0

2− j2 j‖� ju‖L2

∑
j′� j

‖� j′ v F ‖L6 ET (u).

Choosing (p, r) such that 1
p + 1

r = 1
2 with 2 � r � 6, the Strichartz estimate yields

‖I1‖L1
T L1

x
� T 1− 1

p
∑

k� J−N1

2k(γ −2)
∑

j� J−N0

2− j
∑
j′� j

2 j′( 3
r − 3

6 )2 j′( 3
2 − 3

r − 1
p )

× (‖� j′ v0‖L2 + 2− j′ ‖� j′ v1‖L2

)
E

3
2
T (u).

Arguing similarly as before it yields that

‖I1‖L1
T L1

x
� T

1
2 + 1

r
∑

k� J−N1

2k(γ −2)
∑

j� J−N0

2− j
∑
j′� j

2
j′
r c j′ Eh,1/2 E

3
2
T (u)

� T
1
2 + 1

r 2−2 J [s−(
γ
2 − 3

4 + 1
2r )]E 2

s ET (u)
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with 2 � r � 6. If choose r = 6, one can easily check that γ
4 >

γ
2 − 3

4 + 1
2r when 2 < γ � 5

2 . Although
this result is enough for us to prove the main theorem, we want to improve the result for this term by
loosen the upper bound of r from 6 to ∞ through the precise Strichartz estimate. Arguing similarly
as before, we have

‖I1‖L1
x
�

∑
j� J−N0

∑
k� J−N1

∥∥�k I(S j+2 v F � ju)
∥∥

L3‖u‖L∞
T L6‖ut‖L∞

T L2

�
∑

j� J−N0

∑
k� J−N1

2k(γ −3)2k r+6
2r

∥∥�k(S j+2 v F � ju)
∥∥

L
2r

r+2
ET (u).

Since the Fourier transform of S j−1 v F � ju was supported in 2 j C and k � j, �k(S j−1 v F � ju) vanishes
which implies �k(S j+2 v F � ju) = �k(�̃ j v F � ju). As the support of the Fourier transform of a product
is included in the sum of the support of each Fourier transform, we also have

�k(�̃ j v F � ju) = �k

( ∑
ν,ν ′∈Λ j,k

�ν
j,k v F �ν ′

j,ku

)
= �k

( ∑
ν∈Λ j,k

�ν
j,k v F �̃ν

j,ku

)
.

Choosing (p, r) such that 1
p + 1

r = 1
2 for 2 � r < ∞, it follows from the Hölder inequality and L2

quasi-orthogonality properties that

∥∥�k(S j+2 v F � ju)
∥∥

L1
T (L

2r
r+2 )

�
∥∥∥∥ ∑
ν∈Λ j,k

∥∥�ν
j,k v F

∥∥
Lr

∥∥�̃ν
j,ku

∥∥
L2

∥∥∥∥
L1

T

� T
1
2 − 1

p

( ∑
ν∈Λ j,k

∥∥�ν
j,k v F

∥∥2
Lp Lr

) 1
2
∥∥∥∥( ∑

ν∈Λ j,k

∥∥�ν
j,ku

∥∥2
L2

) 1
2
∥∥∥∥

L2
T

� T
1
2 − 1

p

( ∑
ν∈Λ j,k

∥∥�ν
j,k v F

∥∥2
Lp Lr

) 1
2

‖� ju‖L2
T L2 .

Then the precise Strichartz estimate yields that

‖I1‖L1
T L1

x
� T

1
2 − 1

p
∑

k� J−N1

2k(γ −3)2k r+6
2r

∑
j� J−N0

2− j2 j‖� ju‖L2
T L2 2(k− j)( 1

2 − 1
r )2 j( 3

2 − 3
r − 1

p )

×
(( ∑

ν∈Λ j,k

∥∥�ν
j,k v0

∥∥2
L2

) 1
2

+ 2− j
( ∑

ν∈Λ j,k

∥∥�ν
j,k v1

∥∥2
L2

) 1
2
)

ET (u).

By the L2-quasi-orthogonality properties, it gives that

‖I1‖L1
T L1

x
� T

1
2 − 1

p
∑

k� J−N1

2k(γ −3)2k 2r+4
2r

∑
j� J−N0

2− j2 j‖� ju‖L2
T L2 2 j( 1

2 − 1
r )

× (‖� j v0‖L2 + 2− j‖� j v1‖L2

)
ET (u).
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Utilizing the technique as before yields that

‖I1‖L1
T L1

x
� T 1− 1

p
∑

k� J−N1

2k(γ −2+ 2
r )

∑
j� J−N0

2− j(1+ 2
r )c j Eh,σ E

3
2
T (u)

� T
1
2 + 1

r 2 J (γ −3)Eh,σ E
3
2
T (u)

� T
1
2 + 1

r 2−2 J [s−(
γ
2 − 3

4 + 1
2r )]E 2

s ET (u),

with 4
γ −2 � r < ∞.

Case 2. 5
2 < γ < 3.

In the this case, the fact γ − 5
2 > 0 helps us to obtain the desirable result easily. Arguing similarly

as before, we have

‖I1‖L1
x
�

∑
j� J−N0

∑
k� J−N1

∥∥�k I(S j+2 v F � ju)
∥∥

L3‖u‖L∞
T L6‖ut‖L∞

T L2

�
∑

j� J−N0

∑
k� J−N1

2k(γ −3)23k( 1
2 − 1

3 )
∥∥�k(S j+2 v F � ju)

∥∥
L2 ET (u)

�
∑

j� J−N0

∑
k� J−N1

2k(γ − 5
2 )‖S j+2 v F ‖L∞‖� ju‖L2 ET (u).

Choosing (p, r) such that 1
p + 1

r = 1
2 with 2 � r < ∞, the Strichartz estimate yields

‖I1‖L1
T L1

x
� T 1− 1

p
∑

k� J−N1

2k(γ − 5
2 )

∑
j� J−N0

2− j
∑
j′� j

2
j′
2 c j′ Eh,σ E

3
2
T (u)

� T 1− 1
p 2 J (γ − 5

2 )
∑

j� J−N0

2− j
2 Eh,σ E

3
2
T (u)

� T
1
2 + 1

r 2−2 J [s−(
γ
2 − 3

4 + 1
2r )]E 2

s E
3
2
T (u).

Combining these two cases, we have shown that

‖I1‖L1
T

� T
1
2 + 1

r 2−2 J [s−(
γ
2 − 3

4 + 1
2r )]E 2

s ET (u) (7.10)

with 4
γ −2 � r < ∞. To control ‖I‖L1

T L1
x
, it remains to estimate ‖I2‖L1

T L1
x
. Compared with ‖I1‖L1

T L1
x
, since

the negative derivative acts on the high frequency, the upper bound of ‖I2‖L1
T L1

x
is much easier to get.

Here is the details:

‖I2‖L1
x
�

∑
j� J−N0

∑
k� J−N1

∥∥�k I(S j+2 v F � ju)
∥∥

L3‖u‖L∞
T L6‖ut‖L∞

T L2

�
∑

j� J−N

∑
k� J−N

2k(γ −3)‖S j+2 v F ‖L∞‖� ju‖L3 ET (u).
0 1
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Choosing (p, r) such that 1
p + 1

r = 1
2 with 2 � r < ∞ again, the Strichartz estimate yields

‖I2‖L1
T L1

x
� T 1− 1

p
∑

k� J−N1

2k(γ −3)
∑

j� J−N0

2− j
2

∑
j′� j

2
j′
2 c j′ Eh,σ E

3
2
T (u)

� T
1
2 + 1

r 2−2 J [s−(
γ
2 − 3

4 + 1
2r )]E 2

s ET (u).

Combining this with (7.10), we obtain that

‖I‖L1
T L1

x
� T

1
2 + 1

r 2−2 J [s−(
γ
2 − 3

4 + 1
2r )]E 2

s ET (u) (7.11)

for 4
γ −2 � r < ∞.

To complete the proof of Lemma 5.1, it remains to estimate II. One can proceed this as above by
Hölder’s inequality to estimate∥∥∥∥ ∑

j� J−N0

2 j(γ −3)‖� j v F S j−1u‖L3

∥∥∥∥
L1

T

ET (u). (7.12)

Resorting to the Hölder inequality and the classical Strichartz estimate, one can obtain that

‖II‖L1
T L1 � T

1
2 + 1

r 2−2 J [s−(
γ
2 − 3

4 + 1
2r )]E 2

s ET (u)

with 2 � r � 6. One also can try to improve the result by using the precise Strichartz estimate as
before, but it fails and merely obtain that

‖II‖L1
T L1 � T

1
2 + 1

r 2−2 J [s−(
γ
2 − 3

4 + 1
2r )]E 2

s ET (u)

with 2 � r � 4.
One can easily check that the result is worse than the desirable result because of the restriction

of r. Compared with the second term in (7.2), the negative derivative acts on the high frequency part
so that it is tempting to obtain a better result than that of (7.2). But � j v F is bound with S j−1u by
the operator I , and this structure prevents us from using efficiently the precise Strichartz estimate.
If one first resort to the Hölder inequality, as shown in (7.12), he or she merely obtains a loss result
because of the range restriction of r. To go around this difficulty, we first establish a commutator
estimate through exploiting cancellation property. Now we turn to details. Our task is to estimate

∣∣∣∣∣
T∫

0

∫
R3

∑
j� J−N0

I(� j v F S j−1u)uut dx dt

∣∣∣∣∣.
In order to drag the S j−1u out of the operator I , we construct uI(� j v F )S j−1u and the triangle
inequality yields that

∣∣∣∣∣
T∫

0

∫
R3

∑
j� J−N0

I(� j v F S j−1u)uut dx dt

∣∣∣∣∣ �
∑

j� J−N0

∥∥(
I(� j v F S j−1u) − I(� j v F )S j−1u

)
uut

∥∥
L1

T L1
x

+
∣∣∣∣∣

T∫
0

∫
3

∑
j� J−N0

I(� j v F )S j−1uuut dx dt

∣∣∣∣∣.

R
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We benefit from the cancellation when we deal with the first term. Since both the Fourier transfor-
mation of I(� j v F S j−1u) and I(� j v F )S j−1u are supported in a ring sized 2 j , the Hölder inequality
and the Bernstein inequality lead to that∥∥(

I(� j v F S j−1u) − I(� j v F )S j−1u
)
u
∥∥

L2
x
� 2

j
2
∥∥I(� j v F S j−1u) − I(� j v F )S j−1u

∥∥
L2

x
‖u‖L6 .

Before estimating its right hand, we recall the Coifman and Meyer multiplier theorem. Consider an
infinitely differentiable symbol m : Rnk �→ C so that for all α ∈ Nnk and all ξ = (ξ1, ξ2, . . . , ξk) ∈ Rnk ,
there is a constant c(α) such that ∣∣∂α

ξ m(ξ)
∣∣ � c(α)

(
1 + |ξ |)−|α|

. (7.13)

Define the multilinear operator T by

[
T ( f1, . . . , fk)

]
(x) =

∫
Rnk

eix·(ξ1+···+ξk)m(ξ1, . . . , ξk) f̂1(ξ1), . . . , f̂k(ξk)dξ1 · · ·dξk, (7.14)

or

F
[
T ( f1, . . . , fk)

]
(ξ) =

∫
ξ=ξ1+···+ξk

m(ξ1, . . . , ξk) f̂1(ξ1), . . . , f̂k(ξk)dξ1 · · ·dξk−1. (7.15)

Proposition 7.1. (See [6], p. 179.) Suppose p j ∈ (1,∞), j = 1, . . .k, are such that 1
p = 1

p1
+ 1

p2
+· · ·+ 1

pk
� 1.

Assume m(ξ1, . . . , ξk) a smooth symbol as in (7.13). Then there is a constant C = C(pi,n,k, c(α)) so that for
all Schwarz class functions f1, . . . , fk,∥∥[

T ( f1, . . . , fk)
]
(x)

∥∥
L p(Rn)

� C‖ f1‖L p1 (Rn) · · · ‖ fk‖L pk (Rn). (7.16)

Since the operator I is a convolution operator with kernel |x|−γ in R3, we can write that

F
[

I(� j v F S j−1u) − I(� j v F )S j−1u
]
(ξ)

=
∫

ξ=ξ1+ξ2

(|ξ1 + ξ2|γ −3 − |ξ1|γ −3)�̂ j v F (ξ1) Ŝ j−1u(ξ2)dξ2.

By the mean value theorem, the right hand of the above formula becomes that∫
ξ=ξ1+ξ2

|ξ1 + λξ2|γ −4 (ξ1 + λξ2) · ξ2

|ξ1 + λξ2| �̂ j v F (ξ1) Ŝ j−1u(ξ2)dξ2,

for a certain λ ∈ [0,1]. Moreover, we rewrite it as follows:∫
ξ=ξ1+ξ2

m(ξ1, ξ2) f̂1(ξ1) f̂2(ξ2)dξ2,

with

m(ξ1, ξ2) = (ξ1 + λξ2)|ξ1 + λξ2|γ −5|ξ1|4−γ , f1 = |∇|γ −4� j v F , f2 = ∇ S j−1u.
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Observe that |ξ1| � 2 j−1 and 2 j−2 � |ξ2|, we have that |ξ1 + λξ2| ∼ |ξ1| � 2 J−N0 . Hence, we can check
that the symbol m(ξ1, ξ2) satisfies the estimate (7.13). Finally, it follows from Proposition 7.1 that

∥∥I(� j v F S j−1u) − I(� j v F )S j−1u
∥∥

L2
x
� ‖ f1‖Lr

x
‖ f2‖

L
2r

r−2
x

with 2 < r < ∞. After making use of the Bernstein inequality, the right hand can be controlled by

2 j(γ −4+ 3
r )‖� j v F ‖Lr

x
‖∇u‖L2

x
.

Keeping in mind j � J − N0 and recalling the definition of Eh,σ , the Strichartz estimate and a direct
calculation of summing in j show that

T 1− 1
p

∑
j� J−N0

2
j
2 2 j(γ −4+ 3

r )‖� j v F ‖L p
T Lr

x
� T 1− 1

p
∑

j� J−N0

2 j(γ −3+ 1
r )2 j( 1

2 −s)Eh,s

with 1
p + 1

r = 1
2 and 2 < r < ∞. Choosing r such that max{2, 1

3−γ } � r < ∞, we have that

∑
j� J−N0

∥∥(
I(� j v F S j−1u) − I(� j v F ) S j−1u

)
uut

∥∥
L1

T L1
x

� T
1
2 + 1

r 2−2 J [s−(
γ
2 − 3

4 + 1
2r )]E 2

s ET (u). (7.17)

Now the rest of the paper devotes to estimate this term

∣∣∣∣∣
T∫

0

∫
R3

∑
j� J−N0

I(� j v F )S j−1uuut dx dt

∣∣∣∣∣.
In order to use precise Strichartz estimate, we need to decompose this term by Bony’s para-product
decomposition again,

I(� j v F )S j−1uuut =
∑

k

{
Sk−1(uS j−1u)�k I(� j v F )ut + �k(uS j−1u)Sk+2 I(� j v F )

}
= II1 + II2.

After decomposing this, the term II1 is similar to the second term in the (7.2) and the negative
derivative acts on the high frequency � j v F leading to a better result than the second term in the
(7.2). Thanks to Fourier–Plancherel formula and Hölder inequality, we obtain

∑
j� J−N0

T∫
0

∫
R3

II1 dx dt ≈
∑

j� J−N0

∑
k

∫
Sk−1(uS j−1u)�k I(� j v F )�kut dx dt

≈
∑

j� J−N0

∑
k

∫ ∑
k′�k−2

�k′(uS j−1u)�k I(� j v F )�kut dx dt

�
∑

j� J−N

∑
k′

∫
�k′(uS j−1u)�k′

∑
k′�k−2

(�k I(� j v F )�kut
)

dx dt
0
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�
∑

j� J−N0

‖uS j−1u‖
L∞ Ḃ

1
2
2,2

T∫
0

∥∥2− k′
2
∥∥�k′

∑
k′�k−2

(�k I(� j v F )�kut
)‖L2‖	2 dt

�
∑

j� J−N0

‖u‖2
L∞ H1

T∫
0

∥∥2− k′
2
∥∥�k′

∑
k′�k−2

(�k I(� j v F )�kut
)‖L2‖	2 dt.

On the other hand, one denotes

gk′, j = �k′
∑

k′�k−2

(�k I(� j v F )�kut
)
,

to estimate ∑
k′

2k′(− 1
2 + 3

r )‖gk′, j‖
L1

T L
2r

r+2
.

Let us write that

gk′, j =
∑

k′�k−2

�k′
( ∑

ν∈Λk,k′
�ν

k,k′ I(� j v F )�kut

)
.

As the support of the Fourier transform of a product is included in the sum of the support of each
Fourier transform, we obtain

gk′, j =
∑

k′�k−2

�k′
( ∑

ν∈Λk,k′
�ν

k,k′ I(� j v F )�̃ν
k,k′ ut

)
.

Using the Hölder inequality, we get

‖gk′, j‖
L

2r
r+2

�
∑

k′�k−2

∑
ν∈Λk,k′

∥∥�ν
k,k′ I(� j v F )

∥∥
Lr

∥∥�̃ν
k,k′ ut

∥∥
L2

� 2 j(γ −3)
∑

k′�k−2

( ∑
ν∈Λk,k′

∥∥�ν
k,k′ v F

∥∥2
Lr

) 1
2
( ∑

ν∈Λk,k′

∥∥�ν
k,k′ ut

∥∥2
L2

) 1
2

� 2 j(γ −3)
∑

k′�k−2

( ∑
ν∈Λk,k′

∥∥�ν
k,k′ v F

∥∥2
Lr

) 1
2

‖�kut‖L2

the use of quasi-orthogonality properties is made in the last inequality.
Precise Strichartz estimate and the quasi-orthogonality properties imply that

‖gk′, j‖
L1

T (L
2r

r+2 )
� T

1
2 − 1

p 2 j(γ −3)
∑

k′�k−2

2(k′−k)( 1
2 − 1

r )2k( 3
2 − 3

r − 1
p )

×
(( ∑

ν∈Λ ′

∥∥�ν
k,k′ v0

∥∥2
L2

) 1
2

+ 2−k
( ∑

ν∈Λ ′

∥∥�ν
k,k′ v1

∥∥2
L2

) 1
2
)

‖�kut‖L2
T L2

x

k,k k,k
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� T
1
2 − 1

p 2 j(γ −3)
∑

k′�k−2

2(k′−k)( 1
2 − 1

r )2k( 3
2 − 3

r − 1
p )

× (‖�k v0‖L2 + 2−k‖�k v1‖L2

)‖�kut‖L2
T L2

x

with 1
p + 1

r = 1
2 for 2 � r < ∞. Therefore

∑
k′

2k′(− 1
2 + 3

r )‖gk′, j‖
L1

T (L
2r

r+2 )
� T

1
2 − 1

p 2 j(γ −3)
∑

k′

∑
k′�k−2

2(k′−k) 2
r ckc̃k Eh,σ E

1
2
T (u).

A direct computation shows that

∑
k′

2− k′
2 ‖gk′, j‖L1

T L2 �
∑

k′
2k′(− 1

2 + 3
r )‖gk′, j‖

L1
T (L

2r
r+2 )

� T
1
2 − 1

p 2 j(γ −3)Eh,σ E
1
2
T (u).

Hence, we have that

∣∣∣∣∣ ∑
j� J−N0

T∫
0

∫
R3

II1 dx dt

∣∣∣∣∣ � 2−2 J [s−(
γ
2 − 3

4 + 1
2r )]T

1
2 + 1

r E 2
s ET (u) (7.18)

with 4
γ −2 � r < ∞. Finally, we conclude this section by giving the estimate of II2,

∣∣∣∣∣ ∑
j� J−N0

T∫
0

∫
R3

II2 dx dt

∣∣∣∣∣
� T

1
2

∑
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∑
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∥∥�k(uS j−1u)Sk+1 I(� j v F )
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T L2

� T 1− 1
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2 j(γ −3)
∑

k

∑
k′�k

∥∥�k(uS j−1u)
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T L2 2k′ 3
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T Lr E

1
2
T (u)

� T 1− 1
p

∑
j� J−N0
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k

∑
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∑
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2
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T L2

∥∥
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	2(N)
Eh,σ E

1
2
T (u)

� T 1− 1
p 2 J (γ −3)E
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2
T (u)Eh,σ
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r E 2
s ET (u). (7.19)
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Collecting (7.18) and (7.19), we have proved that

∣∣∣∣∣
T∫

0

∫
R3

∑
j� J−N0

I(� j v F )S j−1uuut dx dt

∣∣∣∣∣ � T
1
2 + 1

r 2−2 J [s−(
γ
2 − 3

4 + 1
2r )]E 2

s ET (u), (7.20)

with 4
γ −2 � r < ∞. Finally, we complete the proof of (5.8) by (7.11) and (7.20), hence it ends the proof

of Lemma 5.1. �
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