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The self-accelerating branch of the Dvali–Gabadadze–Porrati (DGP) five-dimensional braneworld has
provided a compelling model for the current cosmic acceleration. Recent observations, however, have
not favored it so much. We discuss the solutions which contain a de Sitter 3-brane in the cascading
DGP braneworld model, which is a kind of higher-dimensional generalizations of the DGP model, where
a p-dimensional brane is placed on a (p + 1)-dimensional one and the p-brane action contains the
(p + 1)-dimensional induced scalar curvature term. In the simplest six-dimensional model, we derive
the solutions. Our solutions can be classified into two branches, which reduce to the self-accelerating
and normal solutions in the limit of the original five-dimensional DGP model. In the presence of the six-
dimensional bulk gravity, the ‘normal’ branch provides a new self-accelerating solution. The expansion
rate of this new branch is generically lower than that of the original one, which may alleviate the fine-
tuning problem.

© 2010 Elsevier B.V. Open access under CC BY license.
Recent observational data with high precision suggest that our
Universe is currently in an accelerating phase [1,2]. They are con-
sistent with the presence of a nonzero cosmological constant or
quantum vacuum energy, but its value must be extremely tiny. In
the context of the braneworld, the Dvali–Gabadadze–Porrati (DGP)
five-dimensional model has been a compelling model for the cos-
mic acceleration [3–5]. The DGP model contains a mechanism to
modify the gravitational law just on cosmological scales by the ef-
fects of the four-dimensional Einstein–Hilbert term put into the
action of our 3-brane Universe. Such an intrinsic curvature term
would be induced due to quantum loops of the matter fields which
are localized on the 3-brane. The effect of the four-dimensional
intrinsic curvature term on the 3-brane recovers the Einstein grav-
ity on small scales but on large distance scales gravitational law
becomes five-dimensional. The DGP model realizes the so-called
self-accelerating Universe that features a four-dimensional de Sit-
ter phase even though our 3-brane Universe is completely empty.
Recent studies, however, have indicated that the observational data
have not favored the self-accelerating branch of DGP [6]. The self-
accelerating solutions have also faced the disastrous issue of ghost
excitations [7]. The energy is not bounded from below and there-
fore the theory is already pathological even at the classical level.

There are possibilities that the realistic cosmological model may
be obtained by generalizing the five-dimensional DGP model to
a higher-dimensional spacetime. An extension of the DGP model,
where two 4-branes with the induced gravity terms are inter-
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secting in the six-dimensional spacetime, has been investigated
in Ref. [8]. Another interesting model is so-called the cascad-
ing DGP model [9]. The model is constructed by a set of branes
of the different dimensionality, where a p-brane is placed on a
(p + 1)-dimensional brane and the p-brane action contains the
(p + 1)-dimensional induced scalar curvature term. For instance,
in the simplest six-dimensional model, a 3-brane Universe whose
action contains an induced four-dimensional scalar curvature term
is placed on a 4-brane whose action contains an induced five-
dimensional scalar curvature term, embedded into a (possibly in-
finitely extended) six-dimensional spacetime. An extension to the
case of an arbitrary number of spacetime dimensions is straight-
forward in principle. It is expected that in such a kind of model, in
the infrared region the gravitational force falls off sufficiently fast
to exhibit ‘degravitation’ [9]. The linearized analysis has confirmed
this idea in part at the level of the linearized theory [9].

One of crucial questions is the viability of the cascading DGP
model. To answer to this question, of course, one should go beyond
the linearized analysis and in particular investigate the cosmology.
Non-linearities may detect effects which may not appear in the
linearized treatment. In addition, cosmology can help to have a
better understanding of the model and of the idea of gravity lo-
calized through intrinsic curvature terms on the 3- and 4-branes.
As the first step to this direction, we will look for the solutions
which contain a de Sitter 3-brane. They may give rise to the self-
accelerating cosmological solutions in the simplest six-dimensional
cascading DGP model.

The system of our interest is that our 3-brane Universe Σ4 is
placed on a 4-brane Σ5, embedded into the six-dimensional bulk
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M6. For simplicity, we suppress the matter terms in the bulk and
on the branes. The total action is given by

S = M4
6

2

∫
M6

d6 X
√−G(6)R + M3

5

2

∫
Σ5

d5 y
√−q(5)R

+ M2
4

2

∫
Σ4

d4x
√−g

(4)
R, (1)

where G AB , qab and gμν represent metrics in M6, on Σ5 and Σ4,
respectively. (i)R (i = 6,5,4) are Ricci scalar curvature terms asso-
ciated with respect to G AB , qab and gμν . For the later discussion,
it is useful to introduce the crossover mass scales m5 := M3

5/M2
4

and m6 := M4
6/M3

5, which determine the energy scale where the
five-dimensional and six-dimensional physics appear, respectively.
We assume that m5 > m6. Then, it is natural to expect that the ef-
fective gravitational theory becomes four-dimensional for H > m5,
five-dimensional for m5 > H > m6, and finally six-dimensional for
H < m6, where H is the cosmic expansion rate.

We consider the six-dimensional Minkowski spacetime, which
is covered by the following choice of the coordinates

ds2
6 = G AB dX A dX B = dr2 + dθ2 + H2r2γμν dxμ dxν, (2)

where γμν is the metric of the four-dimensional de Sitter space-
time with the expansion rate H . The r and θ coordinates repre-
sent two extra dimensions and xμ (μ = 0,1,2,3) do the ordinary
four-dimensional spacetime. The surface of r = 0 corresponds to
a (Rindler-like) horizon and only the region of r � 0 is consid-
ered. Note that the boundary surface of r = 0 does not cause
any pathological effect because it is not a singularity. We consider
a 4-brane located along the trajectory (r(|ξ |), θ(|ξ |)), where the
affine parameter ξ gives the proper coordinate along the 4-brane.
The 3-brane is placed at ξ = 0, and for decreasing value of |ξ | one
approaches the 3-brane. We assume the Z2-symmetry across the
4-brane and hence an identical copy is glued to the opposite side.
Along the trajectory of the 4-brane ṙ2 + θ̇2 = 1, where the dot rep-
resents the derivative with respect to ξ . The induced metric on the
4-brane is given by

ds2
5 = qab dya dyb = dξ2 + H2r

(|ξ |)2
γμν dxμ dxν . (3)

The point where r(ξ) = 0 on the 4-brane corresponds to a horizon
and the 4-brane is not extended beyond it. The 3-brane geome-
try is exactly de Sitter spacetime with the normalization condition
Hr(0) = 1,

ds2
4 = gμν dxμ dxν = γμν dxμ dxν . (4)

The nonvanishing components of the tangential and normal vec-
tors to the 4-brane are given by

ur = ṙ, uθ = θ̇ , nr = εθ̇, nθ = −εṙ. (5)

We restrict that the region to be considered is to be r > 0 and
the 3-brane is sitting on r-axis (θ = 0). The 4-brane trajectory is
Z2-symmetric across the 3-brane. θ̇ > 0 for increasing ξ . In the
case of ε = 1, the bulk space is in the side of increasing r, while in
the case of ε = −1, the bulk space is the side of decreasing r.

The components of the extrinsic curvature tensor defined by
Kab := ∇anb are given by

Kξξ − K = −4ε

r

(
1 − ṙ2)1/2

,

Kμν − qμν K = ε

(
−3 (

1 − ṙ2)1/2 + r̈

˙2 1/2

)
qμν. (6)
r (1 − r )
The junction condition is given by

M4
6[Kab − qab K ] = (

M3
5
(5)Gab + M2

4
(4)Gμνδ

μ
a δν

b δ(ξ)
)
, (7)

where the square bracket denotes the jump of a bulk quantity
across the 4-brane and the components of the Einstein tensor on
the 4- and 3-branes are given by

(5)Gξξ = −6
1 − ṙ2

r2
,

(5)Gμν = 3
ṙ2 + rr̈ − 1

r2
qμν, (8)

and (4)Gμν = −3H2γμν . By taking the Z2-symmetry across the
4-brane into consideration, the matching condition becomes

−M4
6ε

4

r

(
1 − ṙ2)1/2 = −3M3

5
1 − ṙ2

r2
,

M4
6ε

(
−3

r

(
1 − ṙ2)1/2 + r̈

(1 − ṙ2)1/2

)
= 3M3

5

2

ṙ2 + rr̈ − 1

r2
.

(9)

The way to construct the solution is essentially the same as
the case of a tensional 3-brane on a tensional 4-brane (see Ap-
pendix A).

In our case, it is suitable to take ε = +1 branch. Then, the junc-
tion condition tells that the trajectory of the 4-brane is given by
r(ξ) = a−1 cos(a|ξ | − aξ0) with

a = 4m6

3
, (10)

where we assume 0 < aξ0 < π/2. r(ξ) vanishes at |ξ | = |ξmax| =
π/(2a) + ξ0. Note that, as mentioned before, the surface of r = 0
corresponds to a horizon and on the 4-brane there are horizons at
|ξ | = |ξmax|, namely at a finite proper distance from the 3-brane.
The 4-brane is not extended beyond them [10]. Now an identi-
cal copy is attached across the 4-brane. The normalization of the
overall factor of the metric function at the 3-brane place requires
cos(aξ0) = a/H � 1. Note that

H � 4m6

3
. (11)

The r̈ term gives rise to the contribution proportional to δ(ξ). Here,
by noting that

d

dξ
arctan

(
ṙ√

1 − ṙ2

)
= r̈√

1 − ṙ2
(12)

and integrating the (μ,ν)-component of the junction equation (9)
across ξ = 0, one finds

M4
6(4aξ0) = 6M3

5a tan(aξ0) − 3H2M2
4, (13)

which with Eq. (10) leads to

H

2m5
−

(√
1 − 16m2

6

9H2
− 2m6

3H
arctan

(√
9H2

16m2
6

− 1

))
= 0. (14)

The solution of Eq. (14) determines the value of the expansion
rate H . The 3-brane induces the deficit angle 4aξ0 in the bulk. The
configuration of the bulk space is shown in Fig. 1. The bulk space
is outside the curve of the 4-brane and has an infinite volume.
As mentioned before, the surface of r = 0 corresponds to a hori-
zon and, in particular, on the 4-brane there are horizons at a finite
proper distance from the 3-brane. The 4-brane is not extended be-
yond them. Note that this surface does not cause any pathological
effect.
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Fig. 1. The configuration of the bulk space is shown. The circle point and solid curve
represent the 3- and 4-branes, respectively. According to the direction of the normal
vector, the bulk space is outside the curve of the 4-brane. In this picture, each point
represents the four-dimensional de Sitter spacetime. Because of the Z2-symmetry,
an identical copy of this picture is glued across the 4-brane. The bulk space is out-
side the curve of the 4-brane and has an infinite volume. The surface of r = 0
corresponds to a horizon and, in particular, on the 4-brane there are horizons at a
finite proper distance from the 3-brane. The 4-brane is not extended beyond them.

Fig. 2. The left-hand side of Eq. (14) is shown as a function of H/m5 for fixed ratio
m6/m5. The solid, dashed and dotted curves correspond to the cases of m6/m5 =
0.1,0.3,0.5, respectively. In the last case, in which m6/m5 is above the critical value
(m6/m5)crit = 0.46978, there is no solution.

For generic values of m6, in Fig. 2, the left-hand side of Eq. (14)
is shown as a function of H/m5 for each fixed ratio m6/m5. It is
found that below the critical ratio m6/m5 < (m6/m5)crit ≈ 0.46978,
there are two branches of solutions, which are here denoted by
H+ > H− . On the other hand, for m6/m5 > (m6/m5)crit, there is no
solution of Eq. (14). In the marginal case of m6/m5 = (m6/m5)crit ,
there is the degenerate solution given by H ≈ m5. For generic val-
ues of m6/m5, in Figs. 3 and 4, the solutions H+ and H− are
shown as functions of m6/m5(< (m6/m5)crit), respectively. In the
limit of m6 � m5, another solution is given approximately given
by

H+ ≈ 2m5, H− ≈ 4m6

3
. (15)

In the absence of the bulk gravity, m6 → 0, the (+)- and (−)-
branches coincide with the ‘self-accelerating’ and ‘normal’ solu-
tions in the DGP model, with H+ = 2m5 and H− = 0, respectively.
By taking the presence of the six-dimensional bulk into considera-
tion, the self-accelerating branch essentially remains the same. But
the normal branch solution provides a new self-accelerating solu-
tion if H− , which could be much smaller than H+ for m6 � m5.
Fig. 3. The larger solution H+ is shown as a function of m6/m5, in the unit of m5.

Fig. 4. The smaller solution H− is shown as a function of m6/m5, in the unit of m5.

Note that the existence of both of these new solutions relies on
the presence of the 4-brane, since in the limit of M5 → 0 none of
these solutions can exist.

As we mentioned, the self-accelerating branch of the original
DGP model is not favored by recent observations and also suffers a
ghost instability. What we found is that in the six-dimensional cas-
cading DGP model, one of two branches, which corresponds to the
‘normal’ branch in the original DGP model, provides a new self-
accelerating solution whose expansion rate could be much smaller
than that in the other branch, which corresponds to the original
‘self-accelerating’ branch. Thus, the fine-tuning would be relaxed in
some degrees. In the self-accelerating solution of the DGP model,
the bulk spacetime is infinitely extended and a mode which satis-
fies the background solution is not normalizable. Thus, the scalar
mode is hence different from the zero mode, which already im-
plies the potential pathology about the ghost instability. In our
new solutions the 4-brane where the 3-brane resides can never
reach the infinity (see Fig. 1) and has a finite volume. Therefore,
in analogy with the case of the standard DGP, it implies that the
bending mode of the 3-brane would be normalized and hence so-
lutions could be healthy, although the detailed investigations about
the stability are left for a future work.

The idea of the cascading gravity may be extendable to the
case of an arbitrary number of spacetime dimensions. In the case
of n-dimensional spacetime, there would be 3-, 4-, . . . , (n − 2)-
branes, where a p-brane (p = 3,4, . . . ,n − 3) is placed on a
(p + 1)-dimensional brane and in the p-brane action the (p + 1)-
dimensional scalar curvature term is induced with the coupling
constant 1/M p−1

p+1. Assuming the hierarchal relation among the
crossover scales mn � mn−1 � mn−2 � · · · � m6 � m5, where
mq = Mq−2

q /Mq−3
q−1 (q = 5,6, . . . ,n), the solution with the smallest

expansion rate would be given by H � mn . Thus, the resultant ex-
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pansion rate becomes tiny and the presence of enough number of
branes may resolve the fine-tuning problem.
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Appendix A. The case of pure tension branes

In the system composed of tensional 3- and 4-branes in the
six-dimensional bulk, the action is given by

S = M4
6

2

∫
M6

d6 X
√−G(6)R +

∫
Σ5

d5 y
√−q(−σ4)

+
∫
Σ4

d4x
√−g(−σ3), (A.1)

where σ3 and σ4 are tensions of branes. We assume that both the
brane tensions are positive. Then, we look for the de Sitter 3-brane
solution.

The ansatz of the spacetime metric is assumed to be the same
as the case in the text, discussed in Eqs. (2)–(4). Then, the junction
condition becomes

M4
6[Kab − qab K ] = σ4qab + σ3 gμνδ

μ
a δν

b δ(ξ). (A.2)

The matching conditions on the 4-brane are given by

−M4
6ε

4

r

(
1 − ṙ2)1/2 = σ4

2
,

M4
6ε

(
−3

r

(
1 − ṙ2)1/2 + r̈

(1 − ṙ2)1/2

)
= σ4

2
. (A.3)

To obtain a 4-brane with a positive tension, it is suitable to choose
ε = −1 branch. The trajectory is given by r(ξ) = a−1 cos(a|ξ |+aξ1)

with

σ4 = 8M4
6a, (A.4)

where we assume 0 < aξ1 < π/2. r(ξ) vanishes at |ξ | = |ξmax| =
π/(2a) − ξ1. Note that the surface of r = 0 corresponds to a hori-
zon and on the 4-brane there are horizons at |ξ | = |ξmax|, namely
at a finite proper distance from the 3-brane. The 4-brane is not ex-
tended beyond them [10]. On the other hand, the 3-brane induces
the deficit angle given by 4aξ1, which is determined through the
3-brane junction condition as

σ3 = M4
6(4aξ1), (A.5)

which is the standard tension-deficit relation for a conical sin-
gularity. The normalization condition of 3-brane metric provides
cos(aξ1) = a/H . It gives the expansion rate H in terms of the 3-
and 4-branes tension as
Fig. 5. The configuration of the bulk space is shown. The circle point and solid curve
represent the 3- and 4-branes, respectively. According to the direction of the normal
vector, the bulk space is inside the curve of the 4-brane. In this picture, each point
represents the four-dimensional de Sitter spacetime. Because of the Z2-symmetry,
an identical copy of this picture is glued across the 4-brane. The bulk space is inside
the curve of the 4-brane and has a finite volume. The surface of r = 0 corresponds
to a horizon and, in particular, on the 4-brane there are horizons at a finite proper
distance from the 3-brane. The 4-brane is not extended beyond them.

H = σ4

8M4
6 cos( σ3

4M4
6
)
, (A.6)

which is the six-dimensional generalization of the case without
the bulk cosmological constant, discussed in Ref. [10]. The config-
uration of the bulk space is shown in Fig. 5. The bulk space is
inside the curve of the 4-brane and has a finite volume. As men-
tioned before, the surface of r = 0 corresponds to a horizon and, in
particular, on the 4-brane there are horizons at a finite proper dis-
tance from the 3-brane. The 4-brane is not extended beyond them.
Note that this surface does not cause any pathological effect.
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