
Theoretical Computer Science 350 (2006) 234–251
www.elsevier.com/locate/tcs

Syntactic control of concurrency
D.R. Ghica∗, A.S. Murawski, C.-H.L. Ong

Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Abstract

We consider a finitary procedural programming language (finite data-types, no recursion) extended with parallel composition
and binary semaphores. Having first shown that may-equivalence of second-order open terms is undecidable we set out to find
a framework in which decidability can be regained with minimum loss of expressivity. To that end we define an annotated type
system that controls the number of concurrent threads created by terms and give a fully abstract game semantics for the notion of
equivalence induced by typable terms and contexts. Finally, we show that the semantics of all typable terms, at any order and in the
presence of iteration, has a regular-language representation and thus the restricted observational equivalence is decidable.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Game semantics has emerged as a powerful paradigm for giving semantics to a spectrum of programming languages
ranging from purely functional languages to those with non-functional features such as control operators and references
[4,19,5,6,21,3]. Recently, it has been developing in a new, algorithmic direction. Hankin and Malacaria [23,24] have
applied it to program analysis. Ghica and McCusker [13] found that the game semantics of a second-order fragment
of a procedural language can be captured by regular languages, demonstrating a new, semantics-directed, approach to
software model-checking [2]. The approach has subsequently been extended in various directions: to third order [31],
call-by-value [10,27], Hoare-style assertions [11] and specifications [12].

In this paper we propose a game-based framework for compositional model checking of concurrent programs.
Although a fully abstract game model for a concurrent programming language exists [15], it seems unsuitable as a
model of computation for model-checking applications. We can show that observational equivalence, even at second
order in the absence of recursion, is not decidable. The sources of non-finitary behaviour are the free identifiers of
first or higher-order types, which correspond to procedures using an argument in an unbounded number of concurrent
threads of computation.

In the game model, active threads at any moment correspond to pending questions in a play. Hence, we constrain
plays by placing bounds on the allowable number of pending questions and enforce these restrictions syntactically
using a type system augmented with resource bounds. The key differences between this type system and the standard
type system, are the “linearization” of application and parallel composition, i.e. requiring the environments of the two
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sub-terms to be disjoint. We also revise the contraction rule to count the number of contracted occurrences of a variable.
We call this type system Syntactic Control of Concurrency (SCC); it is a generalization of Serially Reentrant Algol
(SRA), a type system introduced by Abramsky [1] to identify higher-order terms of a sequential language denotable
by “pointer-free” finitary strategies.

The bounds imposed on the number of pending questions by SCC can be seen as a kind of assume-guarantee reasoning
(see e.g. [7]): bounds on the behaviour of the Opponent represent assumptions on the behaviour of the environment,
while bounds on the behaviour of the Proponent represent guarantees on the behaviour of the system. Typability can
be seen as composition, made possible by the fact that the guarantees and the assumptions match. Unsurprisingly, not
all terms of the original language admit a resource-bounding typing.

Resource-sensitive type systems are an area of research with numerous applications; the examples mentioned be-
low are only entry points to a vast literature. The nature of the controlled resource is usually duration [16] or space
[17]; applications of such systems are as diverse as execution in embedded systems [18], memory management [33],
compilation to hardware [28] or proof-carrying code [29]. Type systems have also been used to control more ab-
stract resources, such as variable usage for improved compilation [35] or interference effects for specification and
verification [32].

The motivation behind SCC is to isolate (open) terms with finitary models for the purpose of automated verification.
The notion of resource in SCC, which we may call active threads of computation, has a computational meaning, but it is
primarily motivated by the game-semantic analysis of the language [15]. The main thrust of the paper is thus semantic;
we plan to investigate the type-theoretic issues of SCC separately.

2. ICA and its game model

Our object language, Idealized Concurrent Algol (ICA), is Idealized Algol over the finite data-type {0, . . . , MAX}
(MAX > 0) extended with parallel composition ( || ) and binary semaphores. Its types are generated by the grammar
given below

� ::= com | exp | var | sem � ::= � | � → �

and the typing judgements are displayed in Fig. 1. Semaphores can be manipulated using two (blocking) primitives,
grab(S) and release(S), which grab and, respectively, release the semaphore. We also use variable and semaphore
constructors mkvar and mksem (this is necessary for the full abstraction results: Theorems 5 and 19; mkvar was first
introduced for this purpose in [5]).

Fig. 1. ICA typing rules.
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Fig. 2. Reduction rules for ICA.

The operational semantics is defined using a (small-step) transition relation � � M, s −→ M ′, s′. � is a set of
names of variables denoting memory cells and those of semaphores denoting locks; s, s′ are states, i.e. functions
s, s′ : � → {0, . . . , MAX}, and M, M ′ are terms. The basic reduction rules are given in Fig. 2, where c stands for any
language constant (m or skip).

In-context reduction is given by the schemata:

�, v � M[v/x], s ⊗ (v �→ m) −→ M ′, s′ ⊗ (v �→ m′) M �= c

� � newvar x := m in M, s −→ newvar x := m′ in M ′[x/v], s′ ,

�, v � M[v/x], s ⊗ (v �→ m) −→ M ′, s′ ⊗ (v �→ m′) M �= c

� � newsem x := m in M, s −→ newsem x := m′ in M ′[x/v], s′ ,

� � M, s −→ M ′, s′
� � E [M], s −→ , s′E[M ′] ,

where reduction contexts E[−] are produced by the grammar:

E[−] ::= [−] | E; N | (E || N) | (M || E) | EN

| if E then N1 else N2 | !E | E := m | M := E | grab(E) | release(E).

We consider an angelic notion of termination: we say that a term M terminates in state s, written M, s ⇓, if there exists
a terminating evaluation at start state s: ∃s′, M, s −→∗ c, s′, with c ∈ {0, . . . , MAX} or c = skip. If M is closed
and M, ∅ ⇓ we write M ⇓. We define the observational approximation relation contextually: � � M1

�∼ M2 holds
if and only if ∀C[−] : com, C[M1] ⇓ implies C[M2] ⇓, where C[Mi] are closed terms of type com. Observational
may-equivalence (� � M1�M2) is then defined as � � M1

�∼ M2 and � � M2
�∼ M1.

In [15] we have given a game model which is fully abstract for �∼ and �. We give a sketch of the model.

Definition 1. An arena A is a triple 〈MA, �A, � A〉 where:

• MA is a set of moves;
• �A : MA → {O, P } × {Q, A} is a function determining for each m ∈ MA whether it is an Opponent or a Proponent

move, and a question or an answer; we write �OP
A , �QA

A for the composite of �A with, respectively, the first and
second projections;
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• � A is a binary relation on MA, called enabling, satisfying: if m � An for no m then �A(n) = (O, Q), if m � An

then �OP
A (m) �= �OP

A (n), and if m � An then �QA
A (m) = Q.

If m � An we say that m enables n. We shall write IA for the set of all moves of A which have no enabler; such moves
are called initial. Note that an initial move must be an Opponent question.

The product (A × B) and arrow (A ⇒ B) arenas are defined by

MA×B = MA + MB, MA⇒B = MA + MB,

�A×B = [�A, �B ], �A⇒B = [〈�PO
A , �QA

A 〉, �B ],
� A×B = � A + �B, �A⇒B = �A + �B + {(b, a) | b ∈ IB and a ∈ IA},

where �PO
A (m) = O iff �OP

A (m) = P . In arenas used to interpret base types all questions are initial and P-moves
answer them as detailed in the table below, where m ∈ {0, . . . , MAX}.
Arena O-question P-answers Arena O-question P-answers

�com� run ok �exp� q m

�var� read m �sem� grab ok
write(m) ok release ok

A justified sequence in arena A is a finite sequence of moves of A equipped with pointers. The first move is initial and
has no pointer, but each subsequent move n must have a unique pointer to an earlier occurrence of a move m such that
m � An. We say that n is (explicitly) justified by m or, when n is an answer, that n answers m. Note that interleavings of
several justified sequences may not be justified sequences; instead we shall call them shuffled sequences. If a question
does not have an answer in a justified sequence, we say that it is pending (or open) in that sequence. In what follows we
use the letters q and a to refer to question- and answer-moves, respectively, m denotes arbitrary moves. Not all justified
sequences are valid. In order to constitute a legal play, a justified sequence must satisfy a well-formedness condition
which reflects the “static” style of concurrency of our programming language: any process starting sub-processes must
wait for the children to terminate in order to continue. In game terms, if a question is answered then that question and
all questions justified by it must have been answered (exactly once). This is spelled out as follows:

Definition 2. The set PA of positions (or plays) over A consists of the justified sequences s over A which satisfy the
two conditions below.

FORK: In any prefix s′ = · · · q · · · m
��

of s, the question q must be pending before m is played.

WAIT: In any prefix s′ = · · · q · · · a
��

of s, all questions justified by q must be answered.

For two shuffled sequences s1 and s2, s1 � s2 denotes the set of all interleavings of s1 and s2. For two sets of
shuffled sequences S1 and S2, S1 � S2 = ⋃

s1∈S1,s2∈S2
s1 � s2. Given a set X of shuffled sequences, we define X0 = X,

Xi+1 = Xi � X. Then X�, called iterated shuffle of X, is defined to be
⋃

i∈N Xi .
We say that a subset � of PA is O-complete if s ∈ � and so ∈ PA, where o is an occurrence of an O-move, entail

so ∈ �.

Definition 3. A strategy � on A (written � : A) is a prefix-closed subset of PA, which is O-complete.

Strategies � : A ⇒ B and � : B ⇒ C are composed in the standard way, by considering all possible interactions of
positions from � with shuffled sequences of �� in the shared arena B, then hiding the B moves.

The model consists of saturated strategies only: the saturation condition stipulates that all possible (sequential)
observations of (parallel) interactions must be present in a strategy: actions of the environment can always be observed
earlier if possible, actions of the program can always be observed later. To formalize this, for any arena A a preorder �
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on PA is defined, as the least transitive relation � satisfying s0 ·o · s1 · s2 � s0 · s1 ·o · s2 and s0 · s1 ·p · s2 � s0 ·p · s1 · s2
for all s0, s1, s2 where o is an O-move and p is a P-move. In the above pairs of positions moves on the left-hand side
of � have the same justifiers as on the right-hand side.

Definition 4. A strategy � is saturated iff s ∈ � and s′ � s imply s′ ∈ �.

The two saturation conditions, in various formulations, have a long pedigree in the semantics of concurrency. For
example, they have been used by Udding [34] to describe propagation of signals across wires in delay-insensitive
circuits and by Josephs et al. [20] to specify the relationship between input and output in asynchronous systems with
channels. Laird [22] has been the first to adopt them in game semantics, in his model of Idealized CSP.

Arenas and saturated strategies form a Cartesian closed category Gsat in which Gsat(A, B) consists of saturated
strategies on A ⇒ B. The identity strategy is defined by “saturating” the alternating positions s ∈ PA1⇒A2 such that
∀t �even s, t � A1 = t � A2, which gives rise to the behaviour of an unbounded buffer (we use A1 and A2 to distinguish
the two copies of A in the arena A ⇒ A).

Other elements of the syntax are interpreted by the least saturated strategies generated by the plays from the table
below:

; q1 run ok q0 a0 a1 || run2 run0 run1 ok0 ok1 ok2

:= run2 q1 m1 write(m)0 ok0 ok2 ! q read m m

grab run1 grab0 ok0 ok1 release run1 release0 ok0 ok1

newvar x := m q q (read m)∗
(∑MAX

i=0 (write(i) ok (read i)∗)
)∗

a a

newsem x := 0 q q (grab ok release ok)∗ (grab ok + �) a a

newsem x := 1 q q (release ok grab ok)∗ (release ok + �) a a.

Here we follow a convention (see e.g. [13]) that uses subscripts to distinguish copies of the same move.
As shown in [15], Gsat is fully abstract for � in the sense mentioned below. comp(�) denotes the set of non-empty

complete plays of a strategy �, i.e. those in which all questions have been answered.

Theorem 5. � � M1
�∼ M2 ⇐⇒ comp(�� � M1�) ⊆ comp(�� � M2�). Hence, � � M1�M2 ⇐⇒ comp(�� � M1�)

= comp(�� � M2�).

3. Undecidability of ICA may-equivalence

A Minsky machine [26] is a state machine with two unbounded counters c1, c2. Formally, it can be viewed as a tuple
〈Q, q0, F, 	〉, where Q is the set of states partitioned into disjoint subsets QINC

1 , QINC
2 , QDEC

1 , QDEC
2 with a designated

set of final states F (q0 /∈ F ) and where 	 denotes the two groups of functions: 	1 : QINC
1 → Q, 	2 : QINC

2 → Q and
	0

1 : QDEC
1 → Q, 	0

2 : QDEC
2 → Q, 	+

1 : QDEC
1 → Q, 	+

2 : QDEC
1 → Q. The machine starts from an initial state

q0. The initial values of both counters are 0. When the machine is in state q ∈ QINC
i , the counter ci is incremented

by 1 and the machine moves to 	i (q). When in state q ∈ QDEC
i , the next step depends on whether the value of ci is

zero. If so, the machine enters 	0
i (q). Otherwise ci is decremented by 1 and the machine moves to 	+

i (q). We say that
a Minsky machine machine halts if a final state is entered and the values of both counters are then 0. It is well-known
[26] that the halting problem for Minsky machines is not decidable and we use this to show that neither is observational
equivalence.

Theorem 6. ICA may-equivalence is undecidable.

Proof. Let 
com stand for fix(�x.x) : com, i.e. 
com is the divergent command. We show how, given a Minsky
machine, one can define a term g : com → com � M : com such that g : com → com � M�
com if and only if the
associated machine does not halt. By Theorem 5 it suffices to show that comp(�g : com → com � M : com�) is not
empty iff the machine halts.
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The construction of M takes advantage of the fact that the free identifier g : com → com represents an indeterminate
procedure which can use its argument in a variety of ways (possibly in parallel; the uses may be interleaved or
overlapping). This intuition is captured by the use of iterated shuffle in the game model. Using semaphores we are
going to restrict the shape of the interleavings (possibly) generated by g in such a way that terminating computations
(complete positions) can only arise from a halting run of the Minsky machine.

Let us write [B] for if B then skip else 
com. For i = 1, 2 we define the following terms

Ii ≡ grab(S); [!ST ∈ QINC
i ]; ST := 	i (!ST); release(S),

D+
i ≡ grab(S); [!ST ∈ QDEC

i ]; ST := 	+
i (!ST); release(S),

D0
i ≡ grab(S); [!ST ∈ QDEC

i ]; ST := 	0
i (!ST); release(S),

which will correspond to the three kinds of actions on the counter ci . Note that each of the above terms is protected
with the same semaphore, so terminating computations can only emerge from interleavings of the six kinds of terms
where they are processed in a sequence. Hence, to complete the argument, it suffices to impose additional restrictions
guaranteeing that only the sequence simulating actions of the Minsky machine leads to convergence.

We first focus on ensuring that zero tests (modelled by D+
i or D0

i ) are handled correctly. By a simple history of
a counter we mean a (possibly empty) series of increments and decrements starting at value 0 resulting in value 0,
possibly followed by a zero test. Observe that the full history of a counter in a halting Minsky machine is a sequence
of simple histories. Then the term

Ci ≡ grab(Si); g(Ii; D+
i ); (D0

i or skip); release(Si)

corresponds to all simple histories of ci : because copies of Ii and D+
i will never overlap in terminating computations,

g(Ii; D+
i ) corresponds to all potential sequences of increments and decrements of ci leading from value 0 to 0. Note

also the use of semaphores Si which will guarantee that different copies of C1 (C2, respectively), i.e. simple histories
of each counter, can be interleaved only sequentially, while the sequence of C1’s and the sequence of C2’s can interact
freely. This ensures that g(C1 or C2), where

C1 or C2 ≡ newvar x in (x := 0 || x := 1); if !x then C1 else C2,

will represent all sequences of I1, I2, D
+
1 , D0

1, D+
2 , D0

2 in which before each D+
i the number of Ii’s always exceeds

that of D+
i ’s and before each D0

i we have an equal number of Ii’s and D+
i ’s.

Finally, in order to capture a halting run of the given Minsky machine, we have to make sure that the sequences
above are consistent with state changes of the machine. This is however already guaranteed by assertions of the
form [!ST ∈ · · ·] in Ii, D

+
i , D0

i whose presence we have ignored in our argument so far. M can thus be taken
to be

g : com → com � newvar ST := q0 in
newsem S, S1, S2 := 0, 0, 0 in g(C1 or C2); [!ST ∈ F ]. �

4. SCC: a resource-bounding type system

The simulation above is possible because free identifiers com → com correspond to functions that investigate the
argument an arbitrary number of times (possibly in parallel). Therefore, the key to regaining decidability is to restrict
the number of times an argument is used concurrently. However, we need not restrict the number of sequential uses, to
allow for iteration and all sorts of interesting procedural programs.

The type system is for the recursion-free fragment with while. Divergence, 
com, can then be defined by while 1
do skip. Types are generated by the following grammar:

� ::= com | exp | var | sem � ::= � | � → � � ::= �n.

The numbers that label the left-hand side of a function type will be called resource bounds.An occurrence m of a resource
bound in a type � is an assume (respectively, guarantee) if it occurs in the left-hand scope of an even (respectively,
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odd) number of →’s in �. Formally, m is an assume (a guarantee) in � iff � = A[m] (� = G[m]):
G[ ] ::= �[ ]

1 → �2 | �n → G[ ] | A[ ]n → �,

A[ ] ::= �n → A[ ] | G[ ]n → �.

For instance, 3 in (com3 → com)4 → com is an assume and 4 is a guarantee. Assumes and guarantees will turn out
to correspond to the Opponent/Player polarity in game semantics.

Assumes characterize the behaviour of the program context and guarantees characterize that of the program. The
assumes of a typing judgement �n1

1 , . . . , �nk

k � M : � are the assumes in � along with the guarantees in �1, . . . , �k .
The guarantees of a typing judgement are the guarantees of �, the assumes in �1, . . . , �k and n1, . . . , nk .

We use types of this form to approximate the maximum number of concurrent sub-threads of computation at any
moment. This estimate is subject to assumes on the environment. Intuitively, if a program has a type �, then provided
the environment behaves according to the assumes, the program’s behaviour satisfies the guarantees. In this spirit we
introduce a sub-typing relation which can be taken to correspond to weakening the constraints imposed by SCC.

���
n1 �n2

�n2 ��n1

�2 ��1 �1 ��2

�1 → �1 ��2 → �2
.

Intuitively, a subtype gives a less precise approximation: higher on the behaviour of the program and lower for the
environment. In the latter case, the bound is considered inferior because it applies to a weaker behaviour of the
environment.

The SCC typing rules are given in Fig. 3. Typing judgements are of the form��rM : �, where� = x1:�n1
1 , . . . , xk:�nk

k ;
we write n� = x1:�n·n1

1 , . . . , xk:�n·nk

k . Note that the typing rules make a distinction between parallel and sequential
composition. Parallel composition and application have multiplicative rules, in which the contexts are required to be
disjoint, as opposed to the rules for sequential operators (� can stand for ; , := , !, grab, release) including branching
and iteration. In order to be able to use identifiers (e.g. semaphores) in concurrent threads, a contraction rule is necessary;
we modify it so that the guaranteed bounds on the contracted variables are accumulated into the new variable.

Remark 7. The rule for application is also multiplicative. The reason is that call-by-name application is a peculiar
form of concurrency in which the computation carried out by the function is interleaved with that of its argument, albeit
in a highly constrained fashioned. For instance, if F is a first-order function, any computation arising in an application
F(M) also arises in the parallel composition · · · F(· · ·) · · · || · · · M · · · || · · · || · · · M · · ·, where the ellipses stand for
code manipulating semaphores so that the right interleaving of effects is enforced [15]. A multiplicative application
rule is also used in SRA [1].

Example 8. For any n ∈ N we have
(1) �r �f x.f (f (x)) : (comn → com)n+1 → (comn2 → com)

(2) �r �f x.f (x); f (x) : (comn → com)1 → (comn → com)

(3) �r �f x.f (x) || f (x) : (comn → com)2 → (com2n → com)

(4) �r �f.f (f skip) : (comn → com)n+1 → com
(5) �r �g.g(�x.g(�y.x)) : ((comn → com)n → com)n+1 → com.

SCC enjoys the standard syntactic properties of a typed lambda calculus (basis, generation, sub-term, substitution
and subject reduction lemmas) [8]. We also have the easily derivable dual of the subsumption law:

�, x : �′ �r M : �′′ ���′

�, x : � �r M : �′′ .

Not all ICA terms are typable in SCC. However, if one attempts to prove typability by induction on the structure of
ICA derivations, it turns out that only the application rule does not preserve it. This is because the corresponding SCC
rule requires that the bounds of the argument match those of the function term. For example, the application of the term
5 to term 4 above is untypable.

Given the bounds for environment, SCC can be used to certify bounds for the program.
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Fig. 3. SCC typing rules.

Definition 9. An ICA term � � M : � is r-typable if for any assignment of assumes there exists an assignment of
guarantees such that when we adorn �, � with these bounds we get �′, �′ such that �′ �r M : �′. We shall write �a, �g,
respectively, for the two assignments.

Since not all terms are typable, not all terms are r-typable. However, there is a wide class of r-typable (and so typable)
terms. The key to regaining typability lies in restricting the shape of possible applications. The lemma below exhibits
two instances where typability is preserved (a combination of the two is also possible).

Lemma 10. (1) Any �-normal ICA term is r-typable.
(2) Any ICA term in which function arguments are of first order or base type is r-typable.

Proof. We reason by induction on the ICA typing rules. All cases except the application rule are routine appeals to the
induction hypothesis. For rules with more than one premise it is necessary to apply the dual law given above to find
a common typing (by using the higher of the guarantees provided by the several appeals to the induction hypothesis).
Additionally, for || , contraction has to be used. Finally, we consider the restricted forms of application.

(1) If a term is �-normal then all applications have the form � � f M1 · · · Mk . For simplicity, we will assume that
k = 1 (the argument for k > 1 follows the same pattern).

Suppose � � f M1 : �2 and �a is an assignment of assumes to the typing judgement. Let �a
r = �a � �2. Note that

f : �1 → �2, for some �1, must be present in �, so �a also defines bounds for the associated occurrence of �1 → �2.
Let �a

f = �a � (�1 → �2).
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Consider � � M1 : �1 and the assignment of assumes in which the bounds for � are the same as in �a and those for
�1 are determined by �a

f . By IH we get �′ �r M1 : �′
1. Define the resource type �′

2 by decorating �2 with assumes

given by �a
r and guarantees which are assumes in �a

f . Then we have f : (�′
1 → �′

2)
1 �r f : (�′

1 → �′
2) and,

consequently, f : (�′
1 → �′

2), �
′ �r f M1 : �′

2. Recall that �′ will contain an occurrence of f where the associated
assumes are the same as those for f. Using the dual subsumption law we can make the guarantees match and finish by
contracting f.

(2) Suppose � � MN : � and � � N : � → �. Let �a be an assignment of assumes to the first judgement. By
IH, using assumes from �a for �, we have �′ �r N : �n′ → �. Now consider � � M : (� → �) → �. By IH,
using assumes from �a for � and n′ for the leftmost occurrence of �, we get �′′ �r M : (�n′ → �)n → �′. Hence,
�′′, n�′ �r MN : �′. Because �′′ and �′ share the same assumes, we can unify the guarantees inside �′ and �′′ using
the dual subsumption law and follow with contraction to get �′′′ �r f M : �′, where the assumes in �′′′ coincide
with �a. �

Using SCC we can define a new observational approximation relation �∼ r using typable terms and contexts along
with their bounds. Suppose � �r M1, M2 : �. In what follows we write �r C[Mi] to mean that C[Mi] is typable
and its derivation is constructed using (possibly several copies of) the given derivation of the typing judgement
� �r Mi , up to appropriate renaming of variables. We define � �r M1

�∼ rM2 to hold iff for all contexts C[−] such
that �r C[Mi] : com we have: C[M1] ⇓ implies C[M2] ⇓. Similarly, we write � �r M1�rM2 iff � �r M1

�∼ rM2

and � �r M2
�∼ rM1. In particular, the definition applies to the terms for which the above lemma holds. Note that

no bound needs to be placed on the way Mi is used in C[Mi], the bounds concern only the way its free identifiers
are trapped in context. In the definition of �∼ r we require � �r Mi : � to have the same annotations. If two terms
are typable with the same assumed bounds, it is always possible to type them with the same guaranteed bounds by
sub-typing.

Example 11 (Brookes [9]). Consider the terms

M1 ≡ newvar x := 0 in (p(x := !x + 1; x := !x + 1); if even(!x) then 
com)

M2 ≡ newvar x := 0 in (p(x := !x + 2); if even(!x) then 
com)

with p : com → com. Brookes has shown that in sequential Algol they are observationally equivalent, whereas in
concurrent Algol they are not. In SCC we have p : (com1 → com)1 �rM1�rM2; but for any (assumed) bound
n > 1, p : (comn → com)1 �rM1�

r
M2. The reason is that the assumed bound of 1 only allows identifier p to be

bound to a procedure which uses its argument sequentially. For example, context C[−] = (�p.[−])(�c.c || c) cannot
trap p : com1 → com. On the other hand, context C[−] = (�p.[−])(�c.c; c) can trap p : comn → com for
any n.

A formal proof of this example is immediate once the connection with game semantics is established in the following
section.

5. The game model revisited

We use the game model to interpret the annotations from the type system and to show how the model can be used
to reason about �∼ r , �r . In order to analyse the positions induced by terms in more detail we define a more refined
games framework where plays can form a subset of PA as opposed to the full PA. In particular, we are going to dissect
the possibilities for the function space game A ⇒ B. To do that we introduce an auxiliary notion of games in which
shuffled sequences are allowed (cf. [25]).

Definition 12. A bounded game A is a pair 〈A, RA〉 where A is an arena and RA is a prefix-closed subset of P �
A .

We also refer to the elements of RA as plays and write comp(RA) for the set of complete plays in RA (those in which
all questions are answered). The games of Gsat can be viewed as bounded games where RA = PA.
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Using bounded games we can define a more refined type hierarchy:

A × B = (A × B, RA + RB)

A ⊗ B = (A × B, RA � RB)

!A = (A, R�
A )

A�B = (A ⇒ B, {s ∈ P �
A⇒B | s � A ∈ RA, s � B ∈ RB}).

We can then construct an arrow type as

A ⇒ B = !A�B.

We also have

!A ⊗ !B = !(A × B).

Note that where RA = PA, RB = PB the × and ⇒ constructions coincide with the previous ones.
Let us now define

!◦A = (A, (comp(RA))∗ · RA),

i.e. !◦ is an impoverished, sequential, version of ! where a new “thread” of RA can be started only when the previous
one is completed. Obviously, R!◦A ⊆ R!A.

An important case of !◦A, which we use in the following, is when A is well-opened, i.e. each play in RA can contain
only one occurrence of an initial move, namely, the first move of the play (all games interpreting ICA types are of that
kind). Then !◦A contains plays which might have many occurrences of initial moves, but only one occurrence of an initial
question can be open (pending) at any time. Similarly,

⊗
1� i �n !◦A contains plays with at most n pending questions;

we shall write An for it. We use this construction to specify restricted function spaces: instead of A ⇒ B = !A�B we
consider An�B. These restrictions turn out to give the correct interpretation of the bounds inferred by the type system
for SCC.

Regardless of whether we deal with standard ICA type or typing judgements (annotated with bounds or not) � · · · �
stands for the usual interpretation in Gsat (i.e. the information about bounds is completely ignored by � · · · �). We
introduce the notation � · · · �� for bound-sensitive semantic interpretation.

Let � �r M : �, where � = �n1
1 , . . . , �nk

k . In Gsat it is standardly interpreted by a strategy for the game �� � �� =
��1� × · · · × ��k� ⇒ ��� or, equivalently, !��1� ⊗ · · · ⊗ !��k�����. Suppose � represents a vector of resource
bounds consistent with � �r M : �. It is not necessary that � includes all the bounds used in the resource-sensitive
type judgement. Then the corresponding bounded game, denoted by �� � ���, is defined inductively in the same way
as �� � �� except that whenever a bound n is specified by � (for an occurrence of → or �i), we use An�B and An

instead of, respectively, A ⇒ B = !A�B and !A.

Example 13. Suppose we have x1 : (com9 → sem)5, x2 : (exp3 → com)7 � M : exp7 → var. The complete vector
of resource bounds is (9, 5, 3, 7, 7). Let � stand for the distinguished bounds (−, 5, 3, −, 7). Then

�com → sem, exp → com � exp → var��

= (!�com���sem�)5 ⊗ !(�exp�3��com�)�(�exp�7��var�).

This notation is flexible enough to handle assumes, guarantees or combined assume-guarantee resource bounds in a
uniform way.

Now we are ready to interpret the bounds given by the type system using the game model. We denote the interpretation
by �� � M : ���a . It is simply �� � M : �� in which O-moves are restricted to those allowed by the An�B games
consistent with the bounds in �a:

�� � M : ���a = �� � M : �� ∩ R�� � ���a .
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More precisely, for each occurrence m of an initial move from such B Opponent will not be allowed to play an initial
move from A justified by m if the current position already contains n pending questions justified by m. The guaranteed
bounds given by SCC are then sound in that they are correct approximations of the shape of positions explored by P
when O behaves according to �a, i.e. the positions are not only in R�� � ���a but also in R�� � ���a�g , where by ��′ we
mean the two combined constraint vectors.

Theorem 14. �� � M : ���a ⊆ R�� � ���a�g .

Proof. The theorem can be proved by induction on the derivation of � �r M : �. As before, application is, technically,
the most difficult. In all other cases it is easy to see that the definition of �� � M : ���a is compositional: �� � M : ���a

can be defined directly by induction on the structure of �r derivations. Consequently, a simple appeal to the induction
hypothesis does the job.

For application, let �a
1, �

a
2, �

a
3 represent the assumed bounds of the respective three judgements:

� �r M : �n → �′  �r N : �

�, n �r MN : �′ .

Let us make the following definitions:

�1 = �� � M : � → �′��a
1
, �′

1 = �� � M : � → �′��a
3��,�′ ,

�2 = � � N : ���a
2
, �′

2 = � � N : ���a
3�,

where we write � � � for � restricted to a list of types �. The only difference between �i and �′
i (i = 1, 2) is that in �′

i

there are no bounds on O-moves in �. Otherwise, they are subject to the same restrictions, because �a
1 � �, �′ = �a

3 � �, �′
and �a

2 �  = �a
3 � .

Consider ��, n � MN : �′��a
3
, which is defined by interactions of �′

1 with �′
2. Note that up to the first move in �,

�′
1 behaves in the same way as �1. Then, as �′

1 and �′
2 interact, the induction hypotheses imply that the guarantees

provided by each of the strategies match the assumed bounds of the other (�g
1 � � = �a

2 � �, �g
2 � � = �a

1 � �). Thus, the
interaction of �′

1 and �′
2 is actually constrained to positions of �1 and �2. Consequently, ��, n � MN : �′��a

3
can also

be defined compositionally by interactions of �1 and �2 and the rest easily follow. �

The sets of complete plays induced by the restricted denotations comp(�� �r M : ���a ) turn out to provide a fully

abstract model of �∼ r .

Lemma 15. Suppose � �r M1, M2 : � and let �a be the final assignment of assumed bounds. Then comp(�� �r M1 :
���a ) ⊆ comp(�� �r M2 : ���a ) implies � � M1

�∼ rM2 : �.

Proof. Suppose �r C[Mi] : com (i = 1, 2) and C[M1] ⇓. Then, by the soundness of Gsat[15], comp(�C[M1]�) �= ∅.
As noted in the proof of Theorem 14, �C[M1]� can be defined inductively through �� � M1��a so, because
comp(�� �r M1��a ) ⊆ comp(�� �r M2��a ), we also have comp(�C[M2]�) �= ∅. Thus, again by the adequacy of

Gsat, C[M2] ⇓ and indeed M1
�∼ rM2. �

To prove the converse we need to strengthen the definability result from [14] to ensure that terms corresponding to
positions are also typable. This means that we cannot simply regard justification pointers as indicating parallel threads
of computation and have to sequentialize threads where possible. The details of the adaptation are presented in
Appendix ??. The example below illustrates this new definability algorithm.

Example 16. Let us consider a position in the game for com2 → com:

run · run1 · run1 · ok1 · run1 · ok1 · run1 · ok1 · ok1 · ok.
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The algorithm from [15,14] would return

�x.newvar x0, x3, x5, x7, x8 := 0 in x0 := 1; M; WAIT9,

where M ≡ (P1 || P2 || P4 || P6) and

P1 ≡ WAIT1; x; x3 := 1, P2 ≡ WAIT2; x; x5 := 1,

P4 ≡ WAIT4; x; x8 := 1, P6 ≡ WAIT6; x; x7 := 1,

but the term does not have the required type com2 → com. The refined version produces M ≡ (P1; P4) || (P2; P6)

instead. The term WAIT i tests whether all variables xj with indices less than i are set to 1 and diverges if they are not.

Consequently, the following properties can be proved as in [15].

Lemma 17. Suppose � is a type with constraints � and s ∈ R����
. Then there exists a term �r M : � such that �M� is

the least saturated strategy containing s.

Lemma 18. Suppose � �r M1, M2 : � and let �a be the final assignment of assumed bounds. � � M1
�∼ rM2 : � implies

comp(�� �r M1 : ���a ) ⊆ comp(�� �r M2 : ���a ).

Lemmas 15 and 18 imply full abstraction.

Theorem 19. Suppose � �r M1, M2 : � and let �a be the final assignment of assumed bounds.

• � � M1
�∼ rM2 : � ⇐⇒ comp(�� �r M1 : ���a ) ⊆ comp(�� �r M2 : ���a ).

• � � M1�rM2 : � ⇐⇒ comp(�� �r M1 : ���a ) = comp(�� �r M2 : ���a ).

6. Regular representation

In this section we show sets of complete plays comp(�� �r M : ���a ) can be represented faithfully as regular
languages and compared by checking language equivalence. The main difficulty to be addressed is the need to represent
pointers.

For any bounded game �, we represent the positions of R����a�g using the alphabet A(�) defined as follows:

A(�) = M���,

A(� → �) = A(�) + A(�),

A(�n) = {mi | m ∈ A(�), 1� i�n}.
Thus, elements of A(�) can be seen as moves of ��� decorated with a vector �i = (i1, . . . , ik) of labels produced by the
last clause. The letters m

�i will be used to encode occurrences of m in positions from R����a�g subject to two invariants.

• If a question q has several open occurrences then each of them will be represented by a different vector.
• Suppose an occurrence of a question q is represented by q

�i . If an occurrence of another question m is justified by
the above occurrence of q, then m is represented as mj�i for some j ∈ N.

We explain below how each position from the game under question will be represented so that the invariants are satisfied
and only letters from A(�) are used. Note that the initial moves of � occur without labels in A(�). They will also be
represented as such in positions (this never leads to ambiguities since positions have unique initial moves). Given a
representation of s a representation of sm is calculated as follows.

• If m is an answer to an occurrence of q in s represented by q
�i then m is represented by m

�i .
• If m is a question justified by an occurrence of q in s represented by q

�i , then there exists a sub-game Gn
m � Gq of

����a�g such that q, m are initial moves of, respectively, Gq, Gm. Since sm is a position of ����a�g there can be at
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most n − 1 open questions in s that are justified by the same occurrence of q and, hence, represented by qj�i . Thus
one of the labels from {1, . . . , n}, say k, has not been used. Then we represent m as mk�i (any such k will do).

Note that, thanks to the labels, justification pointers can be uniquely reconstructed from the representation, so it is
faithful. However, it is not unique because of the arbitrary choice of k. We will say that a representation is canonical
if k is always chosen to be the least k available. The notion of canonicity is crucial to comparing representations of
positions as they will provide the link between language equivalence and program equivalence.

Given a set S of strings over A(�) representing a set of plays (e.g. a strategy) on R����a�g we write can(S) for the
canonization of that representation.

Lemma 20. If S is regular so is can(S).

Proof. Given an automaton accepting S one construct one for can(S). The number of open questions in any position of
R����a�g is uniformly bounded. Hence, with the help of finite memory we can keep track of all labels of open questions
during the runtime of the automaton and relabel the accepted letters as required in a canonical representation. Since
only finite store is needed, all this can be done by a finite automaton, so can(S) is also regular. The formal construction
proceeds by annotating the states of the original automaton with all possible configurations of the finite memory.
A possible version is shown below.

Let 〈Q, z0, 	, F 〉 be the automaton accepting S. Then we define 〈Q′, z′
0, 	

′, F ′〉 as follows. Let M = {(m,�i, �j) |
m

�i , m �j ∈ A(�), m is a question} and Q′ = Q × ℘B(M) where ℘B(M) stands for the set of subsets of M of
size at most B and B is the uniform bound on the number of open questions in R����a�g . Let z′

0 = (z0, ∅) and

F ′ = F × {∅}.
• If 	(z, q) = z′ then define 	′((z, ∅), q) = (z′, {(q, (), ())}).
• If 	(z, a

�i ) = z′ then for all q, �h, X ∈ ℘B(M) such that (q,�i, �h) ∈ X and q � a include (z′, X \ {(q,�i, �h)}) in
	′((z, X), a

�h).
• If 	(z, qj�i ) = z′ then for all q1, �h, X ∈ ℘B(M) such that (q1,�i, �h) ∈ X and q1 � q include (z′, X′) in 	′((z, X), qk�h)

provided {1, . . . , k − 1} ⊆ U , k /∈ U , where U = {u | ∃�g,q2((q2, �g, u�h) ∈ X and q1 � q2)}, X′ = X ∪ {(q, j�i, k�h)}
and |X′|�B. �

Theorem 21. The canonical representation of comp(�� �r M : ���a ), denoted simply by �� �r M : �� below, is a
regular language over

A = A(�n1
1 ) + · · · + A(�nk

k ) + A(�).

Proof. Many of the definitions for the imperative part of the language have the same flavour as those for Idealized
Algol [13]. Sometimes the operation on regular languages will have to be followed by an explicit conversion to
canonical form.

We define the (|� � M|) notations by the following decompositions:

�� �r M : com� = run · (|� �r M|) · ok

�� �r M : exp� =
MAX∑
i=0

q · (|� �r M|)i · i

�� �r M : var� =
MAX∑
i=0

write(i) · (|� �r M|)wi · ok +
MAX∑
i=0

read · (|� �r M|)ri · i

�� �r M : sem� = grab · (|� �r M|)g · ok + release · (|� �r M|)r · ok

It is convenient to define �� �r M� via (|� �r M|):

(|� �r M; N |) = (|� �r M|) · (|� �r N |)
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(|� �r if M then N1 else N2|) = (|� �r M|)0 · (|� �r N2|) +
(

MAX∑
i=1

(|� �r M|)i
)

· (|� �r N1|)

(|� �r while M do N |) =
((

MAX∑
i=1

(|� �r M|)i
)

· (|N |)
)∗

· (|� �r M|)0

(|� �r !M|)i = (|� �r M|)ri
(|� �r M := N |) =

MAX∑
i=0

((|� �r N |)i · (|� �r M|)wi )

(|� �r grab(M)|) = (|� �r M|)g
(|� �r release(M)|) = (|� �r M|)r

The above cases do not require explicit canonization. Neither does that of �-abstraction which is interpreted using the
appropriate associativity isomorphism of the disjoint sum.

For semaphore or variable binding it suffices to consider the histories in which the moves occur completely sequen-
tially (in a canonical representation they are labelled with 1) [15]. We define

cellm = (read1 · m1)∗ ·
(

MAX∑
i=0

(write(i)1 · ok1 · (read1 · i1)∗)
)∗

and

�� �r newvar x := m in M : �� = (��, x : varn � M� ∩ cellm) \ A(varn),

where E = E � (A(�) + A(�))∗ and L \ A is obtained by erasing the symbols from A in strings from L. Similarly, let
us define G = grab1 · ok1 and R = release1 · ok1. Then

�� �r newsem x := 0 in M : �� = (��, x : semm � M� ∩ (G · R)∗ · (G + �)) \ A(semm)

�� �r newsem x := 1 in M : �� = (��, x : semm �r M� ∩ (R · G)∗ · (R + �)) \ A(semm).

We can take (|�,  �r M || N |) to be (|� �r M|) � (| �r N |), which preserves canonicity.
Contraction is defined through renaming of labels associated with y. The labels 1, . . . , n are replaced with m +

1, . . . , m + n. This induces a homomorphism on the language so the result is still regular but needs canonization.
We write id� for �x : � �r x : ��. idcom is defined by {run · run1 · ok1 · ok}. For other base types the definition is

analogous [13]. We extend it to function types �n → �′ as follows. Let id�′ = ∑
q,a(q · q1 · idq,a

�′ · a1 · a). Then

id�n→�′ = can

(∑
q,a

(q · q1 · (�n
i=1(id

i1
� )∗ � idq,a

�′ ) · a1 · a)

)
,

where idj1
� is id� in which each move m

�i is replaced with m
�ij1 if it comes from the right copy of � and with m

�ij if it
comes from the left one.

For application it is crucial that canonical representations interact as the interaction has to be represented in the
same way both by the function and by the argument. Let  = �n1

1 , . . . , �nk

k . For i = 1, . . . , n let Ñi be the same as
� �r N : �� except that the moves from the �-component are additionally decorated with the label i while the original
labels of moves from �j (1�j �k) (i.e. 1, . . . , nj ) are replaced, respectively, with (i − 1)nj + 1, . . . , inj . Clearly,
these operations preserve regularity. Then we can define ��,  � MN : �′� to be can((M̃ ∩ Ñ) \ A(�n)) where

M̃ = �� � M : �n → �′� � A(�n·n1
1 )∗ � · · · � A(�n·nk

k )∗

Ñ = A(�)∗ � can(�n
i=1(Ñi)

∗) � A(�′)∗.

Finally, no changes are needed to interpret subsumption. �

Theorem 22. �∼ r and �r are decidable.
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7. Further work

We have already stated that we plan to study the syntactic properties of the system separately. The previous section
establishes that there is a finite-state representation of terms of SCC, and that it can be used, in principle, for model
checking using a method similar to [2]. Lemma 10 and the various examples we give suggest that the restrictions imposed
by the tighter typing discipline are not onerous. However, to claim a fully automated verification (and certification)
procedure the issue of automated type inference must be investigated. Finally, only by incorporating these theoretical
results in a model-checking tool can we evaluate the practicality of the method.
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Appendix A. Resource-sensitive definability

We define a recursive algorithm, called PROC+, which takes a position s in R����a�g and returns a term �r Ps : �

such that �Ps� is the least saturated strategy containing s. PROC+ relies on a recursive procedure PROC which takes
the original position as the initial argument. In the recursive invocations of PROC, the argument is a subsequence of
the form s � m, where t � m is the subsequence of t consisting of m and all moves hereditarily justified by m, always
an O-question. Note that consequently a move in t is answered in t iff it is answered in s.

Throughout the execution of PROC it is convenient to use indices relative to the original s; we write si for the ith
move of s, assuming s0 initial. In order to generate the desired position we need to control the way in which both P
and O move. We control P-moves using guards that wait for special side-effects (time-stamps) caused by O-moves.
The effects take place only if a correct O-move is played and we make sure that they occur only once by using a fresh
semaphore for each O-move. This allows us to enforce arbitrary synchronization policies, restricting the order of moves
present in the original sequence up to the reorderings dictated by the saturation conditions. To that effect, a global
variable xj , i.e. a variable which is bound by new at the top level and initialized to 0, is associated which each index
of an O move in s. The time-stamp consists of assigning 1 to the variable, xj := 1.

For 1�j � |s| − 1, let us define:

Oj = {i ∈ N | 0� i < j, si is an O-move}.
We define WAIT j as the term which checks for time-stamps originating from all the O-moves with indices smaller
than j:

WAIT j ≡
[ ∧

g∈Oj

(!xg = 1)

]
.

PROC(t : �) where � = �n1
1 → · · · → �nh

h → � is defined as follows in two stages which manage O-questions and
P-answers, and, respectively, P-questions and O-answers.

If t is empty, �p1 · · · ph.
�0 is returned. Otherwise, let o = si be the initial move of t (which is always an O-question).
(1) For a = 1, . . . , h let ia1 < · · · < iama

be the s-indices of all occurrences of questions from �a explicitly justified
by si . We define a function � : {ia1 , . . . , iama

} → {1, . . . , na} (which will assign moves to threads) inductively using
the ordering ia1 < · · · < iama

. Consider iac . Then at most na − 1 out of sia1
, . . . , siac−1

are open in s� iac
. Let Q

op
c be the

set containing them (i.e. |Qop
c | < na). Define �(iac ) to be the least number from {1, . . . , na} different from each �(m)

(m ∈ Q
op
c ). Assume we have terms Piad

: com (d = 1, . . . , ma) to be defined later. For k = 1, . . . , na let Rk
a be the

sequential composition of all Piad
such that �(iad ) = k (ordered in the same way as iad ’s). Then let Ra = R1

a || · · · || Rna
a .

PROC returns the following results, depending on �.

• � = com:

�p1 · · · ph.(xi := 1); (R1 || · · · || Rh); PANScom
i ,
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si … si1 … sij … sjk,1 … sim … sjk,mk …

o p− px ok p− ok

Fig. A.1. Questions and justification pointers.

where

PANScom
i ≡

{

com si is unanswered in t,

WAIT i′ si′ answers si in t.

By convention, (R1 || · · · || Rh) degenerates to skip for m = 0.
• � = exp: Same as for com except that PANScom

i is replaced with PANSexp
i defined below.

PANSexp
i ≡

{

exp si is unanswered in t,

WAIT i′ ; si′ si′ answers si in t.

• � = var:
◦ If si = read:

mkvar( �x.
com, (xi := 1); (R1 || · · · || Rh); PANSexp
i ).

◦ If si = write(v):

mkvar(�x.if (x = v) then xi := 1; (R1 || · · · || Rh); PANScom
i , 
exp).

The presence of the x = v test serves to ensure that the only acceptable move by O is only that which writes v,
and no other value.

• � = sem is analogous to var:
◦ If si = grab:

mksem((xi := 1); (R1 || · · · || Rh); PANScom
i , 
com).

◦ If si = release:

mksem(
com, (xi := 1); (R1 || · · · || Rh); PANScom
i ).

(2) Let i1 < · · · < im be the s-indices of all occurrences of questions justified by si . Here we show how to define
the terms Pij for 1�j �m. Let us fix j and suppose that sij = px (1�x�h) and �x = �′

1
m1 → · · · → �′

n
mn → �′.

Let o1, . . . , on be all the O-questions enabled by px (corresponding to �′
1, . . . , �′

n, respectively).
For each k (1�k�n) let jk,1 < · · · < jk,mk

be the s-indices of all occurrences of ok in t which are explicitly justified
by sij (see Fig. A.1).

If mk = 0, then P k
j ≡ 
�′

k
. Otherwise, for all l = 1, . . . , mk we make the following definitions: P

k,l
j ≡

PROC(t � sjk,l
: �′

k) and

P k
j ≡ ONCEwjk,1

[P k,1
j ] or · · · or ONCEwjk,mk

[P k,mk

j ],
where wjk,1 , . . . , wjk,mk

are fresh semaphore names and ONCEw(M) = grab(w); M . Finally, we define the terms Pij ,
depending on �′. The fresh variables zc are used to “store” O-answers for future tests.

First, it is useful to define the following macros:

OANScom
c ≡

{
skip sc is unanswered in t,

xc′ := 1 sc′ answers sc in t,

OANSexp
c ≡

{
skip sc is unanswered in t,

if (!zc = sc′) then xc′ := 1 else skip sc′ answers sc in t.

• For �′ = com, Pij ≡ WAIT ij ; (pxP
1
j · · · P n

j ); OANScom
ij
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• For �′ = exp, Pij ≡ WAIT ij ; zij := (pxP
1
j · · · P n

j ); OANSexp
ij

.

• For �′ = var there are two sub-cases:
◦ If sij = read, Pij ≡ WAIT ij ; zij := !(pxP

1
j · · · P n

j ); OANSexp
ij

.

◦ If sij = write(v), Pij ≡ WAIT ij ; (pxP
1
j · · · P n

j ) := v; OANScom
ij

.

• For �′ = sem, Pij there are two sub-cases:
◦ If sij is grab, Pij ≡ WAIT ij ; grab(pxP

1
j · · · P n

j ); OANScom
ij

◦ If sij is release, Pij ≡ WAIT ij ; release(pxP
1
j · · · P n

j ); OANScom
ij

.

After PROC(s : �) returns �p1 · · · pk.M , all variables and semaphores used in the construction of M (i.e. x−, z−, w−)
must be bound at the topmost level (the variables x− must be initialized to 0, the semaphores w− to 0, the initial values
of z− are irrelevant). For � = com, exp this is done by taking

�p1 · · · pk.newvar �x, �z := �0 in (newsem �w := �0 in M).

For � = var, com the binders have to be pushed inside mkvar or mksem. We denote the final term by PROC+(s : �).
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