On the positive weak almost limited operators

NABIL MACHRAFIa,*, AZIZ ELBOURb, KAMAL EL FAHRIa, KHALID BOURASc

aDepartment of Mathematics, Faculty of Sciences, Ibn Tofail University, P.O. Box 133, Kenitra 14000, Morocco
bDepartment of Mathematics, Faculty of Sciences and Technologies, Moulay Ismail University, P.O. Box 509, Erachidia 52000, Morocco
cFaculty Polydisciplinary, Abdelmalek Essaadi University, P.O. Box 745, Larache 92004, Morocco

Received 8 November 2014; accepted 5 February 2015
Available online 14 February 2015

Abstract. Using the concept of approximately order bounded sets with respect to a lattice seminorm, we establish some new characterizations of positive weak almost limited operators on Banach lattices. Consequently, we derive some results about the weak Dunford–Pettis* and the Dunford–Pettis* property of \(\sigma\)-Dedekind complete Banach lattices.

Keywords: Weak almost limited operator; The weak Dunford–Pettis* property; Banach lattice

2010 Mathematics Subject Classification: primary 46B42; secondary 46B50; 47B65

1. INTRODUCTION AND NOTATIONS

Throughout this paper \(X, Y\) will denote real Banach spaces, and \(E, F\) will denote real Banach lattices. \(E^+\) denotes the positive cone of \(E\) and \(\text{sol}(A)\) denotes the solid hull of a subset \(A\) of a Banach lattice. The notation \(x_n \perp x_m\) will mean that the sequence \((x_n)\) of a Banach lattice is disjoint, that is, \(|x_n| \wedge |x_m| = 0\), \(n \neq m\). An operator \(T : E \to F\) is positive if \(T(x) \geq 0\) in \(F\) whenever \(x \geq 0\) in \(E\). A lattice seminorm \(\varrho\) on a Banach lattice \(E\) is a seminorm such that for every \(x, y \in E\), \(|x| \leq |y|\) implies \(\varrho(x) \leq \varrho(y)\). The closed unit ball associated to a lattice seminorm \(\varrho\) is defined by \(B_\varrho = \{x \in E : \varrho(x) \leq 1\}\).

The lattice operations in a Banach lattice \(E\) (resp. \(E'\)) are weakly (resp. weak*) sequentially continuous if for every weakly null sequence \((x_n)\) in \(E\) (resp. weak* null sequence \((f_n)\) in \(E'\)), \(|x_n| \to 0\) for \(\sigma(E, E')\) (resp. \(|f_n| \to 0\) for \(\sigma(E', E)\)). Finally, we will use the term

* Corresponding author.
E-mail addresses: nmachrafi@gmail.com (N. Machrafi), azizelbour@hotmail.com (A. Elbour), kamalelfahri@gmail.com (K. El Fahri), bouraskhalid@hotmail.com (K. Bouras).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
operator $T : E \to F$ between two Banach lattices to mean a bounded linear mapping. We refer to [1,6] for unexplained terminology of Banach lattice theory and positive operators.

Several types of the Dunford–Pettis property are considered in the theory of Banach lattices. Namely, a Banach lattice E has

- the Dunford–Pettis property, whenever $x_n \xrightarrow{w} 0$ in E and $f_n \xrightarrow{w} 0$ in E' imply $f_n(x_n) \to 0$.
- the Dunford–Pettis* property, whenever $x_n \xrightarrow{w} 0$ in E and $f_n \xrightarrow{w*} 0$ in E' imply $f_n(x_n) \to 0$.
- the weak Dunford–Pettis property (abb. wDP property) [7], whenever $x_n \perp x_m$, $x_n \xrightarrow{w} 0$ in E and $f_n \xrightarrow{w} 0$ in E' imply $f_n(x_n) \to 0$.
- the weak Dunford–Pettis* property (abb. wDP* property), whenever $x_n \xrightarrow{w} 0$ in E and $f_n \perp f_m$, $f_n \xrightarrow{w*} 0$ in E' imply $f_n(x_n) \to 0$.

The wDP* property, introduced recently by J. X. Chen et al. [3], is a weak version of the Dunford–Pettis* property and stronger than the wDP property. Note that the weak Dunford–Pettis property is related to the so called weak almost limited operators. An operator $T : E \to F$ between Banach lattices is said to be weak almost limited [4], whenever

$$x_n \xrightarrow{w} 0 \text{ in } E \text{ and } f_n \perp f_m, f_n \xrightarrow{w*} 0 \text{ in } E' \text{ imply } f_n(T(x_n)) \to 0.$$

Clearly, a Banach lattice E has the weak Dunford–Pettis* property if and only if the identity operator on E is weak almost limited.

Let us recall that an operator $T : X \to Y$ is said to be limited if $\|T^*(f_n)\| \to 0$ for every weak* null sequence $(f_n) \subset Y^*$. Furthermore, an operator $T : X \to E$ from a Banach space into a Banach lattice is said to be almost limited [5], if $\|T^*(f_n)\| \to 0$ for every disjoint weak* null sequence $(f_n) \subset E^*$. Accordingly, a Banach lattice E is said to have the Schur property (resp. dual Schur property [5]), if weakly null sequences in E are norm null (resp. disjoint weak* null sequences in E' are norm null). For a σ-Dedekind complete Banach lattice E (see [5, Theorem 3.3]), the dual Schur property coincide with the so called dual positive Schur property [2], that is, weak* null sequences in $(E')^+$ are norm null. Clearly, a Banach lattice E has the dual Schur property if and only if the identity operator on E is almost limited. For an operator $T : E \to F$ between Banach lattices the following implications are clear:

$$T \text{ is limited } \Rightarrow T \text{ is almost limited } \Rightarrow T \text{ is weak almost limited.}$$

However, there is a weak almost limited operator which needs not to be almost limited (and hence limited). Indeed, the identity operator $I : \ell^1 \to \ell^1$ is weak almost limited as ℓ^1 has the Schur (wDP*) property. But, as ℓ^1 does not have the dual positive Schur property [8, Proposition 2.1], $I : \ell^1 \to \ell^1$ is not almost limited. On the other hand, the identity operator on the Banach lattice c is not weak almost limited. Indeed, let $f_n \in c^* = \ell^1$ be such that $f_n = (0, \ldots, 0, 1_{(2n)}, -1_{(2n+1)}, 0, \ldots)$. Then (f_n) is a disjoint weak* null sequence in c^* [3, Example 2.1(2)], and clearly, the sequence (x_n) defined by $x_n = (0, \ldots, 0, 1_{(2n)}, 0, \ldots) \in c$ is weakly null, but $f_n(x_n) = 1$ for all n.

In this paper, using the concept of approximately order bounded sets with respect to a lattice seminorm, we establish a characterization of positive weak almost limited operators
(Theorem 2.5), and give consequently in terms of sequences in E and F', several characterizations of positive weak almost limited operators from E into a σ-Dedekind complete Banach lattice F (Theorem 2.7). As consequences we derive some new characterizations of the wDP* property of a σ-Dedekind complete Banach lattice (Corollary 2.10). Finally, we establish some sufficient conditions under which the wDP* and the Dunford–Pettis* properties coincide (Corollary 2.12).

2. Main results

The following lemmas will be used throughout this paper.

Lemma 2.1. Let E be a Banach lattice, let $\{x_n\} \subset E^+$ be a norm bounded sequence and let $x = \sum_{n=1}^{\infty} 2^{-n} x_n$. Then the sequences (u_n) and (v_n) defined for every $n \geq 2$ by

$$u_n = \left(x_n - 2^n \sum_{i=1}^{n-1} x_i - x \right)^+$$

and

$$v_n = \left(x_n - 4^n \sum_{i=1}^{n-1} x_i - 2^{-n} x \right)^+$$

are a disjoint sequences.

Proof. Note that the proof is similar for the two sequences. If $n > m \geq 2$, then we have

$$0 \leq u_n \leq (x_n - 2^n x_m)^+$$. $$0 \leq 2^n u_m \leq 2^n (x_m - 2^{-n} x_n)^+ = (x_n - 2^n x_m)^-.$$

So, from $(x_n - 2^n x_m)^+ \perp (x_n - 2^n x_m)^-$ we see that $u_n \perp u_m$ as desired. \hfill \Box

Lemma 2.2 ([1, Theorem 4.34]). If A is a relatively weakly compact subset of a Banach lattice E, then every disjoint sequence in the solid hull of A converges weakly to zero. In particular, for every sequences $(x_n), (y_n) \subset E$ such that $|y_n| \leq |x_n|, y_n \perp y_m$ and $x_n \overset{w}{\rightarrow} 0$ we have $y_n \overset{w}{\rightarrow} 0$.

Lemma 2.3 ([3, Lemma 2.2]). Let E be a σ-Dedekind complete Banach lattice. Then for every sequences $(f_n), (g_n) \subset E'$ such that $|g_n| \leq |f_n|, g_n \perp g_m$ and $f_n \overset{w^*}{\rightarrow} 0$ we have $g_n \overset{w^*}{\rightarrow} 0$.

Let us recall that for a lattice seminorm ϱ on a Banach lattice E, a subset A of E is said to be approximately order bounded with respect to ϱ if for every $\varepsilon > 0$ there exists $u \in E^+$ such that $A \subset [-u, u] + \varepsilon B_{\varrho}$ (see [6, Remark, p. 73]). Note that from [6, Remark, p. 73], it follows that $A \subset E$ is approximately order bounded with respect to ϱ if and only
if for every $\varepsilon > 0$ there exists $u \in E^+$ such that $\varrho \left((|x| - u)^+ \right) \leq \varepsilon$ for every $x \in A$. Moreover, if $A \subset E$ is a norm bounded subset, and $T : E \to F$ is a positive operator, then it is easy to see that $\varrho_{T,A} (f) := \sup \{ |f| (T (|x|)) : x \in A \}$ defines a lattice seminorm on F'. For the identity operator $I : E \to E$, we get the lattice seminorm on E' defined by $\varrho_A (f) = \sup \{ |f| (|x|) : x \in A \}$.

We shall need the following lemma which characterizes approximately order bounded sequences with respect to a lattice seminorm.

Lemma 2.4. A sequence (x_n) of a Banach lattice E is approximately order bounded with respect to a lattice seminorm ϱ, if and only if for every $\varepsilon > 0$ there exist $u \in E^+$ and a natural number k such that $\varrho \left((|x_n| - u)^+ \right) \leq \varepsilon$ for every $n > k$.

Proof. The “only if” part is obvious. For the “if” part, let $\varepsilon > 0$. There exist $u \in E^+$ and a natural number k such that $\varrho \left((|x_n| - u)^+ \right) \leq \varepsilon$ for every $n > k$. Put $v_k = \sqrt[4]{\sum_{n=1}^{k} |x_n|}$ and $v = u + v_k$. So $\varrho \left((|x_n| - v)^+ \right) \leq \varepsilon$ holds for every n. In fact,

- if $n \leq k$ then $\varrho \left((|x_n| - v)^+ \right) = \varrho (0) = 0 \leq \varepsilon$;
- if $n > k$ then $(|x_n| - v)^+ \leq (|x_n| - u)^+$ and hence $\varrho \left((|x_n| - v)^+ \right) \leq \varrho \left((|x_n| - u)^+ \right) \leq \varepsilon$.

This ends the proof. □

Our following result characterizes positive weak almost limited operators from E into σ-Dedekind complete Banach lattice F through weak* null sequences in F' that are approximately order bounded with respect to a lattice seminorm.

Theorem 2.5. Let E and F be two Banach lattices such that F is σ-Dedekind complete. Then, a positive operator $T : E \to F$ is a weak almost limited if, and only if, each weak* null sequence $(f_n) \subset F'$ is approximately order bounded with respect to the lattice seminorm $\varrho_{T,A}$ for every relatively weakly compact set $A \subset E$.

Proof. For the “only if” part, assume by way of contradiction that there exist a weak* null sequence $(f_n) \subset F'$, a relatively weakly compact subset $A \subset E$, such that (f_n) is not approximately order bounded with respect to $\varrho_{T,A}$. That is by Lemma 2.4, there is some $\varepsilon > 0$ so that for each $g \in (F')^+$ and each natural number k we have

$$\varrho_{T,A} \left((|f_n| - g)^+ \right) > \varepsilon$$

for at least one $n > k$ and thus, $(|f_n| - g)^+ (T |x_n|) > \varepsilon$ for at least one $x_n \in A$. In particular, an easy inductive argument shows that there exist a subsequence of (f_n) (which we still denote (f_n)) and a sequence $(x_n) \subset A$ such that

$$\left(|f_n| - 4^n \sum_{i=1}^{n-1} |f_i| \right)^+ (T |x_n|) > \varepsilon$$
holds for all $n \geq 2$. Let $f = \sum_{n=1}^{\infty} 2^{-n} |f_n|$ and

$$g_n = \left(|f_n| - 4^n \sum_{i=1}^{n-1} |f_i| - 2^{-n} f \right)^+ \quad (n \geq 2).$$

Clearly, $0 \leq g_n \leq |f_n|$ holds for every n, and note that from Lemma 2.1 (g_n) is a disjoint sequence. Then by Lemma 2.3, $g_n \overset{w^*}{\to} 0$. Hence, as T is weak almost limited we see that T (sol (A)) is an almost limited set ([4, Theorem 2.4 (5)]), and then $g_n (T |x_n|) \to 0$. On the other hand, we have for every $n \geq 2$

$$0 < \varepsilon < \left(|f_n| - 4^n \sum_{i=1}^{n-1} |f_i| \right)^+ (T |x_n|) \leq g_n (T |x_n|) + 2^{-n} f (T |x_n|) \to 0,$$

which is impossible.

Now, for the “if” part, let $(x_n) \subset E, (f_n) \subset F'$ be respectively a disjoint weakly null and a disjoint weak* null sequences. We shall see by [4, Theorem 2.4 (3)] that $f_n (Tx_n) \to 0$. To this end, put $A = \{x_n : n \in \mathbb{N}\}$ and let $\varepsilon > 0$. By hypothesis there exists some $g \in (F')^+$ so that $(|f_n| - g)^+ (T |x_n|) \leq g_{T,A} (|f_n| - g)^+ \leq \varepsilon$ holds for all n. As $|x_n| \overset{w^*}{\to} 0$ (Lemma 2.2), choose some natural number m such that $g (T |x_n|) \leq \varepsilon$ holds for every $n \geq m$. Thus, for every $n \geq m$ we get

$$|f_n (Tx_n)| \leq |f_n (T |x_n|)|$$

$$\leq (|f_n| - g)^+ (T |x_n|) + g (T |x_n|)$$

$$\leq 2\varepsilon.$$

This show that $f_n (Tx_n) \to 0$, and then T is a weak almost limited operator. \qed

Consequently, σ-Dedekind complete Banach lattices with the wDP* property enjoy the following lattice approximation property.

Corollary 2.6. A σ-Dedekind complete Banach lattice E has the wDP* property if, and only if, each weak* null sequence $(f_n) \subset E'$ is approximately order bounded with respect to the lattice seminorm ϱ_A for every relatively weakly compact set $A \subset E$.

The following main result gives some characterizations of positive weak almost limited operators (related to sequences with positive terms in statements (6)–(8)).

Theorem 2.7. Let E and F be two Banach lattices such that F is σ-Dedekind complete. Then for a positive operator $T : E \to F$, the following assertions are equivalent:

1. T is weak almost limited.
2. $f_n (Tx_n) \to 0$ for every weakly null sequence $(x_n) \subset E^+$ and every disjoint weak* null sequence $(f_n) \subset F'$.
3. $f_n (Tx_n) \to 0$ for every disjoint weakly null sequence $(x_n) \subset E^+$ and every disjoint weak* null sequence $(f_n) \subset F'$.
4. $f_n (Tx_n) \to 0$ for every disjoint weakly null sequence $(x_n) \subset E^+$ and every disjoint weak* null sequence $(f_n) \subset (F')^+$.
5. $f_n (Tx_n) \to 0$ for every disjoint weakly null sequence $(x_n) \subset E$ and every weak* null sequence $(f_n) \subset F'$.
(6) \(f_n(Tx_n) \to 0\) for every weakly null sequence \((x_n) \subset E^+\) and every weak* null sequence \((f_n) \subset F'\).

(7) \(f_n(Tx_n) \to 0\) for every weakly null sequence \((x_n) \subset E\) and every weak* null sequence \((f_n) \subset (F')^+\).

(8) \(f_n(Tx_n) \to 0\) for every weakly null sequence \((x_n) \subset E^+\) and every weak* null sequence \((f_n) \subset (F')^+\).

Proof. (1) \(\Rightarrow\) (2) \(\Rightarrow\) (3) \(\Rightarrow\) (4) Obvious.

(4) \(\Rightarrow\) (1) Follows from ([4], Theorem 2.4 (1 \(\Leftrightarrow\) 7)).

(1) \(\Rightarrow\) (6) Let \((x_n) \subset E^+\), \((f_n) \subset F'\) be respectively a weak null and weak* null sequences, and let \(\varepsilon > 0\). Put \(A = \{x_n : n \in N\}\). From Theorem 2.5, pick some \(g \in (F')^+\) so that \((|f_n| - g)^+(Tx_n) \leq g_{T,A}((|f_n| - g)^+) \leq \varepsilon\) holds for all \(n\), and choose some natural number \(m\) such that \(g(Tx_n) < \varepsilon\) holds for every \(n \geq m\). Now, for every \(n \geq m\) we have

\[|f_n(Tx_n)| \leq |f_n|(Tx_n) \leq (|f_n| - g)^+(Tx_n) + g(Tx_n) \leq 2\varepsilon.\]

This shows that \(f_n(Tx_n) \to 0\).

(6) \(\Rightarrow\) (4) Obvious.

(6) \(\Rightarrow\) (5) If \((x_n) \subset E\) is a disjoint weakly null sequence then by Lemma 2.2, we have \(x_n^+ \rightarrow 0\) and \(x_n^− \rightarrow 0\) and the result follows from the equality \(f_n(Tx_n) = f_n(Tx_n^+) - f_n(Tx_n^-)\).

(5) \(\Rightarrow\) (4) Obvious.

(5) \(\Rightarrow\) (7) Let \((x_n) \subset E\), \((f_n) \subset (F')^+\) be respectively a weak null and weak* null sequences, and let \(\varepsilon > 0\). We claim in this case that there exist \(\varepsilon \in E^+\) and a natural number \(k\) such that

\[f_n\left(T\left(\left|x_n\right| - z\right)^+\right) < \varepsilon\]

(\#) holds for all \(n > k\). To see this, assume by way of contradiction that (\#) is false. That is, for each \(z \in E^+\) and each \(k\) we have \(f_n\left(T\left(\left|x_n\right| - z\right)^+\right) \geq \varepsilon\) for at least one \(n > k\). An easy inductive argument shows that there exist a subsequence of \((x_n)\) and a subsequence of \((f_n)\) (which we still denote \((x_n)\) and \((f_n)\)) such that

\[f_n\left(T\left(\left|x_n\right| - 2^n \sum_{i=1}^{n-1} |x_i|\right)^+\right) \geq \varepsilon\]

holds for all \(n \geq 2\). Let \(x = \sum_{n=1}^{\infty} 2^{-n} |x_n|\) and \(y_n = \left(\left|x_n\right| - 2^n \sum_{i=1}^{n-1} |x_i| - x\right)^+\). Clearly, \(0 \leq y_n \leq |x_n|\) holds for every \(n \geq 2\), and note that from Lemma 2.1 \((y_n)\) is a disjoint sequence. Then by Lemma 2.2 we get \(y_n \rightarrow 0\). Now, from our hypothesis we have \(f_n(Ty_n) \to 0\). Or for every \(n \geq 2\) we have

\[0 < \varepsilon \leq f_n\left(T\left(\left|x_n\right| - 2^n \sum_{i=1}^{n-1} |x_i|\right)^+\right) \leq f_n(Ty_n) + f_n(Tx) \to 0,\]

which is impossible. Therefore, (\#) is true.
Now, let \(z \in E^+ \) and let \(k \) be such that \((\ast)\) is valid, and choose \(m > k \) such that
\[
f_n(T(z)) < \varepsilon \text{ holds for every } n \geq m.
\]
Thus, for every \(n \geq m \) we have
\[
|f_n(Tx_n)| \leq f_n(T|x_n|) \leq f_n(T(|x_n| - z)^+) + f_n(Tz) \leq 2\varepsilon.
\]
This shows that \(f_n(Tx_n) \to 0 \).

(7) \Rightarrow (4) Obvious.

(6) \Rightarrow (8) \Rightarrow (4) Obvious. \(\Box \)

From the statements (6) or (7) or (8) of Theorem 2.7, it follows easily the following corollaries.

Corollary 2.8. Let \(E, F \) and \(G \) be a Banach lattices such that both \(F \) and \(G \) are \(\sigma\)-Dedekind complete. If for the scheme of positive operators \(E \overset{T}{\rightarrow} F \overset{R}{\rightarrow} G \), \(T \) or \(R \) is weak almost limited then, so is the product \(RT \). In particular if \(E \) is a \(\sigma\)-Dedekind complete Banach lattice, then the square of each positive weak almost limited operator \(T : E \to E \) is likewise weak almost limited.

Corollary 2.9. If \(E \) and \(F \) are a \(\sigma\)-Dedekind complete Banach lattices such that \(E \) or \(F \) has the wDP* property, then each positive operator \(T : E \to F \) is weak almost limited.

The following corollary gives some new characterizations of the wDP* property of a \(\sigma\)-Dedekind complete Banach lattice, other than those established in [3, Theorem 3.2].

Corollary 2.10. Let \(E \) be a \(\sigma\)-Dedekind complete Banach lattice. Then the following assertions are equivalent:

1. \(E \) has the wDP* property.
2. \(f_n(x_n) \to 0 \) for every disjoint weak null sequence \((x_n) \subset E \) and every weak* null sequence \((f_n) \subset E' \).
3. \(f_n(x_n) \to 0 \) for every weakly null sequence \((x_n) \subset E^+ \) and every weak* null sequence \((f_n) \subset E' \).
4. \(f_n(x_n) \to 0 \) for every weakly null sequence \((x_n) \subset E \) and every weak* null sequence \((f_n) \subset (E')^+ \).
5. \(f_n(x_n) \to 0 \) for every weak null sequence \((x_n) \subset E^+ \) and every weak* null sequence \((f_n) \subset (E')^+ \).

Corollary 2.11. Let \(T : E \to F \) be a positive operator from a Banach lattice \(E \) into a \(\sigma\)-Dedekind complete Banach lattice \(F \). If the lattice operations of \(E \) are sequentially weakly continuous (resp. the lattice operations of \(F' \) are sequentially weak* continuous), then the following statements are equivalent:

1. \(T \) is weak almost limited.
2. \(f_n(Tx_n) \to 0 \) for every weakly null sequence \((x_n) \subset E \) and every weak* null sequence \((f_n) \subset F' \).

Proof. (1) \(\Rightarrow \) (2) Let \((x_n) \subset E \) and \((f_n) \subset F' \) be respectively weak null and weak* null sequences. We shall see that \(f_n(Tx_n) \to 0 \).
If the lattice operations of E are sequentially weakly continuous, then the sequences (x_n^+) and (x_n^-) are both weak null. Thus, since T is weak almost limited, by Theorem 2.7(6) we have $f_n(Tx_n^+) \to 0$ and $f_n(Tx_n^-) \to 0$. Now, the result follows from the equality $f_n(Tx_n^+) = f_n(Tx_n^-) - f_n(Tx_n^-)$.

If the lattice operations of E' are sequentially weak* continuous, then the sequences (f_n^+) and (f_n^-) are both weak* null. Thus, since T is weak almost limited, by Theorem 2.7(7) we have $f_n^+(Tx_n) \to 0$ and $f_n^-(Tx_n) \to 0$, and the result follows from the equality $f_n(Tx_n) = f_n^+(Tx_n) - f_n^-(Tx_n)$.

(2) \Rightarrow (1) Obvious.

Note that a Banach lattice which has the wDP* property needs not to have the DP* one (eg $L^1 [0, 1]$, see [3, Proposition 3.3]). However, from the preceding theorem, another corollary can be derived easily.

Corollary 2.12. Let E be a σ-Dedekind complete Banach lattice such that the lattice operations of E are sequentially weakly continuous, or the lattice operations of E' are sequentially weak* continuous. Then E has the wDP* property if and only if it has the DP* property.

References