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If a transient occurs in a nuclear power plant (NPP), operators will try to protect the NPP by

estimating the kind of abnormality and mitigating it based on recommended procedures.

Similarly, operators take actions based on severe accident management guidelines when

there is the possibility of a severe accident occurrence in an NPP. In any such situation,

information about the occurrence time of severe accident-related events can be very

important to operators to set up severe accident management strategies. Therefore, sup-

port systems that can quickly provide this kind of information will be very useful when

operators try to manage severe accidents. In this research, the occurrence times of several

events that could happen during a severe accident were predicted using support vector

machines with short time variations of plant status variables inputs. For the preliminary

step, the break location and size of a loss of coolant accident (LOCA) were identified.

Training and testing data sets were obtained using the MAAP5 code. The results show that

the proposed algorithm can correctly classify the break location of the LOCA and can es-

timate the break size of the LOCA very accurately. In addition, the occurrence times of

severe accident major events were predicted under various severe accident paths, with

reasonable error. With these results, it is expected that it will be possible to apply the

proposed algorithm to real NPPs because the algorithm uses only the early phase data after

the reactor SCRAM, which can be obtained accurately for accident simulations.

Copyright © 2015, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society.
1. Introduction

Because both size and complexity of nuclear power plants

(NPPs) are increasing, understanding system problems and

theirmitigation poses significant challenges to operators [1]. If

a transient occurs in an NPP, operators will try to predict

which kind of abnormality has occurred by checking various
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plant status variables to protect the NPP from hazardous

situations such as severe accidents. Because the operator's
actions are heavily affected by the instructions written in

the procedures, it is very important for operators to

determine the initiating events. However, due to the many

complicating factors, such as overload of information, high

workload in urgent situations, and the short time available
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for diagnosis, operators can become confused and make

wrong decisions, thereby leading to dangerous situations. To

help operators mitigate abnormalities of NPPs properly and

effectively, various operation support systems with artificial

intelligences (AIs) have been developed. For example, AI

techniques were applied to signal validation systems [2e4],

fault diagnosis systems [5,6], and many other support

systems.

Similarly, operators take actions based on severe accident

management guidelines (SAMGs) when there is the possibility

of a severe accident occurrence in an NPP. In such a situation,

information about the occurrence times of severe accident-

related events is very important to operators so that they can

set up severe accident management strategies. Currently,

there are many computer codes that can perform severe ac-

cident-related analyses, but because they require a long time

for both the simulation and the setting of parameters, it is

hard to apply such codes in real-time support systems.

Therefore, support systems that can quickly provide this kind

of information to operators would be very useful when they

try to manage severe accidents.

A previously conducted study that dealt with severe acci-

dent monitoring using several AI techniques [7] successfully

predicted the occurrence times of several severe accident-

related events, including core exposure time, time when

core exit temperature exceeds 1,200�F, and reactor vessel

(RV) failure time. However, the study was only conducted for

a case in which no action was taken for mitigation of the

accident. In a real situation, however, operators would take

certain mitigation actions before a severe accident happens,

and these cases also need to be considered. Therefore,

various paths to severe accidents should be considered to

develop more realistic support systems.

To monitor and predict severe accidents, diagnosis of

initiating events should be the first step. In this research, fault

diagnosis using support vector classification (SVC) and sup-

port vector regression (SVR) algorithms that were suggested

by Na et al. [8] were applied with some modifications. The

similarity between this study and the reference comes from

the use of the same algorithms, that is, SVC and SVR.

However, the main difference is that the reference trained

two SVRs for break size estimation in the loss of coolant

accident (LOCA) case, with consideration of the hot leg LOCA

and cold leg LOCA, whereas there were six SVRs for break

size estimation with consideration not only of the hot leg

and cold leg but also of small break (SB), medium break

(MB), and large break (LB) LOCAs. Because of this major

difference, two SVCs were applied to classify the SB, MB, and

LB LOCAs before the detailed break size estimation was

conducted by the trained SVR.

SVC and SVR are included in support vector machines

(SVMs); an SVM is amachine-learning algorithm that has been

successfully used in pattern recognition for cluster analysis

[9]. SVM is applied in many fields of research because of its

high performance in finding global optimums, and high

performance in real applications as well as in artificial

neural networks, which have been applied for a

comparatively long time.

This research also proposes an algorithm based on SVR

that predicts the occurrence time of major events of severe
accidents, such as maximum core temperature exceeding

1,200�C, RV failure, and containment (CTMT) failure when

operators fail to mitigate transient. By using event-tree (ET)

analysis, which is widely used in the field of probabilistic risk

assessment, our method is able to classify various paths that

lead to core damage; in addition, severe accident scenario

occurrence times can be predicted for each major path.

Because there are many kinds of initiating events and se-

vere accident paths, considering all of them is very labor

intensive. However, if it is possible to show that these meth-

odologies can predict the occurrence time successfully,

expanding the coverage of the researchwill bemuch easier. In

this regard, only an LOCA transient was considered as an

initiating event and eight severe accident paths under this

LOCA situation were selected as parts of a case study. The

eight severe accident paths contain four severe accident paths

from the SB LOCA, and two paths each from the MB and LB

LOCAs, according to probabilistic priority. In addition, for

further simplification, conservative assumptions (i.e.,

assuming the worst cases) were made for each path. For

example, severe accidents can occur when three or all four

safety injection lines fail to inject water in an LB LOCA con-

dition. In this regard, it is assumed that all four safety injec-

tion lines failed to inject water in the safety injection failure-

related paths, because this is the most serious case.

The proposed algorithms were trained and validated using

data obtained from the MAAP5 (modular accident analysis

program) code simulations. The reference plant for this

research is the Advanced Power Reactor 1400 (APR1400).
2. LOCA identifications

Prior to the prediction of occurrence time under LOCA cases, it

is necessary to identify the break location because the

occurrence time differs according to the break location. In this

regard, hot leg LOCA and cold leg LOCA were identified using

SVC in this study. Similarly, because the severe accident path

and occurrence time differ according to the break size, SB

LOCA, MB LOCA, and LB LOCA were classified using multiple

SVCs and SVRs. In addition, the detailed break size was esti-

mated to verify the accuracy of the suggested methodology,

although the results were not used for occurrence time

prediction.

2.1. Data acquisition

To estimate the break location and break size of an LOCA, it is

necessary to collect data sets that indicate how plant status

variables will changewhen an LOCA occurs. Because there are

only a few sets of accident data, data should be obtained from

computational simulations.

Data sets obtained from the simulation were used for

training the SVC and SVR algorithms; properly trained SVC

and SVR algorithms have the capability to classify break lo-

cations and estimate break sizes with the inputs of the plant

status variables. In addition, the trained algorithms are able to

perform such classification or estimation in a short time after

transient occurrence, so that operators can start the mitiga-

tion process as quickly as possible.

http://dx.doi.org/10.1016/j.net.2014.10.001
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Table 1 e List of training data sets and testing data sets.

Training data break size (ft2) Testing data break size (ft2)

0.005, 0.006, 0.007, 0.008, 0.009, 0.010, 0.011, 0.012, 0.013, 0.014,

0.015, 0.016, 0.017, 0.018, 0.019, 0.02, 0.025, 0.03, 0.04, 0.05,

0.06, 0.07,

0.004, 0.0055, 0.0075, 0.0095, 0.0105, 0.0115, 0.0135, 0.0155, 0.0175, 0.0195,

0.0225, 0.035, 0.055, 0.075, 0.095, 0.175, 0.225, 0.325, 0.375,

0.08, 0.09, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.475, 0.525, 0.575, 0.625, 0.675, 0.725,

0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.775, 0.825, 0.875, 0.925, 1.1

0.80, 0.85, 0.90, 0.95, 1.00

(Cold leg, hot leg each: total 86 data sets) (Cold leg, hot leg each: total 60 data sets)
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Because the quality of training data heavily affects the

quality of the trained algorithm, acquisition of reliable

training data is necessary. In this study, training data were

acquired using the MAAP5 code, developed by Fauske & As-

sociates (Nuclear Applications), located in Illinois, U.S.; this

code is used worldwide for severe accident analysis and has

been provisionally proven as a reliable simulation code. Data

were acquired based on the APR1400 reactor parameters,

developed by Korea Hydro & Nuclear Power (Central Research

Institute), located in Daejeon, Korea.

Moreover, Lindholm et al. [10] and Allison [11] performed

research using the MAAP4, MELCOR, and SCDAP/RELAP5

computer codes; both reported that the three listed codes

predicted similar trends in the early phase. Because the

MAAP5 code is an upgraded version of MAAP4 and only early

phase data (from SCRAM to 60 seconds after SCRAM) were

used for the break location and size estimation, data

acquisitionusing theMAAP5code in this research is reasonable.

2.2. Break location identification

2.2.1. Methodology
To identify the break location of an LOCA, SVC was trained to

differentiate between a cold leg LOCA and hot leg LOCA using

13 plant status variables that are observable in main control

rooms. The variables used are as follows: broken side steam

generator (S/G) pressure, level, and temperature; unbroken

side S/G pressure, level, and temperature; pressurizer (PRZ)

pressure and level; core water temperature and level; sump

water level; and CTMT pressure and temperature.

During the training process, time derivatives of each vari-

able were used. In detail, time derivatives from an emergency

shutdown (i.e., SCRAM) to 60 seconds after shutdown were

used.

Eighty-six training data sets consisting of 43 cold leg data

sets and 43 hot leg data sets were used for training of the SVC.

The break sizes of the training data sets varied from 0.005 ft2

to 1.0 ft2. For validation, the trained SVC was applied to 60
Fig. 1 e Representation of function by sum
testing data sets consisting of 30 cold leg data sets and 30 hot

leg data sets. The break sizes of the testing data sets varied

from 0.004 ft2 to 1.1 ft2. Because the range of the break size is

broader in the testing data sets, it is possible to check the

extrapolation performance of the trained SVC. Table 1 shows

the break sizes of each training and testing data set.

The parameters for SVC were optimized using the grid-

searchmethod. The radial-basis function (RBF; Fig. 1), which is

generally selected for mapping real-world data, was used as

the “kernel function”. The general shape of the RBF is as

follows:

Kðx; x0Þ ¼ exp

 
� kx; x0k2

2s2

!
(1)

2.2.2. Results of break location identification
Because the optimized hyperplane of SVC should be able to

classify all the training data sets correctly, the trained SVC

accurately classified the break locations of all 86 training data

sets. The trained SVC was also found to have correctly iden-

tified the break locations of all 60 testing data sets. There were

no classification errors among the total of 146 data sets and,

hence, strict accuracy analysis using type I error (false posi-

tive) and type II error (false negative) could not be conducted.

However, because there were a large number of testing data

sets with various break sizes, it is expected that it will be

possible to perform correct classification of the break location

for most LOCA cases.
2.3. Break size estimation

2.3.1. Methodology
LOCAs can be classified according to break size into three

categories, namely, SB LOCA, MB LOCA, and LB LOCA. When

the break size is smaller than 0.02 ft2, it is classified as an SB

LOCA. Break sizes between 0.02 ft2 and 0.5 ft2 are classified as

anMB LOCA, and those bigger than 0.5 ft2 are classified as a LB

LOCA.
mation of radial basis function [12].

http://dx.doi.org/10.1016/j.net.2014.10.001
http://dx.doi.org/10.1016/j.net.2014.10.001


Fig. 2 e Predicted break size (cold leg loss of coolant

accident).

Fig. 3 e Predicted break size (hot leg loss of coolant

accident).
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As the progress levels are different for these three types of

LOCA, the classifications of SB LOCA, MB LOCA, and LB LOCA

are helpful for more accurate break size estimation. To iden-

tify these three types of LOCA, two SVCs were trained to

classify the three classes of data set. For the training, time

derivatives of the same 13 plant status variables were used.

After the rough break size estimation of the SVCs, SVRs

were applied to estimate break size more accurately. Because

there are two kinds of break location (cold leg and hot leg) and

three classifications of break size (SB LOCA, MB LOCA, and LB

LOCA), six SVRs were trained for each LOCA scenarios. With

the classification results of the previous SVCs, the corre-

sponding SVR was applied and the break size was estimated.

Because the antecedent SVCs roughly classify the break

location and the break size using the 13 plant status variables,

it is not necessary to conduct regression analysis using all 13

plant status variables. Besides, training the SVRs using all 13

plant status variables takes a very long time. Instead,

considering some important variables, which are the param-

eters that are closely related to break size, such as PRZ pres-

sure, is sufficient to train the SVRs for break size estimation.

As a result, six SVRs were trained only using the time de-

rivatives of the PRZ pressure data.

The same 86 training data sets consisting of 43 cold leg data

sets and 43 hot leg data sets were used for training the SVCs

and SVRs; to validate the trained SVCs and SVRs, the same 60

testing data sets consisting of 30 cold leg data sets and 30 hot

leg data sets were applied.

The parameters were optimized using the grid-search

method, and RBF was used as the kernel function for all SVCs

and SVRs.

The methodology for estimating break location and size

using SVC and SVR was based on the research performed by

Na et al. [8], but with some modifications for break size

estimation and optimization.

2.3.2. Results of break size estimation
Because the optimized hyperplane of SVC should be able to

classify all training data sets correctly, trained SVCs accu-

rately classified all 86 training data sets into SB LOCA, MB

LOCA, and LB LOCA. The trained SVCs also correctly classified

all 60 testing data sets. There were no classification errors

among the total of 146 data sets; therefore, the strict accuracy

analyses that accompany type I errors and type II errors could

not be conducted. However, because there were large

numbers of testing data sets with various break sizes, it is

expected that it will be possible to perform correct classifica-

tion of the break size for most LOCA cases.

Six SVRs were applied to estimate the break size of the

training data sets and the testing data sets using SVR's own

regression functions. Root-mean-square (RMS) estimation

errors for all 86 training data setswere calculated and found to

be 4.02% and 3.66% for the 43 cold leg data sets and the 43 hot

leg data sets, respectively. For the testing data sets, RMS

estimation errors were calculated and found to be 5.70% and

3.92% for the 30 cold leg data sets and the 30 hot leg data sets,

respectively (Figs. 2 and 3). However, break size was not

properly estimated for the data sets that had actual break

sizes of 0.004 ft2 and 1.1 ft2. From these results, it can be seen

that the trained SVRs did not show good results at
extrapolation, meaning that the SVRs are valid within the

range of break size from 0.005 ft2 to 1.0 ft2.

Because the previous mean errors were calculated by

including all testing data sets, RMS error will decrease when

the data sets for extreme actual break size (0.004 ft2 and 1.1 ft2)

are neglected. Therefore, the results are sufficient to prove

that the break size estimation performances of the six SVRs

are within acceptable levels. Table 2 shows the RMS error of

break size estimation.
3. Severe accident occurrence time
predictions

After identifying the break location and break size of an LOCA,

the occurrence time of important severe accident-related

events, such as maximum core temperature exceeding

1,200�C (temperature at which zircaloy starts to rapidly react

http://dx.doi.org/10.1016/j.net.2014.10.001
http://dx.doi.org/10.1016/j.net.2014.10.001


Table 2 e RMS and maximum estimation errors of break
size.

Data type RMS error Maximum error

Training data, cold leg 4.02 21.96

Training data, hot leg 3.55 15.20

Testing data, cold leg 5.70 27.50

Testing data, hot leg 3.92 14.71

Data are presented as %.

RMS, root mean square.
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with oxygen), RV failure, and CTMT failure, were predicted

using multiple SVRs. Although ET analyses from the pre-

liminary safety analysis report were referenced to reduce the

number of severe accident paths to be considered, there are

still many paths that lead to severe accidents and it is very

labor intensive to consider all of them. Instead, four severe

accident paths from the SB LOCA and two paths each from the

MB LOCA and the LB LOCA were selected as case studies ac-

cording to probabilistic priority. ET analyses for SB, MB, and LB

LOCA cases are shown in Figs. 4e6, whereas the considered

paths are represented in Table 3. In addition, conservative

assumptions, which mean a consideration of the worst case

for each path, were made in this study. For example, severe
Fig. 4 e Event-tree analysis for smal
accidents can occur when three or all four safety injection

lines fail to inject water in the LB LOCA condition. In this

regard, it is assumed that all four safety injection lines failed

to inject water in the safety injection failure-related paths,

as this is the most serious case.
3.1. Data acquisition

Similar to the cases of break location and size estimation, the

MAAP5 code was used to acquire data sets because the

quantity of real accident data is very low. Even though there is

real accident data, it is hard to use because the accident data

were not acquired under controlled conditions, which means

that the data cannot be included in the domain of interest.

Trends of 13 plant status variables for times when maximum

core temperature exceeded 1,200�C, RV failure times, and

CTMT failure times were obtained by simulation. As is docu-

mented in the “Data Acquisition” section, accident simulation

data are accurate in early accident phases; the proposed al-

gorithmwill be applicable for real NPPs because the SVRswere

trained using these data.

Actual time data for validation of the suggested method-

ologywere obtained using the same codewith the assumption

that the data sets from the MAAP5 code simulations
l break loss of coolant accident.

http://dx.doi.org/10.1016/j.net.2014.10.001
http://dx.doi.org/10.1016/j.net.2014.10.001


Fig. 5 e Event-tree analysis for medium break loss of coolant accident.
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accurately describe the severe accident situations because

MAAP was mainly developed for analyses of severe accident

situations of NPPs.

The data sets from simulation were used for the training of

the SVRs for each severe accident path and for the validation

of the proposed algorithm.

3.2. Severe accident occurrence time predictions

3.2.1. General methodology
Because accident progress is different for each severe accident

path, it is obvious that the relation between the plant status

variables and the occurrence times will be different from path

to path. Furthermore, the hot leg LOCA cases and the cold leg

LOCA cases should be considered separately because the

trends of plant status variables in the early phase are different

for these two cases. As a result, 16 SVRs should be trained to

find the relations between the plant status variables and the

occurrence times of one kind of event for each of the selected

paths (as there are three kinds of event, 48 SVRs are required).

However, for SB LOCAs Numbers 21e23, MB LOCA Number 04,

and LB LOCA Number 04 sequences, CTMT failure times were

not considered because two other events were considered to
be more important events. By contrast, for SB LOCA Number

07, MB LOCA Number 02, and LB LOCA Number 02 sequences,

only the CTMT failure time was considered because radioac-

tive material will be released to the environment when CTMT

fails, even when the RV does not fail. Therefore, 26 SVRs were

actually needed to be trained (20 SVRs for maximum core

temperature exceeding 1,200�C and RV failure, and 6 SVRs for

CTMT failure). Based on the results of break location and break

size estimation, it was determined which kind of trained SVR

among the 26 SVRs should be applied for occurrence time

prediction.

For the SB LOCA cases, 16 cold leg data sets and 16 hot leg

data sets were used to train the corresponding SVRs. Seven-

teen cold leg data sets and 17 hot leg data sets were used for

the MB LOCA cases; 10 cold leg data sets and 10 hot leg data

sets were used for the LB LOCA cases. Similarly, 10 cold leg

data sets and 10 hot leg data sets were applied as testing data

for each case.

For each case, regression functions that define the re-

lations between the occurrence time and certain plant status

variables were obtained by training the SVR algorithms with

the training data sets. After this, the parameters for each SVR

were optimized using the grid-search method, and RBF was

http://dx.doi.org/10.1016/j.net.2014.10.001
http://dx.doi.org/10.1016/j.net.2014.10.001


Fig. 6 e Event-tree analysis for large break loss of coolant accident.
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used as the kernel function for all the SVRs. Table 4 presents

the selected plant status variables for each severe accident-

related event. Variable selection was conducted with a

consideration of the physical relations.

First, the core temperature can rise to 1,200�C only when

the amount of decay heat is larger than the amount of heat

transfer from the primary system to other systems. Because
Table 3 e Considered sequences in severe accident
occurrence time prediction.

Transient type Considered sequences
(numbering)

SB LOCA Number 07 (#1)

Number 21 (#2)

Number 22 (#3)

Number 23 (#4)

MB LOCA Number 02 (#1)

Number 04 (#2)

LB LOCA Number 02 (#1)

Number 04 (#2)

LB, large break; LOCA, loss of coolant accident; MB, medium break;

SB, small break.
the amount of decay heat can be considered a function of

time, it is not related to the 13 variables. Instead, variables

related to heat loss were selected. In the case of a LOCA, the

heat of the primary side can be transferred into the unbroken
Table 4 e Selected variables for each severe accident-
related event for training SVRs.

Event type Selected variables

Time when maximum core

temperature exceeds 1,200�C
Unbroken side S/G temperature

CTMT pressure

CTMT temperature

Collapsed water level

RV failure time Unbroken side S/G temperature

CTMT pressure

CTMT temperature

Collapsed water level

CTMT failure time (time when

CTMT pressure exceeds 4 atm)

PRZ pressure

CTMT pressure

CTMT temperature

Collapsed water level

CTMT, containment; PRZ, pressurizer; RV, reactor vessel; SVR,

support vector regression.

http://dx.doi.org/10.1016/j.net.2014.10.001
http://dx.doi.org/10.1016/j.net.2014.10.001


Fig. 7 e Prediction results of time when maximum core

temperature exceeds 1,200�C (small break Number 2, cold

leg).

Fig. 9 e Prediction results of reactor vessel failure time

(small break Number 2, cold leg).
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secondary side or into the CTMT. Therefore, an unbroken S/G

temperature was selected to consider the heat transfer to the

secondary side; to consider the heat transfer to the CTMT,

CTMT pressure, CTMT temperature, and collapsed water level

were selected.

Similarly, RV failure can be regarded as an extension of the

core temperature rise. Therefore, the same variables thatwere

selected for the prediction of the time at which the maximum

core temperature will exceed 1,200�C were selected.

For CTMT failure, it was assumed that the CTMT will fail if

the CTMT pressure exceeds 4 bars. CTMT pressure rapidly

increases at first when a LOCA happens due to leakage and

vaporization of the primary side coolant; it then increases

almost linearly during the decay heat removal processes.

Because the rise of CTMTpressure is almost entirely caused by

steam, the overall amount of water should be considered. In

this regard, PRZ pressure was selected to consider the amount

of water in the primary side. The CTMT pressure and CTMT
Fig. 8 e Prediction results of time when maximum core

temperature exceeds 1,200�C (small break Number 2, hot

leg).
temperature were selected to consider the amount of vapor-

ized steam. Finally, the collapsed water level was selected to

consider the amount of unvaporized leaked water.

3.2.2. Results of severe accident occurrence time prediction
In five cases (SB LOCA Numbers 21e23, MB LOCA Number 04,

and LB LOCA Number 04 sequences), the time at which the

maximum core temperature exceeds 1,200�C and the RV fail-

ure time were predicted using the trained SVRs. The results

are shown in Figs. 7e10. The RMS errors are presented in Ta-

bles 5e7. Except for the SB LOCA Number 2 hot leg scenario,

the RMS prediction errors for the time at which themaximum

core temperature exceeds 1,200�C and for the RV failure time

were < 10% for all cases.

In three cases (SB LOCA Number 07, MB LOCA Number 02,

and LB LOCA Number 02 sequences), CTMT failure times were

predicted. The results are shown in Fig. 11 and 12. The LB

LOCA Number 1 case was not considered because the break

size did not affect the CTMT failure time significantly. As in
Fig. 10 e Prediction results of reactor vessel failure time

(small break Number 2, hot leg).

http://dx.doi.org/10.1016/j.net.2014.10.001
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Table 5 e RMS and maximum errors for time when maximum core temperature exceeds 1,200�C prediction.

Scenario RMS error
(cold leg)

RMS error
(hot leg)

Maximum error
(cold leg)

Maximum error
(hot leg)

SB LOCA Number 1 d d d d

SB LOCA Number 2 5.35 15.50 28.00 33.98

SB LOCA Number 3 4.40 5.30 14.30 18.14

SB LOCA Number 4 8.41 2.06 33.04 6.03

MB LOCA Number 1 d d d d

MB LOCA Number 2 3.86 3.88 10.30 12.88

LB LOCA Number 1 d d d d

LB LOCA Number 2 8.09 3.48 22.98 8.70

Data are presented as %.

LB, large break; LOCA, loss of coolant accident; MB, medium break; RMS, root mean square; SB, small break.

Table 6 e RMS and maximum errors for reactor vessel failure time prediction.

Scenario RMS error
(cold leg)

RMS error
(hot leg)

Maximum error
(cold leg)

Maximum error
(hot leg)

SB LOCA Number 1 d d d d

SB LOCA Number 2 2.59 12.52 35.07 46.46

SB LOCA Number 3 2.74 3.59 7.16 12.68

SB LOCA Number 4 9.22 3.36 6.55 10.17

MB LOCA Number 1 d d d d

MB LOCA Number 2 1.72 1.51 11.85 6.69

LB LOCA Number 1 d d d d

LB LOCA Number 2 1.65 1.29 4.28 3.22

Data are presented as %.

LB, large break; LOCA, loss of coolant accident; MB, medium break; RMS, root mean square; SB, small break.
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the previous cases, RMS prediction errors for CTMT failure

times were < 10% for all four scenarios.

From these results, it can be seen that the predictions of

the time at which the maximum core temperature exceeds

1,200�C, the RV failure time, and the CTMT failure time were

accurate for most selected scenarios.
4. Discussion

In this research, occurrence times of three kinds of major

severe accident events, including the time at which the

maximum core temperature exceeds 1,200�C, RV failure time,
Table 7 e RMS and maximum errors for CTMT failure time pre

Scenario RMS error
(cold leg)

RMS er
(hot le

SB LOCA Number 1 3.39 9.69

SB LOCA Number 2 d d

SB LOCA Number 3 d d

SB LOCA Number 4 d d

MB LOCA Number 1 2.01 1.60

MB LOCA Number 2 d d

LB LOCA Number 1 Not considered a Not consid

LB LOCA Number 2 d d

Data are presented as %.

CTMT, containment; LB, large break; LOCA, loss of coolant accident; MB,
a The LB LOCA Number 1 case was not considered because the break siz
and CTMT failure time, were predicted using the SVR algo-

rithm. For simplicity, ET analyses of SB LOCA, MB LOCA, and

LB LOCA were referred to and severe accident paths with high

probabilities were selected for case studies; conservative as-

sumptions were made. In addition, for the preliminary step,

SVCs and SVRs were applied to identify the break location and

the break size of the various LOCA scenarios. Integrated

values for all of the 13 kinds of plant status variables from

reactor SCRAM to 60 seconds after SCRAM, or some of these

variables were used for estimation and prediction. The RBF

was used as the kernel function for all SVCs and SVRs; opti-

mization of the SVCs and SVRs was conducted using the grid-

search method. Algorithms for the break location and size
diction.

ror
g)

Maximum error
(cold leg)

Maximum error
(hot leg)

52.43 29.13

d d

d d

d d

10.64 8.51

d d

ered a Not considered a Not considered a

d d

medium break; RMS, root mean square; SB, small break.

e does not significantly affect CTMT failure time.

http://dx.doi.org/10.1016/j.net.2014.10.001
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Fig. 11 e Prediction results of CTMT failure time (small

break Number 1, cold leg).
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estimation of LOCA using SVC and SVR, developed by Na et al.

[8], were referred to in this research.

The algorithm for break location and size estimation of an

LOCA was successfully applied and the identification results

of the LOCA were found to be reasonable. Break locations of

the training data sets and the testing data sets were success-

fully classified into categories of cold leg LOCA and hot leg

LOCA using the SVC. In addition, using two SVCs, the training

data sets and testing data sets were correctly classified into

categories of SB LOCA, MB LOCA, and LB LOCA according to

the break size. Detailed break size estimation was conducted

using multiple SVRs; the RMS error of estimation was

approximately 3e6%.

The times when maximum core temperature exceeds

1,200�C, RV failure time, and CTMT failure time were pre-

dicted with reasonable levels of error. Except for severe cases,

the RMS errors of prediction were < 10% for all three kinds of

events. The possibility of severe accident occurrence time

prediction using SVC and SVR algorithms was verified in this

research. Furthermore, it is expected that it will be possible to
Fig. 12 e Prediction results of containment failure time

(small break Number 1, hot leg).
apply the proposed algorithm to real NPPs because the al-

gorithm uses only the early phase data after the reactor

SCRAM, which can be obtained accurately for accident

simulations.

Further work to lower the prediction error should be con-

ducted. More delicate optimization of the SVC and SVR algo-

rithms by adjusting various parameters should produce better

results than those of the current research. In some studies,

optimization problems have been solved by applying other

algorithms, such as genetic algorithms to search for appro-

priate parameter values [13,14]. If this kind of methodology is

applied for the selection of the appropriate parameter values,

overall estimation quality is expected to be enhanced.

Moreover, to check the performance of the proposed al-

gorithm more precisely, a validation method such as k-fold

cross validation could be applied.

Finally, because the MAAP code was developed mainly to

simulate severe accident scenarios, the use of the RELAP or

MARS code for break location and size estimation, instead of

the MAAP code, could lead to more accurate results, even

though the performance of the MAAP code is almost identical

to those other codes for short-time simulation. Therefore, it

will be very meaningful to conduct research that compares

results that can be obtained using these three, or even more,

codes.
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