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Abstract

In this paper we first give a brief review of the variable cosmological constant model and its scalar field
description. We mainly discuss two types of variable cosmological constant models: a power law and H

power law models. A method to obtain all of the equivalent scalar field potentials and the effective equation
of state of the two models is presented. In addition, the dynamics of such scalar field potentials and effective
equation of state are discussed in detail. The parameters of the two models are constrained by current 307
high-quality “Union” SN Ia data set, baryon acoustic oscillation (BAO) measurement from the Sloan Digital
Sky Survey (SDSS), 9 observational H(z) data derived from the Gemini Deep Deep Survey (GDDS) and the
shift parameter of the cosmic microwave background (CMB) given by the three-year Wilkinson Microwave
Anisotropy Probe (WMAP) observations. We also calculate and draw the picture of the Hubble parameter,
the deceleration parameter and the matter density of the two models. Then, we show that the indices m and
n in the two models have specific meaning in determining properties of the models. Moreover, the reasons
that indices m and n may also influence the behavior of effective equation of state and scalar field potentials
are presented.
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1. Introduction

In 1998, the discovery that the accelerated expansion of the Universe is driven by the dark
energy (DE) from the type Ia supernovae (SN Ia) observations [1] greatly astonished the world.
The Wilkinson Microwave Anisotropy Probe [2], combined with more accurate SN Ia data [3]
indicates that the Universe is almost spatially flat and the dark energy accounts for about 70% of
the total content of the Universe. However, we know little about the nature of dark energy except
for its negative pressure. Therefore, a large number of works have been done in recent years to
explain this mystery.

The variable cosmological constant (hereafter VCC) [4] is one of the phenomenological ways
to explain the dark energy problem, because it is a straightforward modification of the cosmo-
logical constant Λ which enable itself to be compatible with observations. Looking back to the
history, we can see that a lot of theorists have done numerous works to search for the theoret-
ical foundation of the VCC models and also investigate the properties of the VCC models [5].
In [6], a model of Λ ∝ a−2 was proposed, requiring that the cosmic density ρ would equal to
the Einstein–de Sitter critical density ρc, which leads to a closed Universe, without singularity,
horizon, entropy and monopoly problems [6]. After that, it was also suggested a model Λ ∝ a−2

(Λ should be independent of h̄) with different initial conditions by [7], which firstly pointed
out that time-dependent Λ leads to the creation of matter or radiation. Besides, a lot of work
were done to propose straightforward models relating Λ to the Hubble parameter H(z): Λ ∝ H 2

[8–11]. Furthermore, people also constructed a large number of phenomenal VCC models to
describe the dynamics of the Universe and there is a list in Ref. [4] summarizing the proposed
models [12]. There are also several papers concerning the observational constraints about the
VCC models [13].

In addition to the VCC models, scalar fields such as “quintessence” [14], “phantom” [15] and
“quintom” [16] have been introduced to effectively describe the dynamic dark energy, which
are distinguished by the effective equation of state (hereafter EEoS): wDE > −1, wDE < −1
and wDE across −1 respectively. These models are inspired by the fact that a decaying vac-
uum energy which has the very high energy density at early time should be sufficiently small
at present to meet the current observation requirement, so they should evolve dynamically. In
order to obtain the corresponding quintessence potentials, the reconstruction equations were de-
rived and addressed the feasibility of the approach by Monte Carlo simulation [17]; it was also
constructed the general scalar-field dark energy model [18] and developed a method to construct
them directly from EEoS function wφ(z) [19,20]. Moreover, some works have been done to re-
construct the scalar potential from the scalar-tensor theory and investigate the modified Newton
theory [21].

As a major part of our work, we analyze the EEoS and reconstruct the potentials for two
main types of VCC models—the a power law and the H power law models—from the point
of view of dynamic scalar fields. This work is necessary for people who are interested in the
coupled dark energy and dark matter [22], because such models may avoid a lot of realistic prob-
lems such as the coincidence problem. In addition, it is discussed how such phenomenological
models can be explained as a classical scalar field decaying into a perfect fluid which might be
interested by those who want to search for the gravitational theory other than the general rela-
tivity, because the Lagrangian in VCC should be different from the Einstein–Hilbert action in
general relativity. Thus, this part should be essential for people to see the possible forms of VCC
models and its corresponding scalar fields which are expected from string theory or supergrav-
ity.
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Another main part of this paper is to give an observational constraint on the VCC models
and explain the properties of cosmological parameters. This part of work is the basic analysis to
determine the right form of VCC models from the observational requirement.

This paper is organized as follows: in Section 2, we search for the EEoS, the reconstruction
equation and effective potentials for all the a power law models, generalizing previous work
from Ref. [23]. Next, we use the current observational data, including 307 high-quality “Union”
SN Ia data set, baryon acoustic oscillation from SDSS, 9 observational H(z) data and CMB shift
parameter from WMAP three years result, to constrain the index in this model. In addition, we
analyze the properties of the dark energy density, the dark matter density and the deceleration
parameter in this model. In Section 3, parallelling to Section 2, we generalize the work from
Ref. [23] and discuss the EEoS, the reconstruction equation and reconstructed potentials for all
of the H power law models. In addition, we also give one example of this type of model to prove
the effectiveness of our method. Then, we use data to constrain the cosmological parameters of
this type of models and analyze the properties of the dark matter density, Hubble parameter and
the deceleration parameter. The concluding remark will be presented in the last section.

2. a power law models and corresponding potentials

For a generalized VCC related to the scale factor a, we can write

(1)Λ = Ba−m,

where B is a constant with the dimension of mass square and we call it the dark energy amplitude.
We assume the VCC is proportional to the scale factor power −m, and power index m plays a sig-
nificant role in determining the dark energy behavior as discussed below. Then, the dark energy
density and the Friedmann equation can be written as (note that a0 = 1, d

dt
= −H(1 + z) d

dz
)

(2)ρ
(a)
Λ (z) = ΛM2

pl = B(1 + z)mM2
pl,

(3)3M2
plH

2 = ρ(a)
m + ρ

(a)
Λ .

For simplicity of calculations we assume spatial flatness (k = 0) which is motivated by theoreti-
cal considerations, such as inflation, and also confirmed by current observations such as WMAP
three years result [2]. Our results can be easily generalized to the case with a spatial curvature.

We denote Mpl = (8πG)− 1
2 as the reduced Planck mass and use superscript (a) here to denote

a power law model, we will also use superscript (H) to denote H power law model in the next
section. ρ

(a)
m is the dust matter density with the present value

(4)ρ
(a)
m0 = 3H 2

0 M2
plΩm0.

Thus, we get

(5)B = 3H 2
0 (1 − Ωm0).

In our practice, there is clearly only one degree of freedom in the a power law model, which is the
power index m. As for the VCC models, it is rather natural to consider the interaction between
the dark matter and dark energy [24]. Therefore, we should introduce an interacting term Q(z)

with

(6)ρ̇(a) + 3Hρ(a) = Q(z),
m m
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(7)ρ̇
(a)
Λ + 3H

(
ρ

(a)
Λ + p

(a)
Λ

) = −Q(z),

and the total energy conservation equation

(8)ρ̇tot + 3H(ρtot + ptot) = 0,

still holds. Since VCC is the generalized from of cosmological constant, so it satisfies p
(a)
Λ =

−ρ
(a)
Λ . Eq. (7) leads to

(9)Q(z) = −ρ̇
(a)
Λ = A(1 + z)mH,

where

(10)A = 3H 2
0 (1 − Ωm0)mM2

pl,

which means that the interaction is explicitly determined only by the evolution of dark energy
density.

2.1. Interacting dark energy and reconstructed potentials in the a power law models

The anterior Eqs. (6) and (7) are the standard interacting dark energy equations and the func-
tion Q(z) represents the interaction between dark energy and dark matter. Since the interaction
may not be directly observable, it is interesting to search for the phenomenologically equivalent
potentials which encode some properties of the interaction.

One way to search for such a theory is to express the VCC models in a field theory language,
so the most straightforward way might be the scalar field description. If one could find such a
description of the VCC models, it is natural to extend the scalar field description to other space–
time and other gravitational theory like superstring theory. In addition, this description is very
useful since it provides a path to quantize the scalar field, which can help people to understand
the fundamental theory of the phenomenological VCC models. Furthermore, the procedure to
obtain a scalar field description of a phenomenological model could be applied to other models.

From this point of view, we want to see what are the EEoS and dark energy potentials in the
a power law models. Changing the form of Eq. (7), we have

(11)ρ̇
(a)
Λ + 3H

(
ρ

(a)
Λ + p

(a)
Λ + Q(z)

3H

)
= 0,

so we could see the interaction Q(z) contribute to the effective pressure

(12)p
(a)
eff = p

(a)
Λ + Q(z)

3H
= −ρ

(a)
Λ + Q(z)

3H
,

so the EEoS of dark energy is

(13)ω
(a)
eff = p

(a)
eff (z)

ρ
(a)
Λ (z)

= m

3
− 1,

so we obtain this result from the point of view of interacting dark energy [20,25]. In Eq. (13),
the power index m is a constant, so the EEoS in the a power law models are all constants. We
will see in the following subsection that the best-fit of index m constrained by current combined
observational data is −0.09, which means ω

(a)
eff < −1, so VCC is phantom-like [15]. However,

for 2σ confidence level we cannot rule out the possibility that m > 0 (quintessence-like), so we
should consider both the phantom and quintessence scalar field potentials for the VCC model.
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For a spatially homogeneous and isotropic scalar field, the effective energy density ρ
(a)
Λ and

pressure p
(a)
eff can be written as

(14)∓1

2
φ̇2 + V

(a)
eff (φ) = ρ

(a)
Λ ,

(15)∓1

2
φ̇2 − V

(a)
eff (φ) = p

(a)
eff ,

respectively, where upper (lower) sign represents the phantom (quintessence) scalar field, and
V

(a)
eff (φ) is the effective scalar field potential for the a power law models. At the same time, the

effective energy density ρ
(a)
Λ and pressure p

(a)
eff are given by the interacting dark energy equations

(16)ρ
(a)
Λ = A1(1 + z)m,

(17)p
(a)
Λ = −ρ

(a)
Λ + Q(z)

3H
= A2(1 + z)m,

where

(18)A1 = 3H 2
0 M2

pl(1 − Ωm0),

and

(19)A2 = A1

(
−1 + m

3

)
.

We define the dimensionless quantities

(20)φ̃ ≡ φ/Mpl, Ṽeff = Veff/3H 2
0 M2

pl.

Thus, the scalar field potential can be written as a function of redshift z

(21)Ṽ
(a)
eff (z) = 1

2

(
ρ

(a)
Λ − p

(a)
eff

) = A3(1 + z)m,

where

(22)A3 = (1 − Ωm0)

(
1 − m

6

)
.

Combining Eqs. (14) and (15), we have

(23)
dφ̃

dz
= ∓ C1

(1 + z)[C2 + C3(1 + z)3−m] 1
2

,

where

(24)C1 = (1 − Ωm0)
1
2 × [|m|(3 − m)

] 1
2 ,

(25)C2 = 3(1 − Ωm0), C3 = (3Ωm0 − m).

The upper (lower) sign in Eq. (23) represent φ̇ > 0 (φ̇ < 0). In fact, the sigh is arbitrarily de-
termined by assumption, as it can be changed by φ → −φ. We choose the upper sign in the
following discussion. If we shift φ0 value, the potential in the following figure will be shifted
horizontally, but the shift does not influence the whole shape of the potential. The field could be
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Fig. 1. Reconstructed potentials for a power law model. Here we set Ωm0 = 0.28.

integrated analytically as

(26)φ̃(z) = C4 × tanh−1
[

C
1
2
2

(C2 + C3(1 + z)3−m)
1
2

]
,

where

(27)C4 = 2√
3

[ |m|
3 − m

] 1
2

.

We let the integral constant equals to zero since the initial value of field is meaningless. Solving
this for (1 + z) and substituting the result into (21), we obtain the potential of the a power law
model

(28)Ṽ
(a)
eff (φ̃) = A3

[
C2

C3
×

(
coth2

(
φ̃

C4

)
− 1

)] m
3−m

.

We use the best fits value for m in the next section to draw the pictures for the a power law
models’ equivalent potentials (Fig. 1). There are three main characteristics for these potentials:
First, they are all runaway type and the whole shape does not change if φ is shifted horizontally.
Second, Eqs. (21) and (26) determine that φ increases and V

(a)
eff (φ) increases as the redshift z

decreases from large value to −1, which means that the dark energy potentials increase as the
Universe expands. From the figure, we could see that more negative the value of m is, the sharper
the potentials will increase as the field evolves. One of the possible explanation for this phe-
nomenon is that the more negative value of m means the dark matter “decays” into dark energy
quicker, so the dark energy increase its potential value and energy density faster. Third, the hyper-
bolic coth function in the expression (28) makes the a power law potentials have the asymptotic
value. This is very interesting because one could obtain such behavior in general in the super-
symmetric QFT. This runaway form of potential is also the one expected in the unstable D-brane
system in superstring theory [26].



268 Y.-Z. Ma / Nuclear Physics B 804 (2008) 262–285
2.2. Hubble parameter and results of the constraints on m

In this subsection, we want to constrain the parameter m from combined observational data, so
we should obtain the Hubble parameter and the luminosity distance. We can change the variable t

to redshift z in Eq. (6) to figure out the analytical expression for the matter density

(29)ρ(a)
m (z;m) = 3H 2

0 M2
pl

[
D1(1 + z)3 + D2(1 + z)m

]
,

where

(30)D1 = C3

3 − m
, D2 = m

3 − m
(1 − Ωm0).

We can easily note that the effect of VCC is just like a small perturbation to the evolution of the
matter density. If the evolution behavior of the matter density does not deviate much from (1+z)3

behavior (	CDM), the value of m should be very near zero, which indicate that even though the
dark energy is not constant through the evolution of the Universe, it at least should evolve very
slow. This property will be convinced through observational constraints on power index m in the
following subsection. This equation is essential for our purpose to solve the Hubble parameter in
the following subsection.

As there is only one free parameter in this kind of power law models, it is rather easy to
obtain the best fit value from the current observational data. We do this fitting using the high
quality type Ia supernovae, baryon acoustic oscillation from SDSS, observational H(z) data and
the shift parameter of the cosmic microwave background (CMB) given by WMAP three years
results. We discuss this problem in the framework of interacting dark energy and accelerating
Universe (see relevant work [27]).

Integrating Eq. (3), we have the following equation

(31)H(z) = H0
[
D1(1 + z)3 + D3(1 + z)m

] 1
2 ,

where

(32)D3 = C2

3 − m
.

Then we integrate Eq. (31) and follow the guideline in Appendix B to obtain the χ2 formula to
do numerical fitting. Our result is much tighter than the previous fitting results [27] due to the
more precise data we use (Fig. 2). Under the combined data sets SN + BAO + OHD + CMB
constraints, the 3σ values for the power index m are

(33)m = −0.09+0.08+0.12+0.19
−0.11−0.20−0.29.

From the above results, we are still not able to rule out the positive m value within 2σ confidence
level, so we need more precise data to constrain the VCC models’ power index in the future.
However, no matter whether the m is negative or positive, it is very near zero, suggesting that
even though the dark energy is not a constant, it should evolve very slow. The results for the
best-fit and 1σ values are shown in Table 1. From our results, the Ωm0 is always around 0.28,
which is consistent with the WMAP three years results [2].
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Fig. 2. Contour map for the parameter m versus Ωm0 in the a power law model. Green dashed lines represent SN+BAO,
blue lines represent SN + BAO + OHD, and red lines represent SN + BAO + OHD + CMB. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this paper.)

Table 1
Results of the fitting for the two models

Models SN + BAO SN + BAO + OHD SN + BAO + OHD + CMB

a power law m −0.12+0.40
−0.42 −0.19+0.29

−0.32 −0.09+0.08
−0.11

Ωm0 0.28+0.03
−0.04 0.28+0.04

−0.03 0.29+0.03
−0.07

H power law n −0.26+0.67
−0.74 −0.76+0.24

−0.74 −0.15+0.14
−0.17

Ωm0 0.28 ± 0.04 0.27 ± 0.03 0.29 ± 0.03

2.3. Matter density and deceleration parameter of the a power law models

Having the matter density (29) and the confidence region of parameter m, we can plot the
matter density and dark energy density as a function of redshift z as Figs. 3 and 4 shows. We put
the curve representing the standard matter density equation in 	CDM model for comparison.

From Figs. 3 and 4, if m is positive, the dark energy density changes and slower the matter
density decreases as a function of redshift z. That means the dark energy “decays” into dark
matter field and makes the matter dilute more slowly with the cosmic expansion, vice versa.
As a result, the dark energy density will continuously decrease as the Universe evolves. On
the contrary, if m < 0, the dark matter transforms into dark energy and the dark matter energy
density decreases more sharply than the usual (1 + z)3 behavior (	CDM). Then the dark energy
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Fig. 3. Matter density for a power law models. Here we set Ωm0 = 0.28.

Fig. 4. Dark energy density for a power law models. Here we set Ωm0 = 0.28.

increases its energy density and realizes the “Big Rip” in the future due to this matter changes,
so effectively it resembles the phantom dark energy (see Eq. (13)).

It is easy to see this property of index m through the “decay rate” ε in Ref. [29]. The “decay
rate” ε is defined as the matter density’s deviation from the standard evolution, i.e.,

(34)ρm = ρm0a
−3+ε,

where ρm0 is the current matter density. In our case, ε is not a constant but a function of redshift z.
In addition, it is straightforward to verify that m is the index to distinguish the sign of ε, as
m > 0, ε(z) > 0; vice versa. Thus, the relationship between index m and the “decay rate” ε

represents whether the dark energy “decays” into dark matter or the inverse. Moreover, it is also
easy to confirm that the value of ε(z) is generally compatible with the confidence region provided
by [29].
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Fig. 5. Deceleration parameter for a power law models. Here we set Ωm0 = 0.28.

Having obtained some meaning of the index m and its confidence region in the a power law
models, we can directly find the evolution of the deceleration parameter in this kind of model.

(35)q(a)(z) = − äa

ȧ2
= −1

2

2 − m − D4(z)

D4(z) + 1
,

where

(36)D4(z) = C3

C2
(1 + z)3−m.

From Fig. 5, we can understand the following characteristics about the deceleration parameter in
the a power law models: First, different a power law behaviors (including 	CDM) have common
deceleration parameters at present time q(0) = 3

2Ωm0 − 1. Second, they have different values of
redshift z when the Universe was changing from deceleration to acceleration, so the transition
redshift zT for different models are determined by the following equation

(37)zT =
[
(2 − m)C2

C3

] 1
3−m − 1,

which can be determined by the results of the constraints. In addition, we could calculate the
different zT corresponding to m as the best fit, 1σ , 2σ confidence values and the 	CDM:
zT (m = −0.29) = 0.57, zT (m = −0.20) = 0.61, zT (m = −0.09) = 0.67, zT (m = −0.01) =
0.72, zT (m = 0.03) = 0.75. So the larger m is, the earlier the Universe changes from decelera-
tion to acceleration. Thus, we obtain this transition redshift zT from the general a power law form
and the results should be applicable for all of the specific power law behaviors [29]. Third, the
more negative value of m is, i.e., more sharply dark energy density changes, the faster Universe
accelerates. This result is also compatible with Fig. 3 in [29].

Furthermore, we can also use the constraints on the deceleration parameter and transition
redshift to see whether our results are consistent with relevant constraints [30–32]. In Ref. [30],
it shows that the best fits for the transition redshift is zT = 0.78+0.08

−0.27. Our results are rather
consistent with this work because this best fits value for zT will lead to the best fits region for m

[−0.43,0.16], and our 3σ results for m is just within this region, suggesting that our constraints
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on m and Ωm0 are very tight. At the same time, our results are also very consistent with other
relevant constraints on the “equivalent” redshift when ρm(zeq) = ρΛ(zeq) [31].

Therefore, in this subsection we conclude that the power index m of the a power law model
is not only associated with the dark energy density, but also a meaningful index to determine
whether the dark matter “decays” into dark energy or the inverse. Moreover, it determines the
“decay rate” ε, i.e., the intensity by which dark matter changes into dark energy. Meanwhile,
it affects the deceleration parameter of the Universe and the transition redshift zT when the
Universe was changing from deceleration to acceleration.

3. H power law model and its reconstructed potentials

In this section, we will discuss another type of VCC models—Λ is associated with Hubble
parameter H—which is an important type presented in Ref. [4].

In this type of model, the VCC can be written as

(38)Λ = CHn,

where C is a constant with the dimension of mass 2 − n, n is the only parameter in this kind
of models which needs to be fitted by observational data. Then, the dark energy density and the
Friedmann equation in this model can be given by

(39)ρ
(H)
Λ = ΛM2

pl = CHnM2
pl,

(40)3M2
plH

2 = ρ(H)
m + ρ

(H)
Λ .

The amplitude C is determined by the current value of matter density and the Hubble constant

(41)C = 3H 2−n
0 (1 − Ωm0).

Then, we consider that the VCC indicates that there is an interaction between the dark matter and
dark energy. Therefore, let us assume that dark energy and matter exchange pressure through the
interaction term W(z) with

(42)ρ̇(H)
m + 3Hρ(H)

m = W(z),

(43)ρ̇
(H)
Λ + 3H

(
ρ

(H)
Λ + p

(H)
Λ

) = −W(z),

which maintains the total energy conservation equation ρ̇tot + 3H(ρtot + ptot) = 0. Since the
VCC is the generalization of the cosmological constant, so it should satisfy ρ

(H)
Λ = −p

(H)
Λ , then

Eq. (43) leads to

(44)W(z) = −ρ̇
(H)
Λ = G1H

n(1 + z)H ′(z),

where

(45)G1 = 3nH 2−n
0 (1 − Ωm0)M

2
pl.

3.1. Interacting dark energy and reconstructed potentials in the H power law model

In this subsection, we want to see the potential that dark energy mimics the VCC. Although the
interaction between dark energy and dark matter might not be directly observable, the effective
potential could encode some information about the interaction. Thus, we are looking forward to
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solving the EEoS and reconstruct the dark energy potentials of the H power law models from
the standard interacting dark energy Eqs. (42) and (43).

Transforming Eq. (43), we have

(46)ρ̇
(H)
Λ + 3H

(
ρ

(H)
Λ + p

(H)
Λ + W(z)

3H

)
= 0,

from which the interaction changes the effective pressure of this model, i.e.

(47)p
(H)
eff = p

(H)
Λ + W(z)

3H
,

so the EEoS of dark energy is

(48)ω
(H)
eff = p

(H)
eff

ρ
(H)
Λ

= −1 + n

2

G2(z)

G2(z) + G3
,

where

(49)G2(z) = Ωm0(1 + z)3(1− 1
2 n), G3 = (1 − Ωm0).

These EEoS are functions of redshift z, in contrast to the a power law models, where the EEoS
is constant in Eq. (13). It is quite interesting that the sign of index n also determines whether
this dark energy likes the quintessence or phantom. Moreover, this type of EEoS is affected by
the value of Ωm0, while the EEoS in the a power law models are not. Since the constraint from
the current observational data suggests that the best-fit for n is negative but cannot rule out the
possibility of positive constant n (see discussion in next section), we construct the potentials for
the two cases. The energy density and pressure density of the quintessence field for this model
are

(50)∓1

2
φ̇2 + V

(H)
eff (φ) = ρ

(H)
Λ ,

(51)∓1

2
φ̇2 − V

(H)
eff (φ) = p

(H)
eff ,

where the upper (lower) sign represents the phantom (quintessence) dark energy, corresponding
to n < 0 (n > 0). At the same time, we can obtain the expressions for dark energy density and
pressure through definition (39) and the interacting dark energy Eq. (43).

(52)ρ
(H)
Λ = A1

[
G2(z) + G3

] n
2−n ,

(53)p
(H)
Λ = −A1

[
G2(z) + G3

] 2(n−1)
2−n

[(
1 − n

2

)
G2(z) + G3

]
.

Then, the effective scalar potential can be written as a function of redshift z

(54)Ṽ
(H)
eff (z) = G3

[
G2(z) + G3

] 2(n−1)
2−n

[(
1 − n

4

)
G2(z) + G3

]
.

Using Eqs. (50) and (51), we can obtain the differential form of scalar field

(55)
dφ̃

dz
= ∓G4(1 + z)

1
2 − 3

4 n

G2(z) + G3
,
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Fig. 6. Reconstructed potentials for H power law model. Here we set Ωm0 = 0.28.

where

(56)G4 =
(

3

2
|n|

) 1
2 (

Ωm0(1 − Ωm0)
) 1

2 .

In general, Eq. (55) could be solved analytically so we obtain the following field equation

(57)φ̃(z) = φ̃0 ∓ G5 arctan
[
G6(1 + z)

3
2 (1− 1

2 n)
]
,

where

(58)G5 = 2

2 − n

(
2

3
|n|

) 1
2

, G6 =
(

Ωm0

1 − Ωm0

) 1
2

,

and the upper (lower) sign applies if φ̇ > 0 (φ̇ < 0). In fact, the sigh is arbitrarily determined by
assumption, as it can be changed by φ → −φ. We substitute (1 + z) for φ into Eq. (54) to get the
result of potential Ṽ

(H)
eff (φ̃).

(59)Ṽ
(H)
eff (φ̃) = G

2
2−n

3

[
1 + tan2

(
(φ̃ − φ̃0)

G5

)] 2(n−1)
2−n

.

We give the following three examples of phantom potentials for this kind of models (see Fig. 6).
As is shown in Fig. 6, the effective phantom potentials also have some characteristics: For one
thing, they are all runaway type potentials and even if we change the initial value φ̃0, the curves
shift horizontally with the whole shape unchanged. For another thing, the meanings of the po-
tentials are clear: as the Universe is expanding, the value of φ becomes large and the field slowly
rolls upon the potential, which makes the EEoS very close to −1. At the same time, the dark
matter field gradually “decays” into dark energy, so the dark energy density increases its energy
density as the Universe expands.

3.2. One specific examples of reconstructed potentials for the H power law models

In Ref. [4], there is a list of proposed H power law models proposed by different authors
through various perspectives. In addition, Ref. [23] gives two examples of scalar potentials from
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the point of view of the scalar field description. In order to show the effectiveness of our recon-
struction, we derive one analytic results of the scalar potentials using the methods in previous
subsection.

n = 2 is an interesting [8] case of the VCC model and investigated by many authors [4,23].
We substitute n = 2 into Eq. (54) to obtain

(60)Ṽ
(H)
eff (z) = (1 − Ωm0)

(
1 − 1

2
Ωm0

)
(1 + z)3Ωm0 ,

and the field (55) could be integrated as

(61)φ̃(z) = φ̃0 − 3G7 ln(1 + z),

where φ̃0 is the initial value of field φ̃ and

(62)G7 = Ωm0(1 − Ωm0).

Thus, we obtain the potential by substituting (1 + z) for field φ̃

(63)Ṽ
(H)
eff (φ̃) = (1 − Ωm0)

(
1 − 1

2
Ωm0

)
e−α(φ̃−φ̃0),

where α = (
3Ωm0

1−Ωm0
)

1
2 . This form is rather consistent with that in Ref. [23], which demonstrates

the effectiveness of the reconstructing method in this paper. This potential is one of the simplest
runaway types which represents the particle creation in the phenomenological VCC models so
it could be interpreted as some kind of “coupled quintessence” [22]. Meanwhile, it is also easy
to see that all the VCC potentials are associated with the exponential function, which leads to
its runaway behavior, indicating that they might be easily obtained in supergravity and unstable
D-brane systems [26].

3.3. Hubble parameter and results of the constraints on n

From Eqs. (40), (42) and (44), we can obtain the differential equation for the Hubble parameter

(64)H ′(z) − 1

2(1 + z)

(
3H − K1H

n−1) = 0,

where

(65)K1 = 3H 2−n
0 (1 − Ωm0).

Eq. (64) can be solved analytically

(66)H(z) = H0
[
G2(z) + G3

] 1
2−n .

Then, we follow the procedure in Appendices A and B to do the numerical fitting and finally we
can find 1σ results as Table 1 shows. Under the combined SN+BAO+OHD+CMB constraints
(Fig. 7), the best fit, 1σ,2σ and 3σ values for parameter n is

(67)n = −0.15+0.14+0.23+0.25
−0.17−0.26−0.43.

From the result (67), no matter whether n is negative or positive, it always very near 0, indicating
the slow evolution of dark energy. We could plot the EEoS (48) as a function of redshift z and
compare them with other models [28] and observational results [33]. This EEoS has three major
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Fig. 7. Contour map for the parameter n versus Ωm0 in the H power law model. Green lines represent SN + BAO,
blue lines represent SN + BAO + OHD, and red lines represent SN + BAO + OHD + CMB. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this paper.)

Fig. 8. The redshift dependence of the EEoS for H power law models. Here we set Ωm0 = 0.28.

properties: For one thing, the confidence region of this type of models is mildly consistent with
the results which were obtained by using CMB and Clusters data [33], indicating that it is a
competitive model waiting for the examination by future observations. For another thing, within
1σ confidence region, the EEoS is slightly less than −1, which implies that it resembles the
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Fig. 9. Matter density for H power law models. Here we set Ωm0 = 0.28.

phantom field. In contrast, within 2σ region it is possible that the EEoS is greater than −1, so we
cannot rule out the possibility that the dark energy is quintessence like. Thus, this type of models
could really represent a large kind of dark energy models phenomenologically. Further more, if
z become larger, all of the EEoS in these models have their own asymptotically constant value,
which is rather similar to that of the “quiescence model” [34]. The constant EEoS means that the
proportion of kinetic energy to potential energy is constant. Thus, the whole dark energy density
increases or decreases, suggesting that the VCC models corresponds to a dissipative system of
dark energy [5,6,22]. When redshift z approaches −1, all of the EEoS weff(z) approach −1,
indicating the Universe will enter the de Sitter phase in the future.

3.4. Matter density, Hubble parameter and deceleration parameter of the H power law models

From the Hubble parameter (64), we can obtain the matter density

(68)ρ(H)
m (z;n) = 3H 2

0 M2
plG2(z)

[
G2(z) + G3

] n
2−n .

Then, we plot the dark matter density and Hubble parameter of the H power law model. In
order to compare with 	CDM model, we also plot n = 0 curve in one graph. Thus, Fig. 9
helps us to analyze the properties of the matter density in this model: For one thing, we can see
that for the positive n, the dark energy density decreases and the matter density dilutes more
slowly as the Universe evolves, vice versa. On the contrary, n < 0 represents the dark matter
changes into dark energy because the dark energy density increases as time evolves and the
corresponding curve (for example, the curve in the graph n < 0) decreases more sharply than
the standard (1 + z)3 behavior (	CDM). As a result, the parameter n is not only a power index
of the H power law models, but also an important signature to distinguish whether dark energy
“decays” into dark matter or the inverse process, just as the index m in the a power law case.
Further more, comparing Figs. 9 and 3, we can discover that the two graphs are very similar
to each other, which means that the two types of VCC models—the a power law and the H

power law models—really share some common features if the parameters are all constrained by
observational data. This could be understood as follows: both the scale factor a(t) and the Hubble
parameter H(z) describe the evolution of the Universe; if the Universe is expanding canonically,
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Fig. 10. Hubble parameter for H power law models. Here we set Ωm0 = 0.28 and H(0) = 72 km s−1 Mpc−1.

a(t) will increase while the H(z) will decrease, so the difference between the two types might
only lie in the sign of the power index.

However, if we plot the Hubble parameter by selecting some ideal value of n, we could see
that they indicate the different fates of the Universe. We see from Fig. 10 that for any selected
value of n, the Hubble parameter cannot diverge, so the H power law model does not indicate the
“Big Rip” phase in the future. This property could be understood from Fig. 8, because whatever
the current value of weff is, they will all tend to be −1, so the Universe will enter a de Sitter phase
in the future. This property is rather different from a power law model since weff is a constant
in that model, so the dark energy will be always a phantom if m < 0, which surely results in a
phantom Universe with the “Big Rip” phase in the future (see Fig. 4).

Having obtained the matter density, we can derive the deceleration parameter in this model

(69)q(H)(z) = −1

2

2 − K2(z)

1 + K2(z)
,

where

(70)K2(z) = Ωm0

1 − Ωm0
(1 + z)3(1− 1

2 n).

Then, we can plot this deceleration parameter and also compare the curves with that of 	CDM.
From Fig. 11, we could analyze the properties of the deceleration parameter in this H power law
model. For one thing, just as the a power law case, all of the H power law models share the same
deceleration parameter at present time, which is q(0) = 3

2Ωm0 − 1, but they also share the same
deceleration parameter values in the future (a → ∞) as q(z = −1) = −1, which is different
from that of the a power law model. For another thing, transition redshift zT varies differently
according to the different curves, which indicates that different values of n affect the expansion
of the Universe distinctively. The transition redshift zT for different models are determined by
the following equation

(71)zT =
[

2(1 − Ωm0)

Ωm0

] 2
3(2−n) − 1.
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Fig. 11. Deceleration parameter for H power law models. Here we set Ωm0 = 0.28.

Table 2
Transition redshift zT in H power law model

n −0.41 (2σ) −0.32 (1σ) −0.15 (the best fit) −0.01 (1σ) 0 (	CDM) 0.08 (2σ )

zT 0.57 0.60 0.66 0.72 0.73 0.77

We could calculate its value with respect to different index n numerically (see Table 2). It is also
easy to see that the value of zT within 1σ confidence region is generally compatible with the
result in Ref. [29]. In addition, from Fig. 11, the transition redshift is in the range [0.57,0.77],
which is just in the best fits region of transition redshift in Refs. [30] and [31], indicating that our
numerical constraints on the parameters n has been already very tight compared with relevant
work [30–32]. Moreover, different values of n correspond to different curves with distinctive
shapes. For one thing, within 1σ region, n is definitely negative (such as n = −0.15), this makes
the dark energy density increases and dark matter “decays” into dark energy as time evolves.
The more negative the index n is, the more quickly the dark energy density ρ

(H)
Λ increases and

the faster the Universe accelerates. For another thing, within 2σ confidence region, there is a
certain probability that the index n is positive, which indicates that the density of dark energy
is decreasing, so the acceleration is relatively small compared to the negative value of n. To
conclude this subsection, we derive the evolution of the matter density, Hubble parameter and
the deceleration parameter in the H power law models. We note that the index n is just like the
index m in the a power law models, which not only reflects whether the dark energy “decays”
into dark matter, but also affects the acceleration of the Universe—the deceleration parameter
q(z) and transition redshift zT .

4. Concluding remarks

In this paper, we develop a method to reconstruct potentials in the VCC models directly from
the definition of the energy density and pressure of the scalar field. We also give one example
of the reconstruction for the H power law models. First, these potentials have some relation-
ship with the exponential function, which is expected in supersymmetry theory and unstable
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D-brane system in superstring theory [26]. Second, as the Universe is expanding, the value of
φ becomes large and the field slowly rolls upon the potential. At the same time, the dark mat-
ter field gradually “decays” into dark energy, so the matter density dilutes more sharply than
the standard (1 + z)3 behavior. It is worth noticing that the reconstruction equations presented
here are not limited to searching for the scalar field description of such phenomenological VCC
models. Generally, it could give people the possibility to find the scalar field versions of other
phenomenological models and even quantum gravity models such as holographic models [35]
and vacuum fluctuation model [36].

We also investigate constraints on the VCC models—the a power law and the H power
law models—from current combined cosmological observations, using high quality supernovae,
baryon acoustic oscillation from SDSS, observational H(z) data derived from Gemini Deep Deep
Survey (GDDS) and the CMB shift parameter from WMAP three years result. We consider a
spatially flat FRW Universe with matter component and VCC component. For the VCC mod-
els, such as the a power law and the H power law models, the power indices m and n play a
very significant role in determining the evolutionary behavior of the space–time as well as the
ultimate fate of the Universe. According to the combined constraints, the best fit, 1σ , 2σ and
3σ values for the indices m and n are m = −0.09+0.08+0.12+0.19

−0.11−0.20−0.29, n = −0.15+0.14+0.23+0.25
−0.17−0.26−0.43, re-

spectively. These results cannot fix the value of m and n, but at least indicate even though the
dark energy may change with time, it will evolve very slow since the value of m and n are al-
ways very near zero. The indices of VCC models suggest the interaction between dark energy
and dark matter: First, m > 0 and n > 0 represent that the dark energy “decays” into dark mat-
ter, while m < 0 and n < 0 represent the inverse process. The more negative the indices m and
n are, the faster such transitions happen. Second, the indices m and n affect the deceleration
parameter and the transition redshift zT . The more negative the indices m and n are, the more
portion dark energy takes in the whole Universe budget in the future due to the matter “decays”;
thus, faster the Universe will be accelerating. Also, the more negative the indices m and n are,
the less portion they took into the whole Universe budget in the past and the smaller value of
transition redshift zT is. Therefore, the indices m and n are the important signatures to judge
whether the Universe accelerates more drastically than the 	CDM model. Third, the indices m

and n are also the essential indicators to understand the properties of VCC. For one thing, the
best fit values for m and n suggest that the EEoS of dark energy are real numbers or functions of
redshift z at the region [−1.5,−1], indicating that the dynamic scalar fields of VCC are phantom-
like. For another thing, there are still some probabilities for the a power law and the H power
law models that the dynamic scalar field of VCC is quintessence-like, so the VCC models are
the phenomenal models representing a variety of other dynamic dark energy models. Moreover,
the EEoS of the a power law models are constant, while those of the H power law models are
functions of redshift z but have the asymptotic values when redshift z becomes large, so at the
early stage, the VCC models have some properties of the quiescence model. The different fate
indicated by the two models are, if redshift z tends to be −1, the EEoS in H power tends to
be −1, so the Universe enter a de Sitter phase in the future. However, the EEoS of a power law
model is always a negative constant, indicating the Universe will enter the “Big Rip” phase in
the future.

The cosmological constant problem is still one of the serious problem that puzzles the physical
world and we are still far away to go to its nature. Thus, we expect that a more sophisticated
combined analysis of various observations will be capable of determining the indices value of
VCC models and revealing more properties of the VCC dark energy models.
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Appendix A. Some results of integrals

We define a dimensionless function

(A.1)E(z) ≡ H(z)/H0,

and integral

(A.2)I (z) ≡
z∫

0

dz′

E(z′)
.

For the a power law model, using Eq. (31), we have

I1(z) = 2

(2 − m)D
1
2
3

[
(1 + z)−

m
2 +1F1

(
α1, β1, γ1, δ1(1 + z)3−m

)
(A.3)− F1(α1, β1, γ1, δ1)

]
,

where

(A.4)α1 = 2 − m

2(3 − m)
, β1 = 1

2
,

(A.5)γ1 = 8 − 3m

2(3 − m)
, δ1 = −C3

C2
,

and F1(α,β, γ, x) represents the hypergeometric function.
For the H power law model, using Eq. (66), we obtain

I2(z) = H−1
0 (1 + z)

2

(2 − m)D
1
2
3

[
(1 + z)−

m
2 +1F1

(
α1, β1, γ1, δ1(1 + z)3−m

)
(A.6)− F1(α1, β1, γ1, δ1)

]
.

Appendix B. Data analysis for the numerical fitting

We utilize several data sets to constrain the parameters of the two power law model. The free
parameters in these two models are power law index m (or n), current value of fractional energy
density of dark matter Ωm0, and the current value of h (h = H0/100/km s−1 Mpc−1). However,
since the current value of Hubble parameter h is always around 0.70 which is determined by
current supernovae constraints so we marginalize it and plot the contour maps of power index m

and n versus Ωm0. Our data sets include 307 high quality “Union” SN Ia data, baryon acoustic
oscillation measurement from the Sloan Digital Sky Survey, 9 observational H(z) data and the
shift parameter from WMAP three years results.
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B.1. Selected high quality SN Ia data set

The first standard candle we use is the type Ia supernovae (SNe Ia), which is published by
Supernova Cosmology Project (SCP) team recently [37]. This data set contains 307 selected SNe
Ia that includes several current widely used SNe Ia data, such as Hubble Space Telescope (HST)
[3,38], SuperNova Legacy Survey (SNLS) [39,40] and the Equation of State: SupErNovae trace
Cosmic Expansion (ESSENCE) [41]. The likelihood function can be determined by χ2 statistics,
for the type Ia supernovae

(B.1)χ2
SN =

182∑
i=1

(μth(parameters; zi) − μ
(i)
exp)

2

σ ∗2
i

,

where

(B.2)μth(parameters; z) = 5 logdL(z) + 25,

where dL is the luminosity distance which is determined by Eq. (A.2)

(B.3)dL(z) = (1 + z)

z∫
0

dz′

H(z′)
= H−1

0 (1 + z)I (z).

B.2. Baryon acoustic oscillation measurement from SDSS

In the large-scale clustering of galaxies, the baryon acoustic oscillation signatures could be
seen as a standard ruler providing the other important way to constrain the expansion history of
the Universe. We use the measurement of the BAO peak from a spectroscopic sample of 46748
luminous red galaxies (LRGs) observations of SDSS to test cosmology [42], which gives the
value of A = 0.469(ns/0.98)−0.35 ± 0.017 at zBAO = 0.35 where ns = 0.95 [43]. The expression
of A can be written as

A =
√

Ωm0

(H(zBAO)/H0)
1
3

[
1

zBAO

zBAO∫
0

dz′

H(z′)/H0

] 2
3

(B.4)=
√

Ωm0

E(zBAO)
1
3

[
IBAO

zBAO

] 2
3

and the χ2
BAO is

(B.5)χ2
BAO =

(
A − 0.469(ns/0.98)−0.35

0.017

)2

.

B.3. Observational H(z) data (OHD)

By using the differential ages of passively evolving galaxies determined from the Gemini
Deep Deep Survey (GDDS) and archival data [44], Simon et al. determined H(z) in the range
0 < z < 1.8 [45]. The 9 observational H(z) pieces of data could be obtained from [45,46] and
they have been used to constrain the dark energy potential and equation of state [46]. The χ2
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statistics for these H(z) data is

(B.6)χ2
OHD =

9∑
i=1

(H(parameters; zi) − Hi)
2

σ ∗2
i

.

B.4. CMB data from WMAP three years results

The CMB shift parameter may provide an effective way to constrain the parameters of dark
energy models since it has the very large redshift distribution and be able to constrain the evolu-
tion of dark energy very well. The shift parameter R which is derived from the CMB data takes
the form as

(B.7)R = √
Ωm0

zCMB∫
0

dz′

H(z′)/H0
= √

Ωm0I (zCMB).

The WMAP3 data gives R = 1.70 ± 0.03 [47], thus we have

(B.8)χ2
CMB =

(
R − 1.70

0.03

)2

.

To break the degeneracy and explore the power and differences of the constraints for these data
sets, we use them in several combinations to perform our fitting: SN + BAO, SN + BAO + OHD,
and SN + BAO + BAO + CMB.
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