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Abstract

Granular materials such as soils are often modeled as a collection of discrete bodies. In this paper we apply a strategy
for soil modeling which is based on a discretization of the media with rigid polygons: a mechanical description of instan-
taneous collisions, based on the principle of virtual work is presented. Finally, a numerical example based on the proposed
theory is treated. A package of randomly generated particles has been arranged on a skid, simulating the behaviour of a
landslide.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Discrete model; Instantaneous collisions; Principle of virtual work; Numerical simulation of a landslide; Atomized efforts
contact dynamics respecting Clausius–Duhem inequality (A-CD2)
1. Introduction

Contact problems are of great interest in civil engineering as the interaction between particles involves
strong nonlinearities: as a consequence, a numerical simulation of these problems turns out to be very com-
plex. The classical continuum approach presents several drawbacks, especially when large strains and crack
propagation take place: many authors have therefore proposed a discrete approach, based on the representa-
tion of the medium as a collection of discrete rigid bodies (Frémond, 1995; Emeriault and Cambou, 1996;
Cundall and Strack, 1979; Nardin and Schrefler, 2004). In particular, methods based on molecular dynamics
(MD), e.g., (Nardin and Schrefler, 2004; Zavarise et al., 1992; Oden and Lin, 1986; Lee and Oden, 1993), con-
sider, in general, the continuum discretized by means of a collection of rigid disks suitably linked with contact
elements where the definition of the contact model reproducing the behaviour of the media results from the
overlapping of the disks. The mechanical answer is then governed by the contact law which transforms the
error of the penalty contact formulation into a displacement field (Nardin and Schrefler, 2004). This approach
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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turns out to be particularly effective in solving quasi-static problems, less in dynamics problems such as frag-
mentations or granular flows, where gap functions can hardly be defined (Kane et al., 1999). Beside the MD
methods, other approaches dealing with non-smooth contacts are available, including the present as well as
Moreau (1994) or Jean (1992). These methods are usually known as contact dynamics (CD) methods.

In this paper, rigid bodies contacts are studied by means of the principle of virtual work. When rigid bodies
get into collision, it is no longer possible to solve the classical smooth equation of motion (velocities are not
derivable): the application of the principle of virtual work in association with appropriate constitutive laws
relating internal stress and velocities, allows to obtain a set of equations of motion, valid both for smooth
and for non-smooth evolutions. In particular, this approach allows to overcome the limits of the classical pen-
alty method (e.g. it does not require the definition of gap functions) and respect the actual physical condition
of non-interpenetration of the particles. Moreover, compared to Moreau (1994) or Jean (1992) the existence
and the uniqueness of the solution as well as the respect of the Clausius–Duhem inequality can be proved. The
presented approach will be therefore called atomized efforts contact dynamics respecting the Clausius–Duhem
inequality (A-CD2), as it describes multiple bodies contact dynamics (respecting the Clausius–Duhem inequal-
ity) by means of an ‘‘Atomization’’ of the efforts exerted during contact (see Section 3). As an illustration of
this approach, the simulation of a dynamic evolution of a multi-particle system (a granular flow) will be finally
given.

2. The mechanical and mathematical model

As a first approach to the problem of contact, the collision between a moving point and a rigid fixed body
will be presented in the following. This simplified formulation reduces the DOFs of the system and allows to
focus on the collision mechanism.

In the following, the equation of motion will be given in the time interval [t1, t2].
During the short duration of the collision, very large stresses are developed at the contact point in order to

keep the velocities compatible. We assume that collisions are instantaneous, thus forces have to be concen-
trated in time. This kind of efforts are identified as percussions ~P

int
(Dimnet, 2002, 2004). Velocity is therefore

discontinuous at the instant of the collision tc and its left and right limits will be noted � and +.

2.1. The principle of virtual work

Interior efforts (both forces~rint and percussions ~P
int

, which are forces concentrated in time) are defined by
their work.

The principle of virtual work leads us to choose the following expression for the virtual work of the interior
efforts (Dimnet, 2002, 2004; Dimnet et al., 2003):
W intðt1; t2; tc; ~V Þ ¼ �
Z t2

t1

~rintðsÞ~V ds�~P intðtcÞ
~V
�ðtcÞ þ ~V

þðtcÞ
2

ð1Þ
where ~V is a virtual velocity of the point and tc is a virtual instant of collision. In particular, Eq. (1) allows to

establish a duality between the internal percussion Pint and the quantity
~V
�ðtcÞþ~V

þðtcÞ
2

, which can be interpreted as
the rate of deformation at tc.

The virtual work of the acceleration efforts is (Dimnet, 2002, 2004; Dimnet et al., 2003):
W accðt1; t2; tc; ~V Þ ¼
Z t2

t1

m
d~UðsÞ

ds
~V ðsÞdsþ mð~UþðtcÞ � ~U

�ðtcÞÞ
~V
�ðtcÞ þ ~V

þðtcÞ
2

ð2Þ
where m is the mass of the point and ~U is the actual velocity.
Finally, the exterior percussion is given in the following way (Dimnet, 2002, 2004; Dimnet et al., 2003):
W extðt1; t2; tc; ~V Þ ¼
Z t2

t1

~rextðsÞ~V ðsÞdsþ~P extðtcÞ
~V
�ðtcÞ þ ~V

þðtcÞ
2

ð3Þ
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The principle of virtual work implies that for any velocity ~V and any time tc, the following expression holds:
W accðt1; t2; tc; ~V Þ ¼ W intðt1; t2; tc; ~V Þ þ W extðt1; t2; tc; ~V Þ ð4Þ

According to this principle, the equations of motion assume the following form on [t1, t2]:
m
d~U
ds
¼ �~rint þ~rext almost everywhere ð5Þ
and
mð~Uþ � ~U�Þ ¼ �~P int þ~P ext
everywhere ð6Þ
The internal percussion ~P
int

in Eq. (6) is generally unknown and depends on the deformation rate (as a con-

sequence of the duality established by Eq. (1) between and ~P
int

and
~V
�ðtcÞþ~V

þðtcÞ
2

). It is therefore necessary to
introduce an appropriate set of constitutive laws describing the behaviour and the interactions between the
colliding bodies.

2.2. The constitutive laws

In the case of a contact problem, constitutive laws describe the interactions among particles during the col-
lision and have to assure the non-interpenetration of the bodies.

Internal percussion is therefore divided in two parts, a dissipative percussion ~P
d

and a reactive percussion
~P

reac
:

~P
int ¼ ~P d þ~P reac ð7Þ
2.2.1. The dissipative percussion

The dissipative percussion describes the (dissipative) interactions among the colliding bodies. A general,
associated dissipative interaction can be described introducing a pseudopotential of dissipation Ud, which is
a convex, positive function, null in the origin (Moreau, 1966; Frémond, 1995; Dimnet and Frémond, 1999;
Dimnet et al., 2001; Dimnet, 2002; Pfeiffer, 2001):
~P
d 2 oUd

~U
þ þ ~U�

2

 !
ð8Þ
2.2.2. The reactive percussion

The term ~P
reac

describes the reaction to the non-interpenetration condition, which implies UþN P 0 (where
UþN ¼ ~U

þ � ~N , see Fig. 1). This percussion is equal to 0 if UþN > 0, is active if UþN ¼ 0 and implies that the
Fig. 1. Instantaneous collision between a point and a rigid and fixed plane.
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condition UþN < 0 cannot be verified. All these properties can be written by means of the indicator function
(Moreau, 1966; Frémond, 1995) in the following way:
~P
reac 2 oIK

~U
þ þ ~U�

2
� ~N

 !
; K ¼ U�N

2
;þ1

� �
ð9Þ
In particular, as K is convex and contains the origin, the indicator functions IK is a pseudopotential of dis-
sipation (Dimnet and Frémond, 1999; Dimnet et al., 2001; Pfeiffer, 2001). The internal percussion can be
therefore written in the following form:
~P
int 2 oU

~U
þ þ ~U�

2

 !
where U ¼ Ud þ IK ð10Þ
i.e. the internal percussion derives from the pseudopotential of dissipation U.

2.3. Case of N colliding solids

The theory presented in the previous section, can be extended to a generalized form, valid for N colliding
bodies. Contacts between solids are assumed to be punctual.

We can therefore consider N solids colliding at time t, defined by their mass mi, a center of gravity Gi and an
inertial tensor Ii. The kth contact between the solid i and the solid j takes place at points Ai,j,k. Si,j contains
the contact points between the two solids: if no contact takes place, Si,j is not necessarily empty (i.e. if distant

interactions are taken into account, Si,j is not empty). Percussion~P
int

i;j;k is applied at contact point Ai,j,k. ~V i is the
virtual velocity of the center of gravity Gi and ~xi is the virtual rotational velocity. External percussions ~P

ext

i;l

are applied at points Bi,l of solid i. S0i contains the points Bi,l on which external percussions are applied on
the solid i.

If we define the vector bV ¼ ð~V i; ~xiÞ, we can write the relative velocities of the solids in contact at point Ai,j,k

in the following form:
~Di;jðbV ;Ai;j;kÞ ¼ ~V i þ ~xi ^ GiA
��!

i;j;k � ð~V j þ ~xj ^ GjA
��!

i;j;kÞ ð11Þ
and the velocities in contact points Bi,l of solid i:
~EiðbV ;Bi;lÞ ¼ ~V i þ ~xi ^ GiB
��!

i;l ð12Þ
In the following, we will focus our attention on the instant of the collision t. If we note ~Ui; ~Xi, the actual
velocities of the solid i and ~V i; ~xi its virtual velocities, we can write the principle of virtual work in the follow-
ing generalized form:
8bV ;XN

i¼1

mið~U
þ
i � ~U

�
i Þ �

~V
þ
i þ ~V

�
i

2
�
~U
þ
i þ ~U

�
i

2

 !
þ I ið~X

þ
i � ~X

�
i Þ �

~xþi þ ~x
�
i

2
�
~X
þ
i þ ~X

�
i

2

 !( )

þ
XN�1

i¼1

XN

j¼iþ1

X
Ai;j;k2Si;j

~P
int

i;j;k �
1

2
~Di;jðbV þ;Ai;j;kÞ þ ~Di;jðbV �;Ai;j;kÞ
� ��

� 1

2
~Di;jð bU þ

;Ai;j;kÞ þ ~Di;jð bU �
;Ai;j;kÞ

� ��
�
XN

i¼1

X
Bi;l2S0i

~P
ext

i;l �
1

2
~EiðbV þ;Bi;lÞ þ~EiðbV �;Bi;lÞ
� ��

� 1

2
~Eið bU þ;Bi;lÞ þ~Eið bU �;Bi;lÞ
� ��

¼ 0; ð13Þ
As in the previous case, it is necessary to introduce a set of constitutive laws describing the behaviour and
the interactions among the colliding bodies.
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2.4. The constitutive laws

Constitutive laws can be again defined in the following way:
~P
int

i;j;k 2 oUi;j;k

~Di;jð bU þ;Ai;j;kÞÞ þ ~Di;jð bU �;Ai;j;kÞ
2

 !
ð14Þ
Ui,j,k is a pseudopotential (or dissipation potential), sum of the pseudopotential describing the dissipation dur-
ing the percussion and of the function fIK : ~D! IKð~D � ~NÞ assuring the non-interpenetration condition. The
second term requires the existence of a normal, i.e. the boundary of at least one colliding solid has to be
regular.

If we introduce Eq. (14) into Eq. (13) and apply the inequality of the sub-differential (see e.g. Frémond,
1995), we can write:
8bV ;XN

i¼1

mið~U
þ
i � ~U

�
i Þ �

~V
þ
i þ ~V

�
i

2
�
~U
þ
i þ ~U

�
i

2

 !
þ I ið~X

þ
i � ~X

�
i Þ �

~xþi þ ~x
�
i

2
�
~X
þ
i þ ~X

�
i

2

 !( )

þ
XN�1

i¼1

XN

j¼iþ1

X
Ai;j;k2Si;j

Ui;j;k
1

2
~Di;jðbV þ;Ai;j;kÞ þ ~Di;jðbV �;Ai;j;kÞ
� �	 
�

�Ui;j;k
1

2
~Di;jð bU þ

;Ai;j;kÞ þ ~Di;jð bU �
;Ai;j;kÞ

� �	 
�
�
XN

i¼1

X
Bi;l2S0i

~P
ext

i;l �
1

2
~EiðbV þ;Bi;lÞ þ~EiðbV �;Bi;lÞ
� �

� 1

2
~Eið bU þ;Bi;lÞ þ~Eið bU �;Bi;lÞ
� �� �

P 0. ð15Þ
If we note that every function
bV ! Ui;j;kð~Di;jðbV ;Ai;j;kÞÞ ¼ Ui;j;k
~V i þ ~xi ^ GiA

��!
i;j;k � ð~V j þ ~xj ^ GjA

��!
i;j;kÞ

� �
ð16Þ
is a pseudopotential of dissipation, the following function is a pseudopotential of dissipation, too:
bV !XN�1

i¼1

XN

j¼iþ1

X
Ai;j;k2Si;j

Ui;j;kð~Di;jðbV ;Ai;j;kÞÞ ¼ UðbV Þ ð17Þ
The definition of the scalar product:
h bU ; bV i ¼XN

i¼1

mi
~U i � bV i þ I i

~Xi � ~xi

n o
ð18Þ
allows us to rewrite Eq. (15) in the following way:
bU þ � bU � � T ext; bV � bU þ þ bU �
2

* +
þ UðbV Þ � U

bU þ þ bU �
2

 !
P 0 ð19Þ
for every bV belonging to R6N, where Text is a vector of R6N defined in the following way:
hT ext; bV i ¼XN

k¼1

~Rk � ~V k þ ~Mk � ~xk

� �
ð20Þ
where ~Rk is the resultant of all the exterior percussions applied on the solid k and ~Mk is the resultant of their
angular moment applied with respect to the centre of gravity of the solid k.

Given that R6N has a scalar product defined by h., .i and given the definition of subgradient, the formulation
(19) is equivalent to the following inclusion:
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�ð bU þ � bU � � T extÞ 2 oU
bU þ þ bU �

2

 !
ð21Þ
or, given X ¼ bU þþbU �
2

, to the following, more concise, form:
2 bU � þ T ext 2 2X þ oUðX Þ ð22Þ

This inclusion is finally equivalent to the minimization problem
Inf hY ; Y i þ UðY Þ � h2 bU � þ T ext; Y ijY 2 R6N
n o

ð23Þ
as the argument X which gives the minimum verifies:
0ð6NÞ 2 2X þ oUðX Þ � 2 bU � � T ext ð24Þ

i.e. the inclusion (22).

2.5. Coulomb�s friction

In the previous section, constitutive laws have been derived from a pseudopotential of dissipation. How-
ever, many real behaviours are well modeled by means of non-associated constitutive laws. In particular,
the behaviour of brittle materials such as rocks, concrete or ceramics is well represented by means of Cou-
lomb�s friction law. In this particular case, the tangential behaviour is described as follows:
j~P Tj 6 lj~P Nj where l > 0 and ð25Þ
if j~P Tj < lj~P Nj then ~X T ¼ 0 ð26Þ
if j~P Tj ¼ lj~P Nj then 9k such that ~X T ¼ k~P T ð27Þ
This behaviour does not derive from a pseudopotential of dissipation, however it can be shown (Dimnet,
2002) that the solution ~U

þ
of the problem exists and is unique if the following condition is respected:
X

i;j;k

li;j;k <
1

16
ffiffiffiffiffiffiffi
NC
p

Mð1þM 0Þ2
ð28Þ
where NC is the number of contacts and M,M 0 are positive real numbers (Dimnet, 2002).
Further details about the numerical treatment of Coulomb�s friction law will be given in a forthcoming

paper (Dal Pont and Dimnet, submitted for publication).

3. Numerical solution

In the previous section, a theory describing the behaviour of rigid bodies during instantaneous collisions
has been proposed. In the following, the equations describing the evolution of the system will be integrated
leading to a form suitable for a numerical solution. During its evolution, the system is subjected to internal
and external actions.

The equations of motion for the velocity V (see also Section 2.3) have the following form:
dV
dt
¼ �f int þ f ext almost everywhere; ð29Þ

V þ � V � ¼ �P int þ P ext everywhere ð30Þ
where fint is a vector of R6N representing the sum of the internal forces exerted on the system during the regular
evolution of the system. In particular, at contact k the positions 6(k � 1) + 1,2,3 represent the three linear
momentums in the principal directions as well as 6(k � 1) + 4,5,6 represent the three angular momentums.
Similarly, fext represents the sum of the external forces exerted on the system during the regular evolution
of the system (e.g. weight, see also Section 3.1) and Pint/Pext stand for the sum of the internal/external percus-
sions during contacts.
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If the cumulated efforts Rint and Rext are taken into account:
RintðtÞ ¼
Z t

0

f intðsÞdsþ
Z t

0

X
ti

P intðtiÞdtiðsÞds

¼
Z t

0

f intðsÞdsþ
X

ti

P intðtiÞHðt � tiÞ; ð31Þ

RextðtÞ ¼
Z t

0

f extðsÞdsþ
Z t

0

X
tj

P extðtjÞdtjðsÞds

¼
Z t

0

f extðsÞdsþ
X

tj

P extðtjÞHðt � tiÞ ð32Þ
where ti and tj are the instants when internal and external percussions are exerted, d is the Dirac function and
H is the Heaviside function. We can therefore write:
dV ðtÞ ¼ �dRintðtÞ þ dRextðtÞ ð33Þ
The solution of this equation can be calculated introducing the following approximations:

• The time length [0, T] is discretized in n regular steps [tk, tk+1] of length Dn ¼ T
n. In this time step, active

forces are ‘‘atomized’’, i.e. replaced by percussions exerted at the instant hk ¼ tk þ 1
2
Dn.

• All the percussions exerted during the time gap [tk, tk+1] are also exerted at the instant hk.
• Velocities are therefore discontinuous at the instants hk, when the percussions are exerted.

3.1. Atomization of a regular force

The ‘‘atomization’’ of a regular force f on the time interval [tk, tk+1], consists in replacing it with the percus-
sion P exerted at the instant hk. This result derives from the so-called Percussion Method (Dimnet, 2002). If f

depends on a time-dependent quantity y, we can write:
Z tkþ1

tk

f ðyðsÞÞds ’ ðtkþ1 � tkÞf
yþðhkÞ þ y�ðhkÞ

2

	 

ð34Þ
i.e. f can be replaced by the percussion:
P ðtÞ ¼ Dnf
yþðhkÞ þ y�ðhkÞ

2

	 

dhk ðtÞ ð35Þ
which is the derivative of:
EP ðtÞ ¼ Dnf
yþðhkÞ þ y�ðhkÞ

2

	 

Hðt � hkÞ ð36Þ
3.1.1. Constant force

A constant force f0 can be atomized replacing in any interval a percussion of intensity f0Dn. If we consider,
for example, the action of the weight �

R tkþ1

tk
g ds at time hk, is approximated by
ð0; 0;�gDn; 0; 0; 0; . . . . . . ; 0; 0;�gDn; 0; 0; 0; . . . . . . ; 0; 0;�gDn; 0; 0; 0Þ ð37Þ
3.1.2. Time dependent force

If the force f(t) is exerted on the system at the time gap [tk, tk+1], it can be replaced by a percussion exerted at
the instant hk of intensity Dnf(hk).
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3.1.3. Position dependent force

If the force f(Y(t)) is exerted on the system at the time [tk, tk+1], it can be replaced by a percussion exerted at
the instant hk of intensity Dnf(Y(hk)). For example, that two point are elastically bounded and we note the
elongation x(t) at the instant t, the modulus of the elastic force exerted on every point is kjx(t)j. This force
is therefore replaced by a percussion of intensity Dnkjx(hk)j.

3.1.4. Velocity dependent force

If the force f(V) is exerted on the system at the time [tk, tk+1], it can be replaced by a percussion exerted at
the instant hk, where velocities are discontinuous. On [tk,hk[ the velocity of the elements of the system is V�(hk)

and on ]hk, tk+1] is V+(hk). For this reason, the intensity of the atomized percussion is f V �ðhkÞþV þðhkÞ
2

� �
Dn.

If the force f(V) derives from a pseudopotential of dissipation, the internal percussion is an associated law.
An example of this kind of behaviour is the viscous friction. If we consider that the contact in the point Ai,j,l

follows a viscous behaviour, we can write:
f ðV Þ 2 oUi;j;kðDT;i;jðV ;Ai;j;lÞÞ ð38Þ

Ui;j;kð~DÞ ¼
1

2
m~D

2 ð39Þ
i.e. a function of the velocities, where DT,i,j(V,Ai,j,l) gives the relative tangential velocity of the solids at point
Ai,j,l. This force is replaced by a percussion of intensity:
P 2 DnoUi;j;k
DT;i;jðV þðhkÞ;Ai;j;lÞÞ þ DT;i;jðV �ðhkÞ;Ai;j;lÞ

2

	 

ð40Þ
If we consider that at the instant tk the solids i and j are in contact and that Di,j(V,Ai,j,k) gives the relative
velocity at Ai,j,l, noting ~N the normal vector, we can define the contact force f(V) as a function of the normal
right velocity:
f ðV Þ ¼ 0 if Di;jðV þ;Ai;j;lÞ � ~N > 0; ð41Þ
f ðV Þ < 0 if Di;jðV þ;Ai;j;lÞ � ~N ¼ 0 ð42Þ
which can be also written:
f ðV Þ 2 oI ½0;þ1½ Di;jðV þ;Ai;j;lÞ � ~N
� �

ð43Þ
This force is replaced by the percussion:
P 2 DnoI ½0;þ1½
Di;jðV þ;Ai;j;lÞ þ DijðV �;Ai;j;lÞ

2
� ~N

	 

ð44Þ
given DijðV �;Ai;j;lÞ � ~N ¼ 0.
Finally, a friction force following Coulomb�s law can also be taken into consideration. ~V T stands for the

tangential friction velocity. The force ðfN;~f TÞ has to verify:
k~f Tk 6 ljfNj where l > 0 and ð45Þ
if k~f Tk < ljfNj then ~V T ¼~0 ð46Þ
if k~f Tk ¼ ljfNj then 9k > 0 such that ~V T ¼ �k~f T ð47Þ
The expression of the atomized percussion ðP N;~P TÞ which replaces the force according to Eqs. (34) and
(35), has the same expression defined in Section 2.5:
k~P Tk 6 ljP Nj where l > 0 and ð48Þ
if k~P Tk < ljP Nj then ~X T ¼~0; ð49Þ
if k~P Tk ¼ ljP Nj then 9k > 0 such that ~X T ¼ �k~P T; ð50Þ

where ~X T ¼
1

2
V þ
�!

T þ V �
�!

T

� �
. ð51Þ



6108 S. Dal Pont, E. Dimnet / International Journal of Solids and Structures 43 (2006) 6100–6114
3.2. Solution algorithm

At each time hk, the problem to solve can be written in one of the three following forms:
8V ; hUþ � U� � T ext; V � Uþ þ U�

2
i þ UðV Þ � U

Uþ þ U�

2

	 

P 0

2U� þ T ext 2 2X þ oUðX Þ where X ¼ U� þ Uþ

2
infY2R6n hY ; Y i þ UðY Þ � h2U� þ T ext; Y if g

ð52Þ
In particular, if the internal percussions are derived from a pseudopotential of dissipation:
X ! Ui;j;kðDi;jðX ;Ai;j;kÞÞ ð53Þ

the function:
X !
XN�1

i¼1

XN

j¼iþ1

X
Ai;j;k2Si;j

Ui;j;kðDi;jðX ;Ai;j;kÞÞ ¼ UðX Þ ð54Þ
is a pseudopotential of dissipation that can be divided in two parts:
UðX Þ ¼ UdðX Þ þ UrðX Þ ð55Þ

Ur(X) is the sum of all the indicator functions and is a function modelling the non-interpenetration conditions
and renamed Bl (l = 1,p) (p is the total number of indicator functions):
UrðX Þ ¼
Xp

i¼1

I dl
V �

2

	 

;þ1

� �ðulðX ÞÞ

dlðX Þ ¼ Di;jðX ;BlÞ � ~Nl; l ¼ 1; p

ð56Þ
Ud(X) is considered differentiable.
The equation is therefore equivalent to:
FðY Þ ¼ hY ; Y i þ UðY Þ � h2V � þ P e; Y i; where Y 2 R6N ð57Þ

which implies the following minimization problem, i.e. given 55, the reactive percussion is explicitly written
providing the non-interpenetration condition:
FðY Þ ¼ hY ; Y i þ UdðY Þ � h2V � þ P e; Y i ð58Þ

where Y 2 X; X ¼ Y 2 R6N=ulðY Þ ¼ �dlðY Þ þ dl

V �

2

� �
6 0; l ¼ 1; p

� �
.

The solution of this minimization problem is a saddle point of the application (Lagrangian) (Dimnet, 2002):
LðY ; lÞ 2 X� Rp
þ !FðY Þ þ

Xp

i¼1

llulðY Þ ð59Þ
The domain X as well as the functions F and Ud(Y) are convex. This means that if X is a solution of the
problem, it exists at least one k 2 Rp

þ such that (X,k) is a saddle point of L. If (X,k) is a saddle point of L then
X 2 X and X is a solution of the problem.

The numerical solution of such a problem can be found by means of an iterative method such as e.g. the
classic Uzawa method (see e.g. Ciarlet, 1989).
4. Numerical simulations

To illustrate the theory, some numerical simulations based on the described numerical method will be pre-
sented. The objective of these simulations is to reproduce the behaviour of a rockslide in the perspective of a
comparison with experimental results. At this stage, an experimental analysis of a landslide is in due course at
the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland: the A-CD2 method presented in the



Fig. 2. Initial packing of the polygons (r = 0.25 m).
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previous section turns out to be well adapted to reproduce such a dynamic case. Nevertheless, at this step of
the study, a quantitative comparison between the presented results and the experiments is not yet possible due
to the lack of material data and experimental results. The numerical analysis is still of interest for presenting
the effectiveness of the proposed method dealing with dynamic problems as molecular dynamics methods are
well adapted in reproducing quasi-statics problems but are less effective if applied to cases such as a granular
flow (Kane et al., 1999).

In order to simulate the dispersion of material properties of an irregular assembly, a random generation of
the initial configuration has been set. This means that the bodies have a random number of sides and a random
initial rotation. The mass and the inertia modulus of every polygon is therefore calculated accordingly to its
random number of sides. As particles are formed by polygons, contact detection turns out to be more complex
than in the case of circular particles. The simulation handles both vertex–side contacts, vertex–vertex and
Table 1
Parameters used in the numerical simulation

Radius 0.25 m
Density 2500 kg m�3

KN 78 kg m�1

KT 78 kg m�1

Dt 10�4 s

Fig. 3. Final packing of the polygons.
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Fig. 4. Kinetic energy during packing.

Fig. 5. Evolution of the system at t = 3 s.

Fig. 6. Evolution of the system at t = 5 s.
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Fig. 7. Evolution of the system at t = 8 s.

Fig. 8. Evolution of the system at t = 12 s.
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Fig. 9. Evolution of the kinetic energy of the system.
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side–side contacts, by verifying if detected contact points belongs or not to the area delimited by the sides of
the other polygon and vice-versa. In particular, the case of a vertex–vertex contact is dealt in (Dimnet and
Frémond, 1999).

The behaviour of the landslide has been simulated by means of a packing of 300 rigid regular bodies (the
radius r of the circumference inscribing the polygons is 0.25 m). The geometry of the slide is given in Fig. 2.

In this numerical example, the constitutive law describing the behaviour of the solids during the shock, is
associated and quadratic, i.e. Coulomb�s friction law is not taken into account. This leads to the following
expression:
U ¼ 1

2
KT

~U
þ þ ~U�

� �
�~T

� �2

þ 1

2
KN

~U
þ þ ~U�

� �
� ~N

� �2

;

KT P 0; KN P 0
ð60Þ
where KT and KN represent the tangential and the normal elastic constants (see e.g. Frémond, 1995). This
choice leads to the following form of the functional:
Find Uþ 2 C that minimises JðV Þ ¼ 1

2
aðV ; V Þ � lðV Þ ð61Þ
The saddle point, solution of our problem, can be computed by means of the Uzawa method (Ciarlet,
1989).

The parameters describing the packing as well as the contact laws are summarised in Table 1.
In the first part of the analysis, particles are generated (as described above) as indicated in Fig. 2. The

rigid bodies are then submitted to the action of gravity and the package arranges to a stable position.
The final, stable configuration of the packing is computed observing the value of kinetic energy, i.e. if kinetic
energy is below an established threshold, final stabilised position is considered to be achieved (see Figs. 3
and 4).

The barrier retaining the particles is then removed and the polygons can freely roll to the bottom of
the slide (see Figs. 5–8). Fig. 9 gives the evolution of the kinetic energy during the whole evolution of the
system.

In order to investigate the real behaviour of a landslide, it seems recommended to use the larger number of
particles as possible. The same granular flow problem has been therefore solved using 1225 solids (see Fig. 10),
showing (as expected) a more ‘‘fluid’’ behaviour, closer to the response of a real system.

The model can also be adapted to simulate problems characterised by different and more complex geom-
etries. An example, taking into account the interactions of the particles with a wall placed at the bottom of the
slide, is given in Fig. 11.
Fig. 10. System with 1225 solids (r = 0.1 m).



Fig. 11. Interaction of the solids with a wall.
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5. Conclusion

This paper has presented a mathematical model based on the principle of virtual work for the description of
the interactions among particles during an instantaneous contact. This approach shows interesting perspec-
tives for technical and industrial applications. The presented model has been then applied in association with
an associated quadratic constitutive law to describe the behaviour of an idealised landslide: these numerical
results are to be compared with experimental applications. Many other applications are possible by introduc-
ing appropriate constitutive laws (e.g. by fitting experimental curves) which can also take into account non-
associative models such as Coulomb�s friction. The model can also be adapted to compute the evolution of an
incompressible fluid or to describe the interactions between a rigid body and an incompressible fluid.
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