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Abstract

Symbolic sequences uniquely reconstructible from all their substrings of length k compose a regular factorial language. We
thoroughly characterize this language by its minimal forbidden words, and explicitly build up a deterministic finite automaton that
accepts it. This provides an efficient on-line algorithm for testing the unique reconstructibility of the sequences.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The problem of sequence reconstruction from composition has been raised in various contexts, like high through-
put DNA sequencing [1], composition-based prokaryotic phylogenetics [10], and string embedding [6]. It consid-
ers whether a symbolic sequence can be uniquely recovered from the multiset of all its constituent “k-tuples.”
For example, the oligonucleotide sequences TACTAGACT and TAGACTACT have the same triple composition
{ACT,ACT,AGA,CTA,GAC,TAC,TAG}, thus neither is uniquely reconstructible. Given a k-tuple composition, there
exists a linear-time algorithm to determine whether a conforming sequence exists, and if yes it constructs one [2,8].
The number of sequences with a valid composition is given by the “modified BEST formula” [4,5,10], but the cal-
culation can be tough, because the formula is based on the matrix-tree theorem in graph theory, which involves a
determinant whose size is, in cases of interest, comparable with the length of the sequence. Alternatively, the set
of uniquely reconstructible sequences can be investigated as a formal language. Recently, Kontorovich [6] proved
that this language is regular, and conjectured that a finite automaton that accepts it can be efficiently constructed.
The present paper supplies a different proof based on the results of Ukkonen [11] and Pevzner [9], and further char-
acterizes this language by its minimal forbidden words. Finally we explicitly build up the associated deterministic
finite automaton (DFA), which provides an efficient on-line algorithm for testing the uniqueness of reconstructions of
sequences. We have implemented it in a C++ program, and the source code is available on request.
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2. Conventions and notation

We start by fixing some notation. The empty string will be denoted by ε. By convention, we denote by Σ the
alphabet in consideration, Σ∗ the set of all finite strings over Σ , and Σ+ = Σ∗ \ {ε} the nonempty strings. For the
sake of convenience, we lay down the rule that low Latin letters a, b, c, d denote characters, and high letters r , s, . . . , z

denote strings. We denote by |s| the length of the string s, and |s|a the number of the character a’s in s. The set of all
characters occurring in s, i.e., {a ∈ Σ : |s|a � 1}, will be denoted by alph(s). For a string s = at , the character a is said
to be the head of s, denoted by head(s). Similarly, b is said to be the tail of the string s = tb, denoted by tail(s). For
s = uvw, v is said to be a factor of s, and it is called a left factor if u = ε. A factor v of s is said to be proper if v �= s.
For unexplained terms in formal language and automata theory, we refer the reader to the standard textbook [3].

Without losing generality, we only consider the problem of duple composition, i.e., k = 2. For k > 2, it can be
easily reduced to the former case by considering the set of (k − 1)-tuples, Σk−1, as the alphabet.

3. The complementary language

Ukkonen [11] conjectured and Pevzner [9] proved that any two sequences with the same composition can be
transformed into each other by a series of operations called rotations and transpositions. A rotation

R :aubva → bvaub

applies to a string whose head and tail are the same. This case is simple, and can be eliminated by preceding each
string with a special character outside Σ . We will ignore it in the following, such that the frequencies of characters
are also conserved, as is usually required in practice. A transposition

T :uaxbwaybv → uaybwaxbv

exchanges a pair of nonoverlapping factors of a string (x and y), given that they are flanked by the same character on
either side (respectively a and b). In case a = b it has a degenerated form

T :uaxayav → uayaxav.

Clearly, these operations do not alter the composition. We can unify them into the form

T :uxwyv → uywxv, (1)

where

tail(u) = tail(w) and head(w) = head(v). (2)

We denote by L the language of uniquely reconstructible sequences, and L′ its complement, then a string s is in L′
only if it has a form s = uxwyv subject to condition (2). However, this condition is not sufficient even in the constraint
x �= y. For example, the string 010101 has such a form with (u, x,w,y, v) = (0,10,10, ε,1) while it is in L.

Remark 1. Generally, the string s is invariant under the transposition if and only if xwy = ywx, in other words
xwyw = ywxw. It follows from Proposition 1.3.2 in [7] that the two words xw and yw commute if and only if they
are the powers of the same word. Therefore we can write

x = (rt)lr, w = t (rt)m, y = (rt)nr, l,m,n = 0,1, . . . .

To rule out transpositions on strings in L, we add to the conditions in (2) that

head(xw) �= head(yv), (3)

while every string in L′ still retains a transposition. This is justified by a slightly stronger proposition:

Proposition 2. For any transposition T : s → s′ with s �= s′, it can be written in the form (1), such that u is the longest
common left factor of s and s′.
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Proof. Suppose s and s′ have a common left factor u′ = ua, then head(yw) = a. We show that the transposition can
be written in the form T ′ :u′x′w′y′v → u′y′w′x′v. There are three cases:

(1) If x �= ε and y �= ε, then we can write x = ax′ and y = ay′, and let w′ = wa.
(2) If x = ε, then we can write w = ax′ and y = ay′, and let w′ = a.
(3) If y = ε, then we can write x = ax′ and w = ay′, and let w′ = a.

It turn out that u′y′w′x′v = s′.
By repeating this procedure we can extend u until the given condition holds. �
As an immediate corollary,

L′ = {
s = uxwyv: conditions (2) and (3) hold

}
.

Each subset L′
abc of L′, defined by tail(u) = tail(w) = a, head(w) = head(v) = b, head(xw) = c and head(yv) �= c,

clearly constitutes a regular language. Therefore, as regular languages are closed under union and complementation
[3, p. 59], L′ and L must also be regular languages. This is the main theorem in [6]. Moreover, we obtain a right-linear
grammar for L′ composed of productions of the following forms:

U → dU | acZacc | aaAaa,

Zacc → bZacb,

Zacb → dZacb | aAcb,

Acb → dYb (d �= c) | bV (b �= c),

Yb → dYb | bV,

V → dV | ε,
where U is the start symbol, and a, b, c, d run over Σ . It is of little interest to present the routine (but a bit lengthy)
proof, instead we note that for given a, b, and c, this grammar generates L′

abc .

4. Minimal forbidden words

A language is said to be factorial (or factorizable) if it contains all factors of its members. Clearly L is factorial.
A factorial language can be determined by its minimal forbidden words (MFWs, also known as distinct excluded
blocks, or DEBs) [13]. A MFW of a language is a string that does not belong to the language while all its proper
factors do. They help to understand the structure of the language.

Theorem 3. A string r is a MFW of L if and only if r = axwyb, such that

(1) head(w) = b and tail(w) = a;
(2) x �= ε or y �= ε;
(3) x,w,y ∈ L;
(4) alph(x), alph(w), and alph(y) are mutually disjoint;
(5) |w|a = 1 and |w|b = 1.

Proof. The sufficiency is trivial. And the necessity of the first three conditions is evident, so we only need to justify
the last two conditions.

Suppose y contains a character b′ which occurs in xw, then y has a left factor y′b′, and we can write xw = x′w′,
with head(w′) = b′. It is the case that r has a left factor r ′ = ax′w′y′b′ ∈ L′, which contradicts that r is a MFW.
Therefore, alph(xw) ∩ alph(y) = ∅. Clearly, reversing a string does not alter its membership of L, i.e., L is reversal.
So similarly we have alph(x) ∩ alph(w) = ∅. Hence condition (4) holds.

Suppose |w|a > 1, then we can write w = zay′a. Let x′ = xz, then axw = ax′ay′a.
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If x �= ε, by alph(x) ∩ alph(w) = ∅ we have head(x′a) �= head(y′a). It follows ax′ay′a ∈ L′, which contradicts
that r is a MFW. Therefore |w|a = 1. Similarly |w|b = 1 if y �= ε.

If x = ε, then head(x′a) = head(w) = b. It follows from condition (2) that y �= ε, hence |w|b = 1, and
head(y′a) �= b. Again it follows ax′ay′a ∈ L′ and results in a contradiction. Therefore |w|a = 1. Similarly |w|b = 1 if
y = ε. �

We can enumerate the MFWs of L by recursion on |Σ |. For the simplest nontrivial case, say Σ = {0,1}, the MFWs
can be represented by a regular expression 001+0 + 01+00 + 110+1 + 10+11.

5. The finite automata

Technically we can construct the finite automaton that accepts L from the grammar of L′ or the MFWs of L, but it
is more convenient to design it directly as follows.

Input alphabet: Without losing generality, we let

Σ = {1,2, . . . ,m}.
States:

Q = P × N × C,

where

P = Σ ∪ {0}, N = (
Σ ∪ {ε})m+1

, and C = {WHITE,BLACK}m.

Initial state:

q0 = (
0, εm+1,WHITEm

)
.

Final states:

F = {
(p,n, c) ∈ Q: c �= BLACKm

}
.

Transition function: δ :Q × Σ → Q is defined by the following algorithm:

δ((p,n, c), a)

1 if np �= ε and np �= a

2 then i ← p

3 repeat
4 ci ← BLACK
5 i ← nb

6 until i = p

7 if ca = BLACK
8 then c ← BLACKm

9 np ← a, p ← a

Theorem 4. The DFA M = (Q,Σ, δ, q0,F ) accepts L.

Before stating the formal proof, we roughly describe the function of each component of the state variable. We
use p to register the last read character, and every input string is preceded with a special character p0 = 0. The
vector n implements a singly linked data structure, where an element na gives the character following the most recent
occurrence of a. This implies that a simple linear search in n can always reach p, thus the loop on lines 2–6 of the
algorithm never falls infinite. The vector c attributes a “color” to every character, initially all are WHITE. If b occurs
in a factor aza of the input string, with two a’s followed by distinct characters, then cb turns BLACK through the
loop. Such a factor aza, with the follower different from head(za), will be called a bead. If b occurs after this bead,
the string will be in L′, thus a character colored BLACK will be forbidden.
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Proof. We prove it by induction on the length l of the input, along with an auxiliary proposition: After reading any
string s ∈ L, ca = BLACK if and only if a occurs in a bead.

The basis is evident. Suppose for any string s of length k the proposition holds. For any t of length k + 1 we write
t = sb.

If s /∈ L, then t /∈ L, and by the inductive hypothesis c = BLACKm before b is read. According to the transition
function c will remain BLACKm, thus t will be rejected by M .

If s ∈ L, then c �= BLACKm before b is read. If the condition on line 1 holds, then t has a bead pzp. The loop
body starts a walk from p, and lets cd = BLACK for every character d visited. If d in the bead is not reached, then by
the rule for assignment of n on the last line of the algorithm, it must be in another bead axa with a �= p, and by the
inductive hypothesis cd = BLACK already. Therefore, when line 7 of the algorithm is reached, the condition holds if
and only if b has occurred in a bead, i.e., c will gets BLACKm if and only if t ∈ L′. �
6. Discussion

As pointed out in [8], the sequence reconstruction problem in consideration is equivalent to the problem of unique-
ness of Eulerian trail in a directed pseudo-graph, since it can be naturally represented by a sequence over the set of
vertices V = Σk−1. For a graph with an Eulerian trail t = sb, the state variable n represents a spanning tree towards b,
with edges {(a,na): a ∈ V, a �= b}.

Under reasonable assumptions, the time complexity of the present algorithm is linear for fixed Σ and k. Since the
number of (k − 1)-tuples occurred in the sequence is usually small relative to the total number of possible ones, the
state variables can be stored in a dynamic data structure to save space. For example, it can be implemented as a hash
table, so that the expected running time is still linear. Furthermore, the algorithm is on-line, and can halt on the first
occurrence of a forbidden word. Utilizing it, investigation on real biological sequences [10] and preliminary numerical
experiments [12] have revealed some interesting features of the distribution of probability of uniqueness of sequence
reconstruction with respect to k.
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