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This note revisits localisation and patching method in the setting
of generalised unitary groups. Introducing certain subgroups of
relative elementary unitary groups, we develop relative versions of
the conjugation calculus and the commutator calculus in unitary
groups, which are both more general, and substantially easier than
the ones available in the literature. For the general linear group
such relative commutator calculus has been recently developed by
the first and the third authors. As an application we prove the
mixed commutator formula,

[
EU(2n, I,Γ ),GU(2n, J ,�)

] = [
EU(2n, I,Γ ),EU(2n, J ,�)

]
,

for two form ideals (I,Γ ) and ( J ,�) of a form ring (A,Λ). This
answers two problems posed in a paper by Alexei Stepanov and
the second author.
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1. Introduction

One of the most powerful ideas in the study of classical groups over rings is localisation. It allows
to reduce many important problems over various classes of rings subject to commutativity conditions,
to similar problems for semi-local rings. Localisation comes in a number of versions. The two most
familiar ones are localisation and patching, proposed by Daniel Quillen [38] and Andrei Suslin [43],
and localisation–completion, proposed by Anthony Bak [3].

Originally, the above papers addressed the case of the general linear group GL(n, A). Soon there-
after, Suslin himself, Vyacheslav Kopeiko, Marat Tulenbaev, Leonid Vaserstein, Li Fuan, Eiichi Abe,
and others proposed working versions of localisation and patching for other classical groups, such
as symplectic and orthogonal ones, as well as unitary groups, under some additional simplifying as-
sumptions, see, for example, [26,45,27,28] and further references in [47,9,41,6,23].

In the most general setting of quadratic modules, similar development took more time. In fact, the
first full scale treatment of localisation–completion was proposed only in the Bielefeld thesis by the
first author [19,20]. Quite remarkably, the first exhaustive treatment of localisation and patching came
only afterwards, in the St.-Petersburg thesis by Victor Petrov [34–36] and was strongly influenced by
[19,20].

As a matter of fact, both methods rely on a large body of common calculations, and technical facts,
known as conjugation calculus and commutator calculus. Oftentimes these calculations are even
referred to as the yoga of conjugation, and the yoga of commutators, to stress the overwhelming
feeling of technical strain and exertion. In the unitary case, due to the following circumstances,

• the presence of long and short roots,
• complicated elementary relations,
• non-commutativity,
• non-trivial involution,
• non-trivial form parameter,

these calculations tend to be especially lengthy, and highly involved.
A specific motivation for the present work was the desire to create tools to prove relative versions

of structure results for unitary groups. One typical such result in which we were particularly inter-
ested, is description of subnormal subgroups, or, what is almost the same, description of subgroups
of the unitary groups GU(2n, A,Λ), normalised by a relative elementary subgroup EU(2n, I,Γ ), see
[16,17,50–52].

Another one was generalisation of the mixed commutator formula

[
E(n, R, I),GL(n, R, J)

] = [
E(n, R, I), E(n, R, J)

]
,

proved in the setting of general linear groups by Alexei Stepanov and the second author [48] where
here R is a ring and I and J are two-sided ideals of R . This formula is a common generalisation
of the standard commutator formulae. At the stable level, these formulae were first established in
the work of Hyman Bass [11]. In another decade, Andrei Suslin, Leonid Vaserstein, Zenon Borewicz,
and the second author [43–45,12,41] discovered that for commutative rings similar formulae hold for
all n � 3. See also [8,9,14,15,21,22,25,41,47] for various proofs and non-commutative generalisations.
However, for two relative subgroups such formulae were proven only at the stable level, by Alec
Mason [30–33].

However, the proof in [48] relied on a strong form of decomposition of unipotents [41], and was
not likely to directly generalise to other classical groups. The authors of [48] raised the problems
of establishing this formula via localisation method, and to generalise it to the general setting of
quadratic modules [48, Problems 1 and 2].

In the paper [24] the first and the third authors developed relative versions of conjugation calculus
and commutator calculus in the general linear group GL(n, R), thus solving [48, Problem 1]. However,
we believe that the importance and applicability of the method itself far surpass this immediate
application.
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In the present paper, which is a sequel of [24], we in a similar way evolve relative unitary conjuga-
tion calculus and commutator calculus, and, in particular, solve [48, Problem 2]. Actually, the present
paper does not depend on the calculations from [19] and [20]. Instead, here we establish relative
versions of these results from scratch, in a more general setting. The resulting versions of conjuga-
tion calculus and commutator calculus are both more general, and substantially easier than the ones
available in the literature.

The overall scheme is always that devised by the first author in [19,20], which in turn follows Bak’s
localisation–completion method [3], whose distinguishing feature is that principal t-localisations are
injective on small t-adic neighbourhoods. However, we propose several important technical innova-
tions, and simplifications. Some such simplifications are similar to those proposed by the first and the
second authors in [22]. Most importantly, following [24] we introduce certain subgroups of relative
elementary quadratic groups, and prove all results not at the absolute, but at the relative level. An-
other important improvement is that we notice that the case analysis in the proof of Lemmas 8 and
12 which provide the base of induction, can be cut in half.

As an immediate application of our methods we prove the following mixed commutator formula.

Theorem 1. Let n � 3, R be a commutative ring, (A,Λ) be a form ring such that A is a quasi-finite R-algebra.
Further, let (I,Γ ) and ( J ,�) be two form ideals of a form ring (A,Λ). Then

[
EU(2n, I,Γ ),GU(2n, J ,�)

] = [
EU(2n, I,Γ ),EU(2n, J ,�)

]
. (1)

This theorem is a very broad generalisation of many preceding results, including the following
ones—which, in turn, generalise a lot previous of results!

• Absolute standard unitary commutator formulae, Bak and Vavilov [9, Theorem 1.1], and Vaserstein
and Hong You [46].

• Relative unitary commutator formula at the stable level, under some additional stability assump-
tions, Habdank [16,17].

• Relative commutator formula for the general linear group GL(n, R), Stepanov and Vavilov [48,49],
and Hazrat and Zhang [24]. This case is obtained, by setting in our theorem, A = R ⊕ R0.

Observe, that in the above generality (relative, without stability conditions) our results are new
already for the following familiar cases.

• The case of symplectic groups Sp(2l, R), when the involution is trivial, and Λ = R .
• The case of split orthogonal groups SO(2l, R), when the involution is trivial and Λ = 0.
• The case of classical unitary groups SU(2l, R), when Λ = Λmax.

See [18, §5.2B] for further discussion on the generalised unitary groups.
Actually, in Sections 8, 9 we give another proof of Theorem 1, imitating that of [49]. Namely, we

show, that Theorem 1 can be deduced from the absolute standard commutator formula by careful
calculation of levels of the above commutator groups, and some group-theoretic arguments.

Nevertheless, we believe that our localisation proof, based on the relative conjugation calculus
and commutator calculus, which we develop in Sections 5, 6 of the present paper, and especially the
calculations themselves, are of independent value, and will be used in many further applications.

The paper is organised as follows. In Sections 2–4 we recall basic notation, and some background
facts, used in the sequel. The next two sections constitute the technical core of the paper. Namely, in
Section 5, and in Section 6 we develop relative unitary conjugation calculus, and relative unitary com-
mutator calculus, respectively. After that we are in a position to give a localisation proof of Theorem 1
in Section 7. In Section 8 we calculate the levels of the mixed commutator subgroups. Using these
calculations in Section 9 we give another proof of Theorem 1, deducing it from the absolute standard
commutator formula. There we also obtain slightly more precise results in some special situations,
for instance, when A itself is commutative or when I and J are comaximal, I + J = A. Finally, in
Section 10 we state and briefly discuss some further related problems.
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2. Form rings and form ideal

The notion of Λ-quadratic forms, quadratic modules and generalised unitary groups over a form
ring (A,Λ) were introduced by Anthony Bak in his thesis, see [1,2]. In this section, and the next one,
we very briefly review the most fundamental notation and results that will be constantly used in the
present paper. We refer to [1,2,18,9,13,7,19,20,5,34,23] for details, proofs, and further references.

2.1. Let R be a commutative ring with 1, and A be a (not necessarily commutative) R-algebra.
An involution, denoted by , is an anti-morphism of A of order 2. Namely, for α,β ∈ A, one has
α + β = α + β , αβ = βα and α = α. Fix an element λ ∈ Cent(A) such that λλ = 1. One may define
two additive subgroups of A as follows:

Λmin = {α − λα | a ∈ A}, Λmax = {α ∈ A | α = −λα}.

A form parameter Λ is an additive subgroup of A such that

(1) Λmin ⊆ Λ ⊆ Λmax,
(2) αΛα ⊆ Λ for all α ∈ A.

The pair (A,Λ) is called a form ring.

2.2. Let I � A be a two-sided ideal of A. We assume I to be involution invariant, i.e. such that
I = I . Set

Γmax(I) = I ∩ Λ, Γmin(I) = {ξ − λξ | ξ ∈ I} + 〈ξαξ | ξ ∈ I, α ∈ Λ〉.

A relative form parameter Γ in (A,Λ) of level I is an additive group of I such that

(1) Γmin(I) ⊆ Γ ⊆ Γmax(I),
(2) αΓ α ⊆ Γ for all α ∈ A.

The pair (I,Γ ) is called a form ideal.
In the level calculations we will use sums and products of form ideals. Let (I,Γ ) and ( J ,�) be

two form ideals. Their sum is artlessly defined as (I + J ,Γ + �), it is immediate to verify that this is
indeed a form ideal.

Guided by analogy, one is tempted to set (I,Γ )( J ,�) = (I J ,Γ �). However, it is considerably
harder to correctly define the product of two relative form parameters. The papers [16,17,19,20] in-
troduce the following definition

Γ � = Γmin(I J ) + J Γ + I�,

where

J Γ = 〈ξΓ ξ | ξ ∈ J 〉, I� = 〈ξ�ξ | ξ ∈ I〉.

One can verify that this is indeed a relative form parameter of level I J if I J = J I . Otherwise one
needs to consider the symmetrised product

(I,Γ )( J ,�) + ( J ,�)(I,Γ ) = (
I J + J I,Γmin(I J + J I) + J Γ + I�

)
.
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2.3. A form algebra over a commutative ring R is a form ring (A,Λ), where A is an R-algebra and
the involution leaves R invariant, i.e., R = R .

• A form algebra (A,Λ) is called module finite, if A is finitely generated as an R-module.
• A form algebra (A,Λ) is called quasi-finite, if there is a direct system of module finite R-sub-

algebras Ai of A such that lim−→ Ai = A.

However, in general Λ is not an R-module. This forces us to replace R by its subring R0, generated
by all αα with α ∈ R . Clearly, all elements in R0 are invariant with respect to the involution, i.e. r = r,
for r ∈ R0.

It is immediate, that any form parameter Λ is an R0-module. This simple fact will be used
throughout. This is precisely why we have to localise in multiplicative subsets of R0, rather than
in those of R itself.

2.4. Let (A,Λ) be a form algebra over a commutative ring R with 1, and let S be a multiplicative
subset of R0 (see Section 2.3). For any R0-module M one can consider its localisation S−1M and the
corresponding localisation homomorphims F S : M → S−1 M . By definition of the ring R0 both A and
Λ are R0-modules, and thus can be localised in S .

In the present paper, we mostly use localisation with respect to the following two types of multi-
plication systems of R0.

• Principal localisation: for any s ∈ R0 with s = s, the multiplicative system generated by s is defined
as 〈s〉 = {1, s, s2, . . .}. The localisation of the form algebra (A,Λ) with respect to multiplicative
system 〈s〉 is usually denoted by (As,Λs), where as usual As = 〈s〉−1 A and Λs = 〈s〉−1Λ are the
usual principal localisations of the ring A and the form parameter Λ. Notice that, for each α ∈ As ,
there exists an integer n and an element a ∈ A such that α = a

sn , and for each ξ ∈ Λs , there exists

an integer m and an element ζ ∈ Λ such that ξ = ζ
sm .

• Maximal localisation: consider a maximal ideal m ∈ Max(R0) of R0 and the multiplicative closed
set Sm = R0\m. We denote the localisation of the form algebra (A,Λ) with respect to Sm by
(Am,Λm), where Am = S−1

m A and Λm = S−1
m Λ are the usual maximal localisations of the ring A

and the form parameter, respectively.

In these cases the corresponding localisation homomorphisms will be denoted by Fs and by Fm ,
respectively.

The following fact is verified by a straightforward computation.

Lemma 1. For any s ∈ R0 and for any m ∈ Max(R0) the pairs (As,Λs) and (Am,Λm) are form rings.

3. Unitary groups

In the present section we recall basic notation and facts related to Bak’s generalised unitary groups
and their elementary subgroups.

3.1. Let, as above, A be an associative ring with 1. For natural m, n we denote by M(m,n, A) the
additive group of m × n matrices with entries in A. In particular M(m, A) = M(m,m, A) is the ring of
matrices of degree n over A. For a matrix x ∈ M(m,n, A) we denote by xij , 1 � i � m, 1 � j � n, its
entry in the position (i, j). Let e be the identity matrix and ei j , 1 � i, j � n, be a standard matrix unit,
i.e. the matrix which has 1 in the position (i, j) and zeros elsewhere.

As usual, GL(m, A) = M(m, A)∗ denotes the general linear group of degree m over A. The group
GL(m, A) acts on the free right A-module V ∼= Am of rank m. Fix a base e1, . . . , em of the module V .
We may think of elements v ∈ V as columns with components in A. In particular, ei is the column
whose i-th coordinate is 1, while all other coordinates are zeros.

Actually, in the present paper we are only interested in the case, when m = 2n is even. We usually
number the base as follows: e1, . . . , en, e−n, . . . , e−1. All other occurring geometric objects will be
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numbered accordingly. Thus, we write v = (v1, . . . , vn, v−n, . . . , v−1)
t , where vi ∈ A, for vectors in

V ∼= A2n .
The set of indices will be always ordered accordingly, Ω = {1, . . . ,n,−n, . . . ,−1}. Clearly, Ω =

Ω+ � Ω− , where Ω+ = {1, . . . ,n} and Ω− = {−n, . . . ,−1}. For an element i ∈ Ω we denote by ε(i)
the sign of Ω , i.e. ε(i) = +1 if i ∈ Ω+ , and ε(i) = −1 if i ∈ Ω− .

3.2. For a form ring (A,Λ), one considers the hyperbolic unitary group GU(2n, A,Λ), see [9, §2].
This group is defined as follows:

One fixes a symmetry λ ∈ Cent(A), λλ = 1 and supplies the module V = A2n with the following
λ-hermitian form h : V × V → A,

h(u, v) = u1 v−1 + · · · + un v−n + λu−n vn + · · · + λu−1 v1,

and the following Λ-quadratic form q : V → A/Λ,

q(u) = u1u−1 + · · · + unu−n mod Λ.

In fact, both forms are engendered by a sesquilinear form f ,

f (u, v) = u1 v−1 + · · · + un v−n.

Now, h = f + λ f , where f (u, v) = f (v, u), and q(v) = f (u, u) mod Λ.
By definition, the hyperbolic unitary group GU(2n, A,Λ) consists of all elements from GL(V ) ∼=

GL(2n, A) preserving the λ-hermitian form h and the Λ-quadratic form q. In other words, g ∈
GL(2n, A) belongs to GU(2n, A,Λ) if and only if

h(gu, gv) = h(u, v) and q(gu) = q(u), for all u, v ∈ V .

When the form parameter is not maximal or minimal, these groups are not algebraic. However,
their internal structure is very similar to that of the usual classical groups. They are also oftentimes
called general quadratic groups, or classical-like groups.

3.3. Elementary unitary transvections Tij(ξ) correspond to the pairs i, j ∈ Ω such that i �= j. They
come in two stocks. Namely, if, moreover, i �= − j, then for any ξ ∈ A we set

Tij(ξ) = e + ξeij − λ(ε( j)−ε(i))/2ξe− j,−i.

These elements are also often called elementary short root unipotents. On the other side for j = −i and
α ∈ λ−(ε(i)+1)/2Λ we set

Ti,−i(α) = e + αei,−i.

These elements are also often called elementary long root elements.
Note that Λ = λΛ. In fact, for any element α ∈ Λ one has α = −λα and thus Λ coincides with the

set of products λα, α ∈ Λ. This means that in the above definition α ∈ Λ when i ∈ Ω+ and α ∈ Λ

when i ∈ Ω− .
Subgroups Xij = {Tij(ξ) | ξ ∈ A}, where i �= ± j, are called short root subgroups. Clearly, Xij = X− j,−i .

Similarly, subgroups Xi,−i = {Tij(α) | α ∈ λ−(ε(i)+1)/2Λ} are called long root subgroups.
The elementary unitary group EU(2n, A,Λ) is generated by elementary unitary transvections Tij(ξ),

i �= ± j, ξ ∈ A, and Ti,−i(α), α ∈ Λ, see [9, §3].
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3.4. Elementary unitary transvections Tij(ξ) satisfy the following elementary relations, also known
as Steinberg relations. These relations will be used throughout this paper.

(R1) Tij(ξ) = T− j,−i(λ
(ε( j)−ε(i))/2ξ),

(R2) Tij(ξ)Tij(ζ ) = Tij(ξ + ζ ),
(R3) [Tij(ξ), Thk(ζ )] = 1, where h �= j,−i and k �= i,− j,
(R4) [Tij(ξ), T jh(ζ )] = Tih(ξζ ), where i,h �= ± j and i �= ±h,
(R5) [Tij(ξ), T j,−i(ζ )] = Ti,−i(ξζ − λ−ε(i)ζ ξ), where i �= ± j,
(R6) [Ti,−i(ξ), T−i, j(ζ )] = Tij(ξζ )T− j, j(−λ(ε( j)−ε(i))/2ζ ξζ ), where i �= ± j.

Relation (R1) coordinates two natural parametrisations of the same short root subgroup Xij =
X− j,−i . Relation (R2) expresses additivity of the natural parametrisations. All other relations are vari-
ous instances of the Chevalley commutator formula. Namely, (R3) corresponds to the case, where the
sum of two roots is not a root, whereas (R4), and (R5) correspond to the case of two short roots,
whose sum is a short root, and a long root, respectively. Finally, (R6) is the Chevalley commutator
formula for the case of a long root and a short root, whose sum is a root. Observe that any two long
roots are either opposite, or orthogonal, so that their sum is never a root.

3.5. Let G be a group. For any x, y ∈ G , x y = xyx−1 and yx = x−1 yx denote the left conjugate
and the right conjugate of y by x, respectively. As usual, [x, y] = xyx−1 y−1 denotes the left-normed
commutator of x and y. Throughout the present paper we repeatedly use the following commutator
identities:

(C1) [x, yz] = [x, y] · y[x, z],
(C2) [xy, z] = x[y, z] · [x, z],
(C3) x[[y, x−1]−1, z] = y[x, [y−1, z]] · z[y, [z−1, x]],
(C4) [x, y z] = y[y−1

x, z],
(C5) [yx, z] = y[x, y−1

z].

Especially important is (C3), the celebrated Hall–Witt identity. Sometimes it is used in the following
form, known as the three subgroup lemma.

Lemma 2. Let F , H, L � G be three normal subgroups of G. Then

[[F , H], L
]
�

[[F , L], H
] · [F , [H, L]].

4. Relative subgroups

In this section we recall definitions and basic facts concerning relative subgroups.

4.1. One associates with a form ideal (I,Γ ) the following four relative subgroups.

• The subgroup FU(2n, I,Γ ) generated by elementary unitary transvections of level (I,Γ ),

FU(2n, I,Γ ) = 〈
Tij(ξ)

∣∣ ξ ∈ I if i �= ± j and ξ ∈ λ−(ε(i)+1)/2Γ if i = − j
〉
.

• The relative elementary subgroup EU(2n, I,Γ ) of level (I,Γ ), defined as the normal closure of
FU(2n, I,Γ ) in EU(2n, A,Λ),

EU(2n, I,Γ ) = FU(2n, I,Γ )EU(2n,A,Λ).
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• The principal congruence subgroup GU(2n, I,Γ ) of level (I,Γ ) in GU(2n, A,Λ) consists of those
g ∈ GU(2n, A,Λ), which are congruent to e modulo I and preserve f (u, u) modulo Γ ,

f (gu, gu) ∈ f (u, u) + Γ, u ∈ V .

• The full congruence subgroup CU(2n, I,Γ ) of level (I,Γ ), defined as

CU(2n, I,Γ ) = {
g ∈ GU(2n, A,Λ)

∣∣ [
g,GU(2n, A,Λ)

] ⊆ GU(2n, I,Γ )
}
.

In some books, including [18], the group CU(2n, I,Γ ) is defined differently. However, in many
important situations these definitions yield the same group. Starting from Lemma 6, this is certainly
the case for rings considered in the present paper.

4.2. Let us collect several basic facts, concerning relative groups, which will be used in the sequel.
The first one of them asserts that the relative elementary groups are EU(2n, A,Λ)-perfect.

Lemma 3. Suppose either n � 3 or n = 2 and I = ΛI + IΛ. Then

EU(2n, I,Γ ) = [
EU(2n, I,Γ ),EU(2n, A,Λ)

]
.

The next lemma gives generators of the relative elementary subgroup EU(2n, I,Γ ) as a subgroup.
With this end, consider matrices

Zij(ξ, ζ ) = T ji(ζ )Tij(ξ) = T ji(ζ )Tij(ξ)T ji(−ζ ),

where ξ ∈ I , ζ ∈ A, if i �= ± j, and ξ ∈ λ−(ε(i)+1)/2Γ , ζ ∈ λ−(ε(i)+1)/2Λ, if i = − j. The following result
is [9, Proposition 5.1].

Lemma 4. Suppose n � 3. Then

EU(2n, I,Γ ) = 〈
Zij(ξ, ζ )

∣∣ ξ ∈ I, ζ ∈ Λ if i �= ± j and ξ ∈ λ−(ε(i)+1)/2Γ, ζ ∈ λ−(ε(i)+1)/2Λ, if i = − j
〉
.

The following lemma was first established in [1], but remained unpublished. See [18] and
[9, Lemma 4.4], for published proofs.

Lemma 5. The groups GU(2n, I,Γ ) and CU(2n, I,Γ ) are normal in GU(2n, A,Λ).

The following lemma is the main result of [8,9]. It is usually referred as the absolute standard
commutator formula. Its role in the present paper is two-fold. On the one hand, here we develop a
new and more powerful relative version of the conjugation calculus and the commutator calculus,
which allow, among other things, to give a new proof of this result. In other words, the localisation
proof of Theorem 1 proceeds directly in the relative case, and does not depend on the absolute case.
On the other hand, in Sections 8, 9 we show that using level calculations one can deduce Theorem 1
directly from the absolute case.

Lemma 6. Let (A,Λ) be a quasi-finite form ring and n � 3. Then for any form ideal (I,Γ ) the corresponding
elementary subgroup EU(2n, I,Γ ) is normal in the hyperbolic unitary group GU(2n, A,Λ), in other words,

EU(2n, I,Γ ) = [
GU(2n, A,Λ),EU(2n, I,Γ )

]
.
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Moreover,

EU(2n, I,Γ ) = [
EU(2n, A,Λ),CU(2n, I,Γ )

]
.

4.3. The proofs in the present paper critically depend on the fact that the functors GU2n and EU2n

commute with direct limits. This idea is used twice.

• Analysis of the quasi-finite case can be reduced to the case, where A is module finite over R0,
whereas R0 itself is Noetherian. Indeed, if (A,Λ) is quasi-finite (see Section 2.3), it is a direct
limit lim−→((A j)R j ,Λ j) of an inductive system of form sub-algebras ((A j)R j ,Λ j) ⊆ (AR ,Λ) such
that each A j is module finite over R j , R0 ⊆ R j and R j is finitely generated as an R0-module. It
follows that A j is finitely generated as an R0-module, see [19, Cor. 3.8]. This reduction to module
finite algebras will be used in Lemma 17 and Theorem 1.

• Analysis of any localisation can be reduced to the case of principal localisations. Indeed, let S
be a multiplicative system in a commutative ring R . Then Rs , s ∈ S , is an inductive system with
respect to the localisation maps Ft : Rs → Rst . Thus, for any functor F commuting with direct
limits one has F (S−1 R) = lim−→ F (Rs).

The following crucial lemma relies on both of these reductions. In fact, starting from the next
section, we will be mostly working in the principal localisation At . However, eventually we shall
have to return to the algebra A itself. In general, localisation homomorphism F S is not injective, so
we cannot pull elements of GU(2n, S−1 A, S−1Λ) back to GU(2n, A,Λ). However, over a Noetherian
ring, principal localisation homomorphims Ft are indeed injective on small t-adic neighbourhoods of
identity!

Lemma 7. Let R be a commutative Noetherian ring and let A be a module finite R-algebra. Then for any t ∈ R
there exists a positive integer l such that restriction

Ft : GU
(
2n, tl A, tlΛ

) → GU(2n, At ,Λt),

of the localisation map to the principal congruence subgroup of level (tl A, tlΛ) is injective.

Proof. Follows from the injectivity of the localisation map Ft : tl A → At , see [3, Lemma 4.10] or [22,
Lemma 5.1]. �
5. Conjugation calculus

In the present section we develop a relative version of unitary conjugation calculus. Throughout
this section, we assume that n � 3, that (A,Λ) is a form ring over a commutative ring R with invo-
lution, that R0 is the subring of R , generated by aa, where a ∈ R , as in Section 2.3, and, finally, that
(I,Γ ) and ( J ,�) are two form ideals of (A,Λ).

Clearly, for any t �= 0 ∈ R0 and any given positive integer l, the set tl A is in fact an ideal of the
algebra A. Similarly, it is straightforward to verify that tlΛ = {tlα | α ∈ Λ} is in fact relative form
parameter for tl A, and, thus, (tl A, tlΛ) is a form ideal.

By the same token, any form ideal (I,Γ ) gives rise to the form ideal (tl I, tlΓ ). In particular, we
have the corresponding groups FU(2n, tl A, tlΛ) and FU(2n, I,Γ ).

Starting from Lemma 8 up to Lemma 17, all calculations actually take place inside the elementary
group EU(2n, At ,Λt), for some t ∈ R0. Thus, when we write something like FU1(2n, tl I, tlΓ ) or Tij(tlα)

what we really mean is Ft(FU1(2n, tl I, tlΓ )) or Tij(Ft(tlα)), respectively.
The overall intention of what we are doing in this section, and the next one, is to perfect the art

of getting rid of denominators. We consider conjugates x y or commutators [x, y], where x may be
fractional in t , whereas y is at our disposal. We wish to show that for a given x and any y from a
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very small t-adic neighbourhood of 1 the elements x y and [x, y] still fall in a reasonably small t-adic
neighbourhood of 1. Actually, we aim at such neighbourhood, where Ft is injective, as in Lemma 7.

For the group EU(2n, At ,Λt) itself, such calculations have been performed before in the Doktorar-
beit of the first author [19,20], and have been later used by ourselves, Anthony Bak, Victor Petrov, and
others [4,34–36,50].

What we want to do now, is to develop similar techniques inside the relative group EU(2t, It ,Γt),
where (I,Γ ) is a form ideal of the form algebra (A,Λ). However, a direct imitation of the existing
proof leads to awkward and unwieldy calculations.

Before, one always carried such calculations in the familiar neighbourhoods of 1, namely in
FU(2n, tl I, tlΓ ) or in EU(2n, tl I, tlΓ ). However, as it turns out, the first one of them is a bit too small,
whereas the second one is a bit too large. A major new technical point of the present paper, suggested
by the method of our paper [24], is that calculations become much less cumbersome if one works
inside the subgroup

FU
(
2n, tl I, tlΓ

)
� FU

(
2n, tl A, tl I, tlΓ

)
� EU

(
2n, tl I, tlΓ

)
,

instead.
By definition, it is the normal closure of FU(2n, tl I, tlΓ ) in FU(2n, tl A, tlΛ),

FU
(
2n, tl A, tl I, tlΓ

) = FU(2n,tl A,tlΛ)FU
(
2n, tl I, tlΓ

)
� FU

(
2n, tl A, tlΛ

)
.

Normality of FU(2n, tl A, tl I, tlΓ ) in FU(2n, tl A, tlΛ) will be repeatedly used in the sequel. Notice, that
FU(2n, tl A, tl A, tlΛ) = FU(2n, tl A, tlΛ).

Let us introduce a further piece of notation. For a form ideal (I,Γ ) and an element t ∈ R0, the
set FU1(2n, I

tm , Γ
tm ) consists of elementary unitary transvections Tij(a), such that a ∈ I

tm if i �= ± j and
a ∈ λ(ε(i)+1)/2 Γ

tm if i = − j. The set FU1(2n, tm I, tmΓ ) is defined similarly. By FUK (2n, tm I, tmΓ ), we
mean a product of K (or fewer) elements of FU1(2n, tm I, tmΓ ).

The following result is based on an induction. As everyone knows, a journey of a thousand miles
starts with the first step, which is usually also the hardest one. In this case it certainly is.

Lemma 8. For any given l, m there exists a sufficiently large integer p such that

FU1(2n, A
tm , Λ

tm ) FU1(2n, t4p I, t4pΓ
) ⊆ FU

(
2n, tl A, tl I, tlΓ

)
.

Proof. Suppose that

g = Ti j(a/tm)Thk
(
t4pα

) ∈ FU1(2n, A
tm , Λ

tm ) FU1(2n, t4p I, t4pΓ
)
.

The proof is divided into four cases depending on whether the root elements Tij(a/tm) and Thk(t4pα)

are short or long.

Case I: Both Thk(t4pα) and Tij(a/tm) are short root elements, in other words h �= ±k, i �= ± j, and, as
above, α ∈ I and a ∈ A.

The proof breaks into four subcases:

(1) i �= k and j �= h;
(2) i = k and j �= h;
(3) i �= k and j = h;
(4) i = k and j = h.
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We shall prove subcases (1) and (2) and leave it to the reader to reduce subcases (3)–(4) to sub-
case (1). In subcase (1), we have further four subcases.

(i) i �= −h and j �= −k. Then Thk(t4pα) commutes with Tij(a/tm) by identity (R3). Therefore, ρ =
Thk(t4pα) and we are done.

(ii) i = −h and j �= −k. In this subcase, g = Tij(a/tm)T−ik(t4pα).
If j = k, then using (R5) we get

g = Ti j(a/tm)T−i, j
(
t4pα

) = T−i, j
(
t4pα

)[
T−i, j

(−t4pα
)
, Ti, j

(
a/tm)]

= T−i, j
(
t4pα

)
T− j, j

(−λ(ε( j)−ε(−i))/2αat4p−m + λ(ε( j)−ε(i))/2aαt4p−m)
∈ FU

(
2n, t4p−m A, t4p−m I, t4p−mΓ

)
.

If j �= k, then using (R4) we get

g = Ti j(a/tm)T−i,k
(
t4pα

) = T−i,k
(
t4pα

)[
T−i,k

(−t4pα
)
, Ti, j

(
a/tm)]

= T−i, j
(
t4pα

)
T−k, j

(−λ(ε( j)−ε(−i))/2αat4p−m) ∈ FU
(
2n, t4p−m A, t4p−m I, t4p−mΓ

)
.

(iii) i �= −h and j = −k. In this subcase,

g = Ti j(a/tm)Th,− j
(
t4pα

)
.

If i = h then using (R5) we get

g = Ti j(a/tm)Ti,− j
(
t4pα

) = Ti,− j
(
t4pα

)[
Ti,− j

(−t4pα
)
, Ti, j

(
a/tm)]

= Ti,− j
(
t4pα

)
Ti,−i

(−λ(ε( j)−ε(i))/2αat4p−m + λ(ε(− j)−ε(i))/2aαt4p−m)
∈ FU

(
2n, t4p−m A, t4p−m I, t4p−mΓ

)
.

If i �= h then using (R4) we get

g = Ti j(a/tm)Th,− j
(
t4pα

) = Th,− j
(
t4pα

)[
Th,− j

(−t4pα
)
, Tij

(
a/tm)]

= Th,− j
(
t4pα

)
Th,−i

(−λ(ε( j)−ε(i))/2αat4p−m) ∈ FU
(
2n, t4p−m A, t4p−m I, t4p−mΓ

)
.

(iv) i = −h and j = −k. In this subcase, g = Tij(a/tm)T−i,− j(t4pα). By (R1),

g = Ti j(a/tm)T ji
(
λ(ε(−i)−ε(− j))/2t4pα

)
.

To simplify notation, we denote λ(ε(−i)−ε(− j))/2α by α.
Take an index q �= ±i,± j. Then,

g = Ti j(a/tm)T ji
(
t4pα

) = Ti j(a/tm)
[
T jq

(
t2p)

, Tqi
(
t2pα

)]
= [Ti j(a/tm)

T jq
(
t2p)

,Ti, j(a/tm) Tqi
(
t2pα

)]
= [

Tiq
(
t2p−ma

)
T jq

(
t2p)

, Tqi
(
t2pα

)
Tqj

(−t2p−mαa
)]

.
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Denote the first and the second factors on the right-hand side by x and y respectively. Clearly,

y ∈ FU
(
2n, t2p−m I, t2p−mΓ

)
and x ∈ FU

(
2n, t2p−m A, t2p−mΛ

)
,

and thus

[x, y] ∈ FU
(
2n, t2p−m A, t2p−m I, t2p−mΓ

)
.

Now, taking any p � (l + m)/2 we see that g ∈ FU(2n, tl A, tl I, tlΓ ). This finishes the proof of
subcase.

In subcase (2), we have g = Tij(a/tm)Thi(t4pα) = Tij(a/tm)T−i,−h(λ(ε(i)−ε(h))/2t4pα). It follows by sub-
case (1)(ii) that g ∈ FU(2n, tl A, tl I, tlΓ ) for some suitable p.

Subcases (3) and (4) can be reduced to subcase (1) in a similar fashion.

Case II: Thk(t4pα) is a short root element and Tij(a/tm) is a long root element, i.e., i = − j, h �= ±k,
α ∈ I and a/tm ∈ Λ

tm . This case is handled by dividing into three subcases:

(1) h �= −i and k �= i. By (R3), Thk(t4pα) commutes with Ti,−i(a/tm). Therefore, g = Thk(t4pα) and we
are done.

(2) h = −i and k �= i. By (R6) we have

g = Ti,−i(a/tm)T−i,k
(
t4pα

) = T−i,k
(
t4pα

)[
T−i,k

(−t4pα
)
, Ti,−i

(
a/tm)]

= T−i,k
(
t4pα

)
T−k,k

(
λ(ε(k)−ε(−i))/2t8p−mαaα

)
Ti,k

(
t4p−maα

)
∈ FU

(
2n, t4p−m A, t4p−m I, t4p−mΓ

)
.

(3) h �= −i and k = i. Our claim follows from an argument similar to that used in subcase (2).

Case III: Thk(t4pα) is a long root element and Tij(a/tm) is a short root element. Namely, i �= ± j,
h = −k, α ∈ Γ and a ∈ A. This case is treated by dividing into three subcases:

(1) i �= −h and j �= h. By (R3), Th,−h(t4pα) commutes with Tij(a/tm). Therefore, g = Th,−h(t4pα) and
we are done.

(2) i = −h and j �= h. By (R6) we have

g = Ti, j(a/tm)T−i,i
(
t4pα

) = T−i,i
(
t4pα

)[
T−i,i

(−t4pα
)
, Ti, j

(
a/tm)]

= T−i,i
(
t4pα

)
T−i, j

(−t4p−mαa
)
T− j, j

(
λ(ε( j)−ε(i))/2t4p−2maαa

)
∈ FU

(
2n, t4p−2m A, t4p−2m I, t4p−2mΓ

)
.

(3) i �= −h and j = h. It follows from an argument similar to that used in subcase (2).

Case IV: Both Thk(t4pα) and Tij(a/tm) are long root elements. Namely, i = − j, h = −k, α ∈ Γ and
a/tm ∈ Λ

tm . This case is handled by dividing into further two subcases:

(1) i �= −h. By (R3), Th,−h(t4pα) commutes with Ti,−i(a/tm). Therefore, g = Th,−h(t4pα) and we are
done.
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(2) i = −h. Pick a q �= ±i. Without loss of generality, we may assume that ε(q) = ε(−i). Then by (R6)
we have

g = Ti,−i(a/tm)T−i,i
(
t4pα

) = Ti,−i(a/tm)
(
Tq,i

(
t3p−mα

)[
T−q,i

(
t p)

, Tq,−q
(
t2pα

)])
= (Ti,−i(a/tm)Tq,i

(
t3p−mα

))[Ti,−i(a/tm)T−q,i
(
t p)

, Ti,−i(a/tm)Tq,−q
(
t2pα

)]
.

Now, Ti,−i(a/tm)Tq,−q(t2pα) is trivial by (R3). By Case II, there is a sufficiently large p such that

Ti,−i(a/tm)Tq,i
(
t3p−mα

) ∈ FU
(
2n, tl A, tl I, tlΓ

)
,

and

Ti,−i(a/tm)T−q,i
(
t p) ∈ FU

(
2n, tl A, tlΛ

)
.

By definition, FU(2n, tl A, tl I, tlΓ ) is normalised by FU(2n, tl A, tlΛ). Hence, there is a sufficiently large
p such that g ∈ FU(2n, tl A, tl I, tlΓ ). This finishes the proof of Case IV, hence the whole proof. �

The next lemma immediately follows from Lemma 8 by induction.

Lemma 9. For any given m, l there exists a sufficiently large p such that

FU1(2n, A
tm , Λ

tm ) FU
(
2n, t p I, t pΓ

)
� FU

(
2n, tl A, tl I, tlΓ

)
.

For further applications we need a stronger fact with FU(2n, t p I, t pΓ ) on the left-hand side re-
placed by its normal closure FU(2n, t p A, t p I, t pΓ ) in FU(2n, t p A, t pΛ).

Lemma 10. For any given m, l there exists a sufficiently large p such that

FU1(2n, A
tm , Λ

tm ) FU
(
2n, t p A, t p I, t pΓ

)
� FU

(
2n, tl A, tl I, tlΓ

)
.

Proof. We have

FU1(2n, A
tm , Λ

tm ) FU
(
2n, t p A, t p I, t pΓ

) = FU1(2n, A
tm , Λ

tm )
(FU(2n,t p A,t pΛ)FU

(
2n, t p I, t pΓ

))
⊆ FU1(2n, A

tm , Λ
tm )

FU(2n,t p A,t pΛ)
(FU1(2n, A

tm , Λ
tm )FU

(
2n, t p I, t pΓ

))
.

By Lemma 9, there exists a sufficiently large p such that the conjugate in the exponent is con-
tained in FU(2n, tl A, tl A, tlΛ) = FU(2n, tl A, tlΛ), whereas the conjugate in the base is contained in
FU(2n, tl A, tl I, tlΓ ). Since the group FU(2n, tl A, tl I, tlΓ ) is normalised by FU(2n, tl A, tlΛ), our claim
follows. �

The next lemma is a direct consequence of Lemma 10. Observe, that here we start working with
two form ideals (I,Γ ) and ( J ,�).

Lemma 11. For any give m, l there exists a sufficiently large p such that

FU1(2n, A
tm , Λ

tm )
[
FU

(
2n, t p A, t p I, t pΓ

)
,FU

(
2n, t p A, t p J , t p�

)]
⊆ [

FU
(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
.
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However, in this lemma, denominators occur in the conjugating elements, not inside the commu-
tators. To prove our main results, we will have to face denominators inside the commutator. This is
done in the next section.

6. Commutator calculus

In the present section we develop a relative version of unitary commutator calculus. As above, we
always assume that n � 3, that (A,Λ) is a form ring over a commutative ring R with involution, that
R0 is the subring of R , generated by aa, where a ∈ R , and, finally, that (I,Γ ) and ( J ,�) are two form
ideals of (A,Λ). As before, all calculations take place inside the group EU(2n, At ,Λt).

Lemma 12. Suppose m, l, K are given. For any t ∈ R there is an integer p, independent of K , such that

[
FUK (

2n, t4p I, t4pΓ
)
,FU1

(
2n,

J

tm
,

�

tm

)]
⊆ [

FU
(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
.

Proof. An easy induction, using identity (C2), shows that

[
K∏

i=1

ui, x

]
=

K∏
i=1

∏K−i
j=1 u j [uK−i+1, x],

where by convention
∏0

j=1 u j = 1. This, with the fact that FU(2n, tl A, tl I, tlΓ ) and FU(2n, tl A, tl J , tl�)

are normalised by FU(2n, t p A, t pΛ), where p � l, show that it is enough to establish the lemma for
K = 1, namely,

[
FU1(2n, t4p I, t4pΓ

)
,FU1

(
2n,

J

tm
,

�

tm

)]
⊆ [

FU
(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
.

Let

Tij
(
t4pα

) ∈ FU1(2n, t4p I, t4pΓ
)
, Thk

(
β

tm

)
∈ FU1

(
2n,

J

tm
,

�

tm

)
,

and set

g =
[

Tij
(
t4pα

)
, Thk

(
β

tm

)]
.

As in Lemma 8, we divide the proof into four cases according to whether root elements Tij(t4pα) and
Thk(

β
tm ) are long or short.

Case I: Both Tij(t4pα) and Thk(
β
tm ) are short root elements, i.e., i �= ± j, h �= ±k, α ∈ I and β ∈ J . The

proof breaks further into following four subcases:

(1) i �= k and j �= h;
(2) i = k and j �= h;
(3) i �= k and j = h;
(4) i = k and j = h.

We shall prove subcases (1) and (2) and leave it to the reader to reduce subcases (3) and (4) to
subcase (1). In subcase (1), we have further four subcases:
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(i) i �= −h and j �= −k. By identity (R3), Tij(t4pα) commutes with Thk(
β
tm ). Therefore, g = 1 and we

are done.
(ii) i = −h and j �= −k. In this subcase,

g =
[

Tij
(
t4pα

)
, T−i,k

(
β

tm

)]
.

If j = k, then by (R5) one has

g =
[

Tij
(
t4pα

)
, T−i, j

(
β

tm

)]

= T− j, j
(−λ(ε( j)−ε(i))/2αβt4p−m + λ(ε( j)−ε(−i))/2βαt4p−m)

= [
Tij

(
t2pα

)
, T−i, j

(
t2p−mβ

)]
∈ [

FU
(
2n, t2p A, t2p I, t2pΓ

)
,FU

(
2n, t2p−m A, t2p−m J , t2p−m�

)]
.

If j �= k, then by (R4) one has

g =
[

Tij
(
t4pα

)
, T−i,k

(
β

tm

)]
= T− j,k

(−λ(ε( j)−ε(i))/2αβt4p−m)
= [

Tij
(
t2pα

)
, T−i,k

(
t2p−mβ

)]
∈ [

FU
(
2n, t2p A, t2p I, t2pΓ

)
,FU

(
2n, t2p−m A, t2p−m J , t2p−m�

)]
.

(iii) i �= −h and j = −k.
It follows from an argument similar to that used in subcase (ii).

(iv) i = −h and j = −k.
In this subcase, g = [Tij(t4pα), T−i,− j(

β
tm )]. By (R1) one has

g =
[

Tij
(
t4pα

)
, T j,i

(
λ(ε(−i)−ε(− j))/2 β

tm

)]
.

To simplify notation, we denote λ(ε(−i)−ε(− j))/2β by β . Let q �= ±i,± j. Then by (C3) we have

g =
[

Tij
(
t4pα

)
, T ji

(
β

tm

)]
=

[[
Ti,q

(
t2pα

)
, Tq, j

(
t2p)]

, T ji

(
β

tm

)]

= Ti,q(t2pα)Ti,q(−t2pα)

[[
Ti,q

(
t2pα

)
, Tq, j

(
t2p)]

, T ji

(
β

tm

)]
.

Applying Hall–Witt identity, we get

g = Tiq(t2pα)

(
Tqj(t2p)

[
Tiq

(−t2pα
)
,

[
Tqj

(−t2p)
, T ji

(
β

tm

)]]

× T ji(
β

tm )

[
Tqj

(
t2p)

,

[
T ji

(
− β

tm

)
, Tiq

(−t2pα
)]])

.
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By (R4) this expression can be further rewritten as

g = Tiq(t2pα)
(Tqj(t2p)

[
Tiq

(−t2pα
)
, Tqi

(−t2p−mβ
)] · T ji(

β

tm )
[
Tqj

(
t2p)

, T jq
(
t2p−mαβ

)])
.

Clearly, for all p such that 2p − m > l the first factor in the base belongs to

[
FU

(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
.

On the other hand, the second factor equals

y = T ji(
β

tm )
[
Tqj

(
t2p)

, T jq
(
t2p−mαβ

)]
= T ji(

β

tm )
[
Tqj

(
t2p)

,
[
T ji

(
t
 2p−m

2 �β
)
, Tiq

(
t2p−m−
 2p−m

2 �α
)]]

.

Set

p′ = max

(⌊
2p − m

2

⌋
,2p − m −

⌊
2p − m

2

⌋)
.

Normality of FU(2n, tl A, tl I, tlΓ ) implies that

[
Tqj

(
t2p)

,
[
T ji

(
t
 2p−m

2 �β
)
, Tiq

(
t2p−m−
 2p−m

2 �α
)]]

∈ [
FU

(
2n, t p′

A, t p′
I, t p′

Γ
)
,FU

(
2n, t p′

A, t p′
J , t p′

�
)]

. (2)

Hence

y ∈ T ji(
β

tm )
[
FU

(
2n, t p′

A, t p′
I, t p′

Γ
)
,FU

(
2n, t p′

A, t p′
J , t p′

�
)]

.

Therefore, by Lemma 11, for any given l, there is a sufficiently large p′ such that,

y ∈ [
FU

(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
.

Summarising the above inclusions for the first and the second factors, we see that for a suffi-
ciently large p, one has

g ∈ [
FU

(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
.

This finishes the proof of subcase (1).

In subcase (2), we have

g =
[

Tij
(
t4pα

)
, Thi

(
β

tm

)]
=

[
Tij

(
t4pα

)
, T−i,−h

(
λ(ε(i)−ε(h))/2 β

tm

)]
.

By subcase (1)(ii) it follows that

g ∈ [
FU

(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
for a suitable p.
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Case II: Tij(t4pα) is a short root element and Thk(
β
tm ) is a long root element, i.e., i �= ± j, h = −k, α ∈ I

and β ∈ λ−(ε(h)+1)/2�. This case is handled by dividing into three subcases:

(1) i �= −h and j �= h. By (R3), Tij commutes with Thk . Therefore, g = 1 and we are done.
(2) i = −h and j �= h. By (R6) we have

g =
[

Tij
(
t4pα

)
, T−i,i

(
β

tm

)]
= (

T−i, j
(
βαt4p−m)

T− j, j
(−λ(ε( j)−ε(−i))/2αβαt8p−m))−1

.

Further, set

M =
⌊

8p − m

3

⌋
, M ′ =

(
8p − m − 2

⌊
8p − m

3

⌋)
.

Then by (R6) one has

g−1 = T− j,i
(
λ(ε( j)−ε(i))/2t4p−mαβ

)
T− j, j

(
λ(ε( j)−ε(i))/2t8p−mαβα

)
= T− j,i

(
λ(ε( j)−ε(i))/2t4p−mαβ

)
T− j, j

(
λ(ε( j)−ε(i))/2tMαtM ′

βtMα
)

= T− j,i
(
λ(ε( j)−ε(i))/2t4p−mαβ

)
T− j,i

(−λ(ε( j)−ε(i))/2tM ′+Mαβ
)

× [
T− j,−i

(
λ(ε( j)−ε(i))/2tMα

)
, T−i,i

(
tM ′

β
)]

.

Picking a q �= ±i,± j, we see that the first factor of the above expression equals

T− j,i
(
λ(ε( j)−ε(i))/2t4p−mαβ

)
T− j,i

(−λ(ε( j)−ε(i))/2tM ′+Mαβ
)

= [
T− j,q

(
λ(ε( j)−ε(i))/2t
4p−m�/2α

)
, Tq,i

(
λ(ε( j)−ε(i))/2t4p−m−
4p−m�/2β

)]
× [

T− j,q
(
λ(ε( j)−ε(i))/2tM ′

α
)
, Tq,i

(
λ(ε( j)−ε(i))/2tMβ

)]
.

Therefore, for any

p � max

(
m + l

4
+ 1,

3l + m

8
+ 1

)
,

both factors of g−1, and thus also g−1 and g themselves, belong to

[
FU

(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
.

(3) i �= −h and i = k. It follows from an argument similar to that used in subcase (2).

Case III: Tij(t4pα) is a long root element and Thk(
β
tm ) is a short root element. Namely, i = − j, h �= ±k,

α ∈ Γ and a ∈ A. This case is treated by dividing into three subcases:
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(1) i �= −h and i �= k. By (R3), Ti,−i commutes with Thk . Therefore, g = 1 and we are done.
(2) i = −h and i �= k. By (R6) we have

g =
[

Ti,−i
(
t4pα

)
, T−i,k

(
β

tm

)]
= Ti,k

(
αβt4p−m)

T−k, j
(−λ(ε(k)−ε(−i))/2βαβt4p−2m)

= Ti,k
(
αβt4p−m)

Tik
(−t3p−mαβ

) · [Ti,−i
(
t2pα

)
, T−i,k

(
t p−mβ

)]
.

When p � m + l, both factors of the above expression belong to

[
FU

(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
.

(3) i �= −h and j = h. It follows from an argument similar to that used in subcase (2).

Case IV: Both Tij(t4pα) and Thk(
β
tm ) are long root elements. Namely, i = − j, h = −k, α ∈ Γ and β ∈ �.

This case is handled by further subdividing it into two subcases.

(1) i �= −h. By (R3), two non-opposite long root elements commute, and thus g = 1.
(2) i = −h. Pick a q �= ±i. Without loss of generality, we may assume that ε(q) = ε(−i). Then by (R6)

we have

g =
[

Ti,−i
(
t4pα

)
, T−i,i

(
β

tm

)]
=

[
Ti,−i

(
t pt2pαt p

)
, T−i,i

(
β

tm

)]

=
[

Ti,−q
(−t3pα

)[
Tiq

(
t p)

, Tq,−q
(
t2pα

)]
, T−i,i

(
β

tm

)]
.

By (C2) one has

g = Ti,−q(−t3pα)

[[
Tiq

(
t p)

, Tq,−q
(
t2pα

)]
, T−i,i

(
β

tm

)]
·
[

Ti,−q
(−t3pα

)
, T−i,i

(
β

tm

)]
.

We claim that for a sufficiently large p both factors on the right-hand side belong to

[
FU

(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
.

For the second factor this follows from Case II. Thus, it remains to show that

[[
Ti,q

(
t p)

, Tq,−q
(
t2pα

)]
, T−i,i

(
β

tm

)]
∈ [

FU
(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
.

But

[[
Ti,q

(
t p)

, Tq,−q
(
t2pα

)]
, T−i,i

(
β

tm

)]

= Tq,−q(−t2pα)Tq,−q(t2pα)

[[
Ti,q

(
t p)

, Tq,−q
(
t2pα

)]
, T−i,i

(
β

tm

)]
.
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By the Hall–Witt identity one has

Tq,−q(−t2pα)

(
Ti,q(−t p)

[
Tq,−q

(−t2pα
)
,

[
T−i,i

(
β

tm

)
, Tiq

(−t p)]]

× T−i,i(− β

tm )

[
Ti,q

(
t p)

,

[
Tq,−q

(−t2pα
)
, T−i,i

(
− β

tm

)]])
.

By (R3) this can be further rewritten as

Tq,−q(−t2pα)

(
Ti,q(t p)

[
Tq,−q

(−t2pα
)
,

[
T−i,i

(
β

tm

)
, Ti,q

(−t p)]])
.

In turn, by (R6) this is equal to

Tq,−q(−t2pα)
(Ti,q(t p)

[
Tq,−q

(−t2pα
)
, T−i, j

(−t p−mβ
)
T−q,q

(−λt2p−mβ
)])

.

When p > l + m, the commutator in the base belongs to

[
FU

(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
.

Both FU(2n, tl A, tl I, tlΓ ) and FU(2n, tl A, tl J , tl�) are normalised by FU(2n, tl A, tlΛ). As
Tq,−q(−t2pα) and Ti,q(t p) belong to FU(2n, tl′ A, tl′Λ), it follows that the first factor also belongs
to

[
FU

(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
,

as claimed.
This finishes the proof of Case IV, and thus the whole proof. �

Lemma 13. Suppose m, l, K are given. For any t ∈ R there is an integer p, independent of K , such that

[
FUK (2n,t p A,t pΛ) FU1(2n, t p I, t pΓ

)
,FU1

(
2n,

J

tm
,

�

tm

)]

⊆ [
FU

(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
.

Proof. Let a, b and c be arbitrary elements in FUK (2n, t p A, t pΛ), FU1(2n, t p I, t pΓ ) and FU1(2n,
J

tm , �
tm ), respectively. Then by (C2) one has

[ ab, c
] = [

b
[
b−1,a

]
, c

] = (b[[b−1,a
]
, c

])[b, c]. (3)

By Lemma 12, we may find a sufficiently large p, such that for the second factor of Eq. (3),

[b, c] ∈ [
FU

(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
.

Applying Hall–Witt identity to the first of the above factors, we get

b[[b−1,a
]
, c

] = ba−1(a[[b−1,a
]
, c

]) = ba−1(b[a−1, [c,b]] × c−1[
b−1,

[
a−1, c−1]]).
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By Lemma 12, there is a sufficiently large p, such that

[c,b] ∈ [
FU

(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
.

Furthermore, a ∈ FUK (2n, t p A, t pΛ) implies that

b[a−1, [c,b]] ∈ [
FU

(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
.

Again, Lemma 12 implies that for any given l′ , there is a sufficiently large p such that

[
a−1, c−1] ∈ [

FU
(
2n, tl′ A, tl′Λ

)
,FU

(
2n, tl′ A, tl′ J , tl′�

)] ⊆ FU
(
2n, tl′ A, tl′ J , tl′�

)
.

It follows immediately that

[
b−1,

[
a−1, c−1]] ∈ [

FU
(
2n, tl′ A, tl′ I, tl′Γ

)
,FU

(
2n, tl′ A, tl′ J , tl′�

)]
.

Therefore,

c−1[
b−1,

[
a−1, c−1]] ⊆ FU1(2n, A

tm , Λ
tm )

[
FU

(
2n, tl′ A, tl′ I, tl′Γ

)
,FU

(
2n, tl′ A, tl′ J , tl′�

)]
.

Then by Lemma 11, we may find a sufficiently large l′ , such that

FU1(2n, A
tm , Λ

tm )
[
FU

(
2n, tl′ A, tl′ I, tl′Γ

)
,FU

(
2n, tl′ A, tl′ J , tl′�

)]
⊆ [

FU
(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
.

Hence we may find a sufficiently large p, such that

c−1[
b−1,

[
a−1, c−1]] ∈ [

FU
(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
.

This finishes the proof. �
Lemma 14. Suppose that m, l are given. For any t ∈ R there is an integer p such that

[
FU

(
2n, t p A, t p I, t pΓ

)
,FU1

(
2n,

J

tm
,

�

tm

)]
⊆ [

FU
(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
.

Proof. Since FU(2n, t p A, t p I, t pΓ ) is a group generated by elements of the form

FUK (2n,t p A,t pΛ) FU1(2n, t p I, t pΓ
)

for all natural numbers K and since in Lemma 13, p is independent of K , the lemma follows from
Lemma 13 and identity (C2) by induction. �
Lemma 15. Suppose m, l are given. For any t ∈ R there is an integer p such that

[
FU

(
2n, t p I, t pΓ

)
,

FU1(2n, A
tm , Λ

tm ) FU1
(

2n,
J

tm
,

�

tm

)]
⊆ [

FU
(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
.
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Proof. Let

a ∈ FU
(
2n, t p I, t pΓ

)
, b ∈ FU1

(
2n,

A

tm
,

Λ

tm

)
, c ∈ FU1

(
2n,

J

tm
,

�

tm

)
.

We consider the commutator [a, bc] = b[ b−1
a, c]. Lemma 9 implies that for any p′ there is a suffi-

ciently large p such that

b−1
a ∈ FU

(
2n, t p′

A, t p′
I, t p′

Γ
)
.

Therefore,

[ b−1
a, c

] ∈
[

FU
(
2n, t p′

A, t p′
I, t p′

Γ
)
,FU1

(
2n,

J

tm
,

�

tm

)]
.

By Lemma 14, for any p′′ there is a sufficiently large p′ such that

[ b−1
a, c

] ∈
[

FU
(
2n, t p′

A, t p′
I, t p′

Γ
)
,FU1

(
2n,

J

tm
,

�

tm

)]

⊆ [
FU

(
2n, t p′′

A, t p′′
I, t p′′

Γ
)
,FU

(
2n, t p′′

A, t p′′
J , t p′′

�
)]

.

Hence b[ b−1
a, c] belongs to

FU1(2n, A
tm , Λ

tm )
[
FU

(
2n, t p′′

A, t p′′
I, t p′′

Γ
)
,FU

(
2n, t p′′

A, t p′′
J , t p′′

�
)]

.

Finally, Lemma 11 implies that there is a sufficient large p′′ such that

FU1(2n, A
tm , Λ

tm )
[
FU

(
2n, t p′′

A, t p′′
I, t p′′

Γ
)
,FU

(
2n, t p′′

A, t p′′
J , t p′′

�
)]

⊆ [
FU

(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
.

This finishes the proof. �
In the following lemma we use the set EUK (2n,

J
tm , �

tm ) defined as the set of products of K or

fewer elements of FU1(2n, A
tm , Λ

tm ) FU1(2n,
J

tm , �
tm ).

Lemma 16. Suppose m, l, K are given. For any t ∈ R there is an integer p such that

[
FU1(2n, t p I, t pΓ

)
,EUK

(
2n,

J

tm
,

�

tm

)]
⊆ [

FU
(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
.

Proof. The lemma follows from Lemmas 15 and 11 and identity formulae (C1), (C2) by an easy in-
duction. �
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7. Mixed commutator formula: localisation proof

In this section we continue to assume that n � 3, R is a commutative ring, (A,Λ) is a form ring
such that A is a module-finite R-algebra, and, finally, (I,Γ ) and ( J ,�) are two form ideals of (A,Λ).

So far all calculations were taking place in the elementary group EU(2n, At ,Λt). Now we start to
pull them back to the group GU(2n, A,Λ). The key ingredient is Lemma 7, which asserts that for a
suitable positive integer l, the restriction

Ft : GU
(
2n, tl A, tlΛ

) → GU(2n, At,Λt),

of the localisation homomorphism Ft to the congruence subgroup GU(2n, tl A, tlΛ) is injective.
Recall, that the functors EU2n and GU2n commute with direct limits. By Section 4.3, proofs of the

following results are reduced to the case, where A is finite over R0 and R0 itself is Noetherian.

Lemma 17. Let m ∈ Max(R0) be a maximal ideal of R0 . For any g ∈ GU(2n, J ,�), there exists a t ∈ R0\m
and an integer p, such that

[e, g] ∈ [
EU(2n, I,Γ ),EU(2n, J ,�)

]
,

where e ∈ FU1(2n, t p I, t pΓ ). (Here p depends on the choice of e.)

Proof. For any maximal ideal m ∈ Max(R0), the form ring (Am,Λm) contains ( Jm,�m) as a form
ideal. Consider the localisation homomorphism Fm : A → Am which induces homomorphisms on the
level of unitary groups,

Fm : GU(2n, A,Λ) → GU(2n, Am,Λm),

and

Fm : GU(2n, J ,�) → GU(2n, Jm,�m).

Therefore, for g ∈ GU(2n, J ,�), Fm(g) ∈ GU(2n, Jm,�m). Since Am is module finite over the lo-
cal ring Rm , Am is semi-local [10, III(2.5), (2.11)], therefore its stable rank is 1. It follows by (see
[18, 9.1.4]) that

GU(2n, Jm,�m) = EU(2n, Jm,�m)GU(2, Jm,�m).

Thus, Fm(g) can be decomposed as Fm(g) = εh, where ε ∈ EU(2n, Jm,�m) and h ∈ GU(2, Jm,�m)

is a 2 × 2 matrix embedded in GU(2n, Jm,�m) and this embedding can be arranged modulo
EU(2n, Jm,�m).

Now, by (4.3), we may reduce the problem to the case At with t ∈ R0\m. Namely, Ft(g) is a
product of ε and h, where ε ∈ EU(2n, Jt ,�t), and h ∈ GL(2, Jt ,�t).

Therefore ε is a product of the elementary matrices, thus one has (see [9, Prop. 5.1])

ε ∈ EUK
(

2n,
J

tm
,

�

tm

)
.

Let e ∈ FU1(2n, t p I, t pΓ ). We choose h such that it commutes with Ft(e). By Lemma 16, for any
given l, there is a sufficiently large p such that

[
Ft(e), Ft(g)

] = [
Ft(e), ε

] ∈ [
FU

(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
. (4)
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Since e ∈ EU(2n, t p I, t pΓ ) � GU(2n, tl A, tlΛ) and GU(2n, tl A, tlΛ) is normal in GU(2n, A,Λ), it follows
[e, g] ∈ GU(2n, tl A, tlΛ). On the other hand, using (4), one can find

x ∈ [
FU

(
2n, tl A, tl I, tlΓ

)
,FU

(
2n, tl A, tl J , tl�

)]
in EU(2n, A,Λ) such that Ft(x) = [Ft(e), Ft(g)]. Since for suitable l, the restriction of Ft to
GLn(tl A, tlΛ) is injective by Lemma 7, it follows [e, g] = x and thus

[e, g] ∈ [
EU(2n, I,Γ ),EU(2n, J ,�)

]
. �

Now, we are prepared to patch the local data. The following lemma is a key step in the proof of
Theorem 1, after that the proof is finished by an easy induction.

Lemma 18. One has

[
FU1(2n, I,Γ ),GU(2n, J ,�)

] ⊆ [
EU(2n, I,Γ ),EU(2n, J ,�)

]
. (5)

Proof. Let Thk(α) ∈ FU1(2n, I,Γ ), and g ∈ GU(2n, J ,Γ ). For any maximal ideal mi � R0, choose a
ti ∈ R0\mi and a positive integer pi according to Lemma 17. Since the collection of all t pi

i is not
contained in any maximal ideal, we may find a finite number of ti and xi ∈ R0 such that

∑
i

t pi
i xi = 1.

We have,

Thk(α) = Thk

(∑
i

t pi
i xi · α

)
=

∏
i

Thk
(
t pi

i xiα
)
.

By Lemma 17, it follows immediately that for each i,

[
Thk

(
t pi

i xiα
)
, g

] ∈ [
EU

(
2n, tl

i I, tl
iΓ

)
,EU

(
2n, tl

i J , tl
i�

)]
�

[
EU(2n, I,Γ ),EU(2n, J ,�)

]
. (6)

A direct computation using (6) and formula (C2) and the fact that EU(2n, I,Γ ) and EU(2n, J ,�) are
normal in EU(2n, A,Λ), shows that

[
Thk(α), g

] =
[∏

i

Thk
(
t pi

i xiα
)
, g

]
∈ [

EU(2n, I,Γ ),EU(2n, J ,�)
]
,

as claimed. �
Now we are in a position to finish the proof of Theorem 1.

First proof of Theorem 1. Since FU(n, I,Γ ) is generated by FU1(2n, I,Γ ) whereas EU(2n, I,Γ ) and
EU(2n, J ,�) are normalised by EU(2n, A,Λ), repeated use of (5) along with formula (C2), gives the
inclusion

[
FU(2n, I,Γ ),GU(2n, J ,�)

]
�

[
EU(2n, I,Γ ),EU(2n, J ,�)

]
.
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Since EU(2n, I,Γ ) is the normal closure of FU(2n, I,Γ ) in EU(2n, A,Λ), while both GU(2n, J ,�)

and the right-hand side of the above formula are normalised by EU(2n, A,Λ), we get the inclusion

[
EU(2n, I,Γ ),GU(2n, J ,�)

]
�

[
EU(2n, I,Γ ),EU(2n, J ,�)

]
.

The opposite inclusion is obvious. �
8. Level of the mixed commutators

In this section we calculate lower and upper levels of mixed commutators

[
EU(2n, I,Γ ),EU(2n, J ,�)

]
.

Lemma 19. Let n � 2. Then for any two form ideals (I,Γ ) and ( J ,�) of the form ring (A,Λ) one has

EU(2n, I,Γ )EU(2n, J ,�) = EU(2n, I + J ,Γ + �).

Proof. Additivity of the elementary unitary transvections Tij(α + β) = Tij(α)Tij(β), where i, j ∈ Ω

and i �= j, while α ∈ I , β ∈ J for i �= − j and α ∈ Γ , β ∈ � for i = − j, implies that the left-hand
side contains generators of the right-hand side. The product of two normal subgroups is normal in
EU(2n, A,Λ). �

As a preparation to the calculation of lower level, let us observe that together with [19, The-
orem 2.3] this lemma implies the following corollary. Observe that in its turn the proof of [19,
Theorem 2.3] heavily depends on Lemma 4.

Lemma 20. Let n � 3 and further let (I,Γ ) and ( J ,�) be two form ideals of (A,Λ). Then

EU
(
2n, I J + J I, J Γ + I� + Γmin(I J + J I)

)
� FU(2n, I + J ,Γ + �).

Proof. In [19, Theorem 2.3] this lemma is proved for the case that I J = J I . The similar proof shows
that elements of the form

EU
(
2n, I J , J Γ + I� + Γmin(I J )

)
, EU

(
2n, J I, J Γ + I� + Γmin( J I)

)
,

are contained in FU(2n, I + J ,Γ +�). By the previous lemma, the group on the left-hand side is their
product. �

In the next lemma we calculate the lower level of the mixed commutator subgroup.

Lemma 21. Let n � 3. Then for any two form ideals (I,Γ ) and ( J ,�) of the form ring (A,Λ) one has the
following inclusions

EU
(
2n, I J + J I, J Γ + I� + Γmin(I J + J I)

)
�

[
EU(2n, I,Γ ),EU(2n, J ,�)

]
.

Proof. Let i �= j. Take an arbitrary index h �= ±i,± j. Then the right-hand side contains all elementary
transvections of the form

Tij(αβ) = [
Tih(α), Thj(β)

]
and Tij(βα) = [

Tih(β), Thj(α)
]
,

for all α ∈ I , β ∈ J .
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Moreover, being the mutual commutator of two normal subgroups it is normal in the absolute
elementary group EU(n, A,Λ). Thus, a similar argument as in Lemma 20 shows that

EU
(
n, I J + J I,Γmin(I J + J I)

)
�

[
EU(2n, I,Γ ),EU(2n, J ,�)

]
.

Furthermore, the right-hand side contains

Ti,−i
(
λ(ε( j)−ε(i))/2βαβ

) = Ti,− j(−βα)
[
Ti, j(β), T j,− j(α)

]
and

Ti,−i
(
λ(ε( j)−ε(i))/2αβα

) = Ti,− j(−αβ)
[
Ti, j(α), T j,− j(β)

]
.

It immediately follows that

EU
(
2n, I J + J I, J Γ + I� + Γmin(I J + J I)

)
�

[
EU(2n, I,Γ ),EU(2n, J ,�)

]
. �

Observe, that the above calculation crucially depended on the fact that n � 3 and we do not know
how to estimate the lower level for n = 2 without some strong additional assumptions on the ring A.
In the following lemmas we estimate the upper level.

Lemma 22. Let n � 2. Then for any two form ideals (I,Γ ) and ( J ,�) of the form ring (A,Λ) one has the
following inclusion

[
GU(2n, I,Γ ),GU(2n, J ,�)

]
� GU

(
2n, I J + J I,Γmax(I J + J I)

)
.

Proof. Take arbitrary x ∈ GU(2n, I,Γ ) and y ∈ GU(2n, J ,�). Then x = e + x1, x−1 = e + x2 for some
x1, x2 ∈ M(2n, I) such that x1 + x2 + x1x2 = 0 and y = e + y1, y−1 = e + y2 for some y1, y2 ∈ M(2n, J )
such that y1 + y2 + y1 y2 = 0. Modulo I J + J I one has

[x, y] = (e + x1)(e + y1)(e + x2)(e + y2) ≡ e + x1 + x2 + x1x2 + y1 + y2 + y1 y2 = e.

This shows that [x, y] ∈ GL(2n, A, I J + J I). Clearly, x ∈ GU(2n, I,Γ ) and y ∈ GU(2n, J ,�) preserve
the sesquilinear form f modulo Γ and �, respectively, see Section 4.1. Now, an easy calculation
shows that [x, y] preserves f modulo Γ + �. On the other hand, since x ∈ GL(2n, A, I) it follows that
f (xu, xu) − f (u, u) ∈ I . Putting these observations together, we see that [x, y] preserves f modulo

(I J + J I) ∩ (Γ + �) ⊆ (I J + J I) ∩ Λ = Γmax(I J + J I).

This finishes the proof. �
Lemma 23. Let n � 3. Then for any two form ideals (I,Γ ) and ( J ,�) of the form ring (A,Λ) one has the
following inclusion

[
EU(2n, I,Γ ),GU(2n, J ,�)

]
� GU

(
2n, I J + J I, J Γ + I� + Γmin(I J + J I)

)
.
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Proof. By the commutator identities (C1) and (C2) and Lemma 5, it suffices to verify that

g = [
Tlk(α),h

] ∈ GU
(
2n, I J + J I, J Γ + I� + Γmin(I J + J I)

)
,

where h = (hi, j) ∈ GU(2n, J ,�) and α ∈ I for l �= −k, and α ∈ λ−(ε(i)+1)/2Γ for l = −k.
By the previous lemma, we already have a similar inclusion with the maximal value of relative

form parameter. Thus, it only remains to verify that

∑
1�i�n

gi j g−i, j ∈ J Γ + I� + Γmin(I J + J I).

The proof is divided into two cases depending on whether the root element Tlk(α) is of long or of
short type, respectively. We attach a detailed calculation for the case of a long root type element. The
case of a short root type element is settled by a similar calculation which will be omitted.

Let Tl,−l(α) be a long root element, where α ∈ λ−(ε(l)+1)/2Γ . In this case

g = [
Tl,−l(α),h

] = Tl,−l(α)

(
e −

∑
i, j

hi,lαh− j,l

)
.

Let us have a closer look at the sum
∑

1�i�n gi j g−i, j . When j �= −l, we may, without loss of
generality, assume that l � 0 and j � 0, and thus this sum can be rewritten in the form

∑
1�i�n

hi,lαh− j,lh−i,lαh− j,l − λ(ε( j)−ε(−l))/2h− j,lαh− j,l + αh−l,lαh− j,lh−l,lαh− j,l

=
∑

1�i�n

h− j,lλαhi,lh−i,lαh− j,l − h− j,lλαh− j,l + h− j,lαh−l,lαh−l,lαh− j,l,

where the first summand belongs to I�, whereas the second and the third ones belong to J Γ , as
claimed.

On the other hand, when j = −l, this sum equals

∑
1�i�n

hilαhllh−i,lαhll − hllαhll + (α − αh−l,lαhll)(1 − h−l,lαhll),

where the first sum belongs to I�, while the rest equals

x = −hllαhll + (α − hllαh−l,lα)(1 − h−l,lαhll)

= −hllαhll + α − αh−l,lαhll − hl,lαh−l,lα + hl,lαh−l,lαh−l,lαhll

= −(1 + hll − 1)α(1 + hll − 1) + α + (λαh−l,lαhll − hllαh−l,lα) + hllαh−l,lαh−l,lαhll

where the two last summands belong to Γmin(I J + J I) and to J Γ , respectively. Thus, modulo J Γ +
Γmin(I J + J I) one has

x = −(hll − 1)α + λα(hll − 1) − (hl,l − 1)α(hl,l − 1),

where the first summand also belongs to Γmin(I J + J I), whereas the second one belongs to J Γ ,
respectively.

Thus, in both cases the desired sum belongs to J Γ + I� + Γmin(I J + J I), as claimed. �
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9. Relative versus absolute, and variations

Now we are in a position to give another proof of Theorem 1.

Second proof of Theorem 1. By Lemma 3 one has

[
EU(2n, I,Γ ),GU(2n, J ,�)

] = [[
EU(2n, A,Λ),EU(2n, I,Γ )

]
,GU(2n, J ,�)

]
.

Since (A,Λ) is a quasi-finite form ring and n � 3, by Lemma 6, all the subgroups above are normal
in GU(2n, A,Λ). Now Lemma 2 implies that

[
EU(2n, I,Γ ),GU(2n, J ,�)

]
�

[
EU(2n, I,Γ ),

[
EU(2n, A,Λ),GU(2n, J ,�)

]]
· [EU(2n, A,Λ),

[
EU(2n, I,Γ ),GU(2n, J ,�)

]]
.

Applying to the first factor on the right-hand side the absolute standard commutator formula we
immediately see that it coincides with [EU(2n, I,Γ ),EU(2n, J ,�)].

On the other hand, applying Lemma 23 followed by Lemma 21 to the second factor on the right-
hand side, we can conclude that it is contained in

[
EU(2n, A,Λ),GU

(
2n, I J + J I, J Γ + I� + Γmin(I J + J I)

)]
= EU

(
2n, I J + J I, J Γ + I� + Γmin(I J + J I)

)
�

[
EU(2n, I,Γ ),EU(2n, J ,�)

]
.

Thus, the left-hand side is contained in the right-hand side, the inverse inclusion is obvious. �
It turns out, that for commutative form rings one can prove a slightly stronger result.

Theorem 2. Let n � 3, and (R,Λ) be a commutative form ring. Then for any two form ideals (I,Γ ) and ( J ,�)

of the form ring (R,Λ) one has

[
EU(2n, I,Γ ),CU(2n, J ,�)

] = [
EU(2n, I,Γ ),EU(2n, J ,�)

]
.

The proof of Theorem 2 repeats this proof word for word, but the reference to Lemma 23 should
be replaced by the reference to the following slightly stronger lemma.

Lemma 24. Let n � 3 and (R,Λ) be a commutative form ring. Then for any two form ideals (I,Γ ) and ( J ,�)

of the form ring (R,Λ) one has the following inclusion

[
EU(2n, I,Γ ),CU(2n, J ,�)

]
� GU

(
2n, I J , J Γ + I� + Γmin(I J )

)
.

This lemma is verified by calculations closely imitating those used to establish Lemmas 22 and 23.
However, the difference is that now the element y figuring in the proof of Lemma 22 is congruent
modulo J not to e itself, but to some βe, where β is a unit of the ring R/ J . It remains to observe
that when β is central in R , the argument goes through without any changes.

One can show by examples that Lemma 24 definitely fails for non-commutative rings. The reason is
as follows. By the very definition of CU(2n, J ,�), the above element β is central modulo J . However,
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it does not have to be central in the ring R itself, and the summands in the proof of Lemma 22 do
not cancel. As a result, the level may be much higher than expected.

Lemma 3 asserts that the commutator of two elementary subgroups, one of which is absolute, is
itself an elementary subgroup. One can ask, whether one always has

[
EU(2n, I,Γ ),EU(2n, J ,�)

] = EU
(
2n, I J + J I, J Γ + I� + Γmin(I J + J I)

)
.

Easy examples show that in general this equality may fail quite spectacularly. In fact, when I = J , one
can only conclude that

EU
(
2n, I2,Γ 2) �

[
EU(2n, I,Γ ),EU(2n, I,Γ )

]
� EU(2n, I,Γ ),

with right bound attained for some proper ideals, such as an ideal A generated by a central idempo-
tent.

Nevertheless, the true reason, why the equality in Lemma 3 holds, is not the fact that one of the
ideals I or J coincides with A, but only the fact that I and J are comaximal.

Theorem 3. Let n � 3, and (A,Λ) be an arbitrary form ring for which absolute standard commutator formulae
are satisfied. Then for any two comaximal form ideals (I,Γ ) and ( J ,�) of the form ring (A,Λ), I + J = A,
one has the following equality

[
EU(2n, I,Γ ),EU(2n, J ,�)

] = EU
(
2n, I J + J I, J Γ + I� + Γmin(I J + J I)

)
.

Proof. First of all, observe that by Lemmas 3 and 20 one has

EU(2n, I,Γ ) = [
EU(2n, I,Γ ),EU(n, A,Λ)

]
= [

EU(2n, I,Γ ),EU(2n, I,Γ ) · EU(2n, J ,�)
]
.

Thus,

EU(2n, I,Γ ) �
[
EU(2n, I,Γ ),EU(2n, I,Γ )

] · [EU(2n, I,Γ ),EU(2n, J ,�)
]

�
[
EU(2n, I,Γ ),EU(2n, I,Γ )

] · GU
(
2n, I J + J I, J Γ + I� + Γmin(I J + J I)

)
.

Commuting this inclusion with EU(2n, J ,�), we see that

[
EU(2n, I,Γ ),EU(2n, J ,�)

]
�

[[
EU(2n, I,Γ ),EU(2n, I,Γ )

]
,EU(2n, J ,�)

]
· [GU

(
2n, I J + J I, J Γ + I� + Γmin(I J + J I)

)
,EU(2n, J ,�)

]
.

The absolute standard commutator formula, applied to the second factor, shows that its is con-
tained in

[
GU

(
2n, I J + J I, J Γ + I� + Γmin(I J + J I)

)
,EU(2n, J ,�)

]
�

[
GU

(
2n, I J + J I, J Γ + I� + Γmin(I J + J I)

)
,EU(n, A,Λ)

]
= EU

(
2n, I J + J I, J Γ + I� + Γmin(I J + J I)

)
.
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On the other hand, applying to the first factor Lemma 23, and then again the absolute standard
commutator formula, we see that it is contained in

[[
EU(2n, I,Γ ),EU(2n, J ,�)

]
,EU(2n, I,Γ )

]
�

[
GU

(
2n, I J + J I, J Γ + I� + Γmin(I J + J I)

)
,EU(2n, I,Γ )

]
�

[
GU

(
2n, I J + J I, J Γ + I� + Γmin(I J + J I)

)
,EU(2n, A,Λ)

]
= EU

(
2n, I J + J I, J Γ + I� + Γmin(I J + J I)

)
.

Together with Lemma 20 this finishes the proof. �
10. Where next?

In this section we state and very briefly discuss some further relativisation problems, related to
the results of the present paper. We are convinced that these problems can be successfully addressed
with our methods.

In the following problems we propose to generalise results by Sivatski and Stepanov [39], and
Stepanov and Vavilov [42] to Bak’s unitary groups.

Problem 1. Obtain explicit length estimates in the relative conjugation calculus and commutator cal-
culus.

Problem 2. Let j-dim(R) < ∞. Prove that the width of commutators in elementary generators is
bounded, and estimate this width.

Alexei Stepanov (unpublished) established that the above width is bounded, without actually pro-
ducing any specific bound. We believe that the methods of the present paper allow to give an
exponential bound, similar to the one obtained for Chevalley groups over commutative rings [42],
by developing a constructive version of the localisation method from Hazrat and Vavilov [22]. We
believe that obtaining a similar constructive version of the results of the present paper would be sim-
ply a matter of patience. On the other hand, to obtain a polynomial bound, similar to that obtained
for GL(n, A) in [39], one would need to combine our methods with a full-scale generalisation of de-
composition of unipotents [41], including the explicit polynomial formulae for the conjugates of root
unipotents. This seems to be somewhat remote.

In the main results of the present paper we always assume that n � 3. Obviously, due to the
exceptional behaviour of the orthogonal group SO(4, A), these results do not fully generalise to the
case, where n = 2. However, we believe they do generalise under appropriate additional assumptions
on the form ring, such as ΛA + AΛ = A. Known results, including the work by Vyacheslav Kopeiko
[26] and the work by Bak and Vavilov [8] clearly indicate both that this should be possible, and that
the analysis of the case n = 2 be considerably harder from a technical viewpoint, than that of the case
n � 3.

Problem 3. Develop conjugation calculus and commutator calculus for the group GU(4, A,Λ), pro-
vided ΛA + AΛ = A.

Problem 4. Prove relative standard commutator formula for the group GU(4, A,Λ), provided ΛA +
AΛ = A.

Solution of the following problem would be a broad generalisation of Bak [3], Hazrat [19,20], and
Bak, Hazrat and Vavilov [4]. Clearly, it will require the full force of localisation–completion.
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Problem 5. Let R be a ring of finite Bass–Serre dimension δ(R) = d < ∞, and let (Ii,Γi), 1 � i � m,
be form ideals of (A,Λ). Prove that for any m > d one has

[[
. . .

[
GU(2n, I1,Γ1),GU(2n, I2,Γ2)

]
, . . .

]
,GU(2n, Im,Γm)

]
= [[

. . .
[
EU(2n, I1,Γ1),EU(2n, I2,Γ2)

]
, . . .

]
,EU(2n, Im,Γm)

]
.

Let us mention also generalisation of the results of the present paper to other types of groups. In
view of [22,4,21,42] the first of the problems below seems almost immediate, and it is our intention
to address it in a subsequent paper.

Problem 6. Obtain results similar to those of the present paper for Chevalley groups.

The other two problems, especially the last one, seem to be much more challenging, from a tech-
nical viewpoint. In both cases root subgroups are not abelian, and the analogues of the Chevalley
commutator formula are much fancier, than in the familiar cases of Chevalley groups, or Bak’s unitary
groups. As a matter of fact, the required version of localisation has not been developed in either of
these contexts, even at the absolute level.

The following problem refers to the context of odd unitary groups, as created by Victor Petrov
[34–36].

Problem 7. Generalise results of the present paper to odd unitary groups.

The last problem refers to the recent context of isotropic reductive groups. Of course, it only makes
sense over commutative rings, but on the other hand, a lot of new complications occur, due to the
fact that relative roots do not form a root system, and the interrelations of the elementary subgroup
with the group itself are abstruse even over fields (the Kneser–Tits problem). Still, we are convinced
that most of necessary tools are already there, in the remarkable recent papers by Victor Petrov,
Anastasia Stavrova and Alexander Luzgarev [37,40,29]. Of course, one will have to develop the whole
conjugation and commutator calculus almost from scratch.

Problem 8. Obtain results similar to those of the present paper for [groups of points of] isotropic
reductive groups.
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