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Abstract 
One important direction of Systems Biology is to infer Gene Regulatory Networks and many methods 
have been developed recently, but they cannot be applied effectively in full scale data. In this work we 
propose a framework based on clustering to handle the large dimensionality of the data, aiming to 
improve accuracy of inferred network while reducing time complexity. We explored the efficiency of 
this framework employing the newly proposed metric Maximal Information Coefficient (MIC), which 
showed superior performance in comparison to other well established methods. Utilizing both 
benchmark and real life datasets, we showed that our method is able to deliver accurate results in 
fractions of time required by other state of the art methods. Our method provides as output interactions 
among groups of highly correlated genes, which in an application on an aging experiment were able to 
reveal aging related pathways. 
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1 Introduction 
A basic goal of Systems Biology is to model the relations among genes and their products in order 

to increase the knowledge about the functional organization of cells. Specifically, these relations are 
modeled as networks of genes or proteins and diseases are studied through the observation of 
perturbations of those relations across different experimental conditions. The ultimate goal of this 
analysis is to determine genes with key role in the network that can be potential drug targets (Fernald, 
et al., 2011). 

Recent molecular high-throughput techniques, like microarrays and sequencing, produce a huge 
amount of data, usually consisting of thousands of genes from few tens of samples. This poses a hard 
challenge to the computational methods, to cope with these large scale data and deliver accurate 
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prediction, taking into account the complexity of the relations among genes (a group of genes can co-
regulate a third gene). Another obstacle to accurate network reconstruction is the noise embedded in 
microarray experimental data.  

A plethora of Gene Regulatory Network (GRNs) reconstruction methods have been developed 
recently, based on different assumptions on modeling the underlying network, such as Regression 
methods, Information Theory, Boolean Networks, Bayesian Networks and Ordinary or Stochastic 
Differential Equation models (Hecker, et al., 2009; Emmert-Streib, et al., 2012). Methods from the 
first two categories have been applied in a broad set of problems showing promising results. However, 
a main problem with most of these approaches is that a high correlation value does not necessarily 
mean causal relation, therefore, considering the large number of variables, there is a high rate of false 
positive predictions.  

In this work, the main goal is to provide a general methodology to reconstruct efficiently GRN. We 
present a method based on clustering to achieve two goals; increasing accuracy and reduction in time 
complexity. Clustering will guide an existing GRN inference method to avoid testing a certain set of 
genes that have expression profiles with high similarity degree as possible regulators of a certain gene. 
Although performance in terms of time is not critical in biological applications, it is desirable that a 
method is executed fast, to allow researchers experimenting with different parameters and multiple 
setups. Additionally, detection of small groups of interacting genes is of great biological interest, since 
it helps understanding the organization of the network and it can lead to detection of pathways related 
with a certain disease or condition (Langfelder & Horvath, 2008). Moreover, we introduce the usage 
of Maximal Information Coefficient (MIC) metric (Reshef, et al., 2011) for GRN reconstruction and 
show that it can accurately predict relationships among genes. First, the efficiency of our method was 
explored on benchmark datasets provided by Dialogue on Reverse Engineering Assessment and 
Methods (DREAM) project (Marbach, et al., 2012) and subsequently it was applied on two 
experimental datasets, studying ovarian cancer and aging, showing robust results. 

2 Methods 
We developed a general clustering framework that can be combined with any similarity metric or 

GRN method, with aim to reduce the search space and total execution time, while maintaining or 
improving performance in accuracy. The outcome of our method is a large number of groups 
containing relatively few genes with high similarity in their expression profiles and strong interactions 
among groups. Next, we present selective state of the art GRN regression methods and similarity 
metrics, including the recently proposed MIC. This metric resulted in high performance in benchmark 
sets and an experimental dataset studying ovarian cancer, so we applied it in combination with our 
clustering scheme to study aging. 

2.1 GRN Methods 
Initial approaches to create a network used a metric to assess the relation between every possible 

pair of genes and constructed a similarity matrix, based on the fact that similar gene expression shows 
similar functionality and interaction in molecular level. Furthermore GRNs are sparse, hence most 
methods, after computing a similarity matrix for each gene pair, use a threshold to eliminate weak 
interactions.  

A simple and fast metric to assess similarity is Pearson Correlation Coefficient (PCC) or absolute 
value of PCC. This metric is able to estimate a regulatory network effectively, with the advantage that 
it can characterize interactions as activation or inhibition (Song, et al., 2012), however, is able to 
capture only linear relations. Weighted correlation network analysis (WGCNA) is a framework relying 
on PCC to infer and analyze gene networks in order to provide modules of highly correlated genes 
(Langfelder & Horvath, 2008). Many well established methods rely on Mutual Information (MI), a 
metric that can detect linear and non linear relations, such as Relevance Networks (Butte & Kohane, 
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2000), ARACNE (Margolin, et al., 2006), CLR (Faith, et al., 2007) and MRNET (Meyer, et al., 2007). 
Relevance Networks (RN) computes the MI and then uses a threshold to discard low MI values. 
Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE), uses the same process 
and in addition uses the Data Processing Inequality criterion, which considers every triplet of genes 
and removes the weakest interaction as immediate. Context Likelihood Relatedness (CLR) applies an 
adaptive background correction step, taking into account the network context, by calculating the 
distribution of all MI values involving either the regulator or the target. Minimum 
Redundancy/Maximum Relevance Networks (MRNET) uses maximum relevance/minimum 
redundancy (MRMR) strategy, under which the interactions are ranked and then each interaction is 
added to the network if shows maximum relevance (direct interactions with high MI value) and at the 
same time minimum redundancy (has small MI values with already selected interactions, which 
eliminates indirect interactions).  

Another important category of GRN inference algorithms is based on Regression methods, which 
are used to predict one output variable based on one or more input variables. Various classes of 
regression methods have been used in the past to predict gene networks such as Artificial Neural 
Networks (ENFRN) (Maraziotis, et al., 2010), Support Vector Machines (SIRENE) (Mordelet & Vert, 
2008) and Random Forests (GENIE3) (Huynh-Thu, et al., 2010). Evolutionary Neuro-Fuzzy Recurrent 
Network (ENFRN) algorithm accepts as input gene expression as a training and a testing dataset and 
determines the best potential regulators and target genes. Interesting properties are that it explores the 
combined effect of two or more regulators to a target and that it can predict the type of the relation as 
activation or inhibition. Supervised Inference of Regulatory Networks (SIRENE) uses SVM to solve a 
classification problem for each Transcription Factor (TF), if a gene is target of it a or not. The 
operation of SIRENE is in a little different direction, since it requires as input examples of known TFs 
and their targets and can predict new targets for these TFs, but does not reconstruct the whole network, 
neither can find new regulators. Random Forest is an ensemble method, which uses a large number of 
classification or regression trees to infer the final result. Gene Network Inference with Ensemble of 
Trees (GENIE3) trains a Random Forest for each gene as target, considering all other genes as 
regulators. Next, it uses the Variable Importance metric of the Random Forest to evaluate the rank of 
the potential regulators for each gene. We will use GENIE3 in comparisons to our method, because it 
displayed the best performance according to DREAM 5 contest, setting the number of trees equal to 
1000. 

2.2 Maximal Information Coefficient 
We use Maximal Information Coefficient (MIC) in our framework to estimate the pairwise 

similarity of gene expression profiles. MIC is a recently proposed metric relying on mutual 
information, which can detect a wide range of associations, showing solid results. The idea behind 
MIC is that if a relationship exists between two variables, then a grid can be drawn on the scatterplot 
of the two variables for partitioning the data points and encapsulating this relationship. Thus, it 
partitions the space into different grids up to a maximal grid resolution B, Mutual Information (MI) is 
computed for each grid and MIC is set equal to the maximum normalized value of MI. Formally, for 
two variables X and Y, MIC is defined by the equation: 

( ) ( )
( )( )
,

, max
log minX Y B

MI X Y
MIC X Y

X Y<=  

where |X| and |Y| are the number of bins for each variable and B the maximal resolution. Number of 
grids to be searched is controlled by two parameters, alpha and c. B is function of the number of 
samples s, B = salpha and c is the maximum allowed difference between |X| and |Y|. Interesting 
properties are symmetry, i.e. MIC(a,b) = MIC(b,a), so we can skip half of the computations and that it 
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ranges in [0,1], making easier the interpretation of the results, in contrast to mutual information which 
is positive but without an upper limit.  

There are only few works discussing ability of MIC to capture relationships among genes. In 
(Song, et al., 2012), various metrics, including MIC, are examined resulting in the conclusion that in 
most cases metrics agree, with the authors proposing a variation of correlation for GRN problems. In a 
similar study, it is shown that each metric can perform well depending on the data and type of 
relationship to be identified, with MIC being an appropriate selection for large data and a broad type 
of interactions, such as non linear and non monotonic (de Siqueira Santos, et al., 2013). 

2.3 Proposed Framework 
The proposed method is based on the key idea that a set of genes, which have a high degree of 

similarity in terms of their expression profiles, will have similar relation (i.e. target - regulator or vice 
versa) with a certain gene. Therefore, we employ a clustering scheme to avoid computing the weight 
of interactions between all possible pairs. The increased time complexity of most GRN methods (i.e. 
GENIE3, SIRENE) combined with the large dimensionality of gene expression datasets makes most 
of these methods practically inapplicable in full scale gene expression experiments. Hence, in the 
majority of the cases, genes having small variation across the experimental conditions or small 
absolute value (considered as not expressed) are discarded. In our framework, instead of applying a 
GRN reconstruction method to the whole dataset, which is very consuming in time and memory, we 
will apply it only on a subset which will be provided by clustering.  

Initially, we cluster the data in a very large number of groups, so each group contains few genes, 
but with very similar profiles. An important property of the clustering algorithm is to provide a 
medoid for each cluster, which is an actual point of the dataset, in contrast to centroid, which is a mean 
value of points belonging to the cluster.  Thus, we are going to use only the medoid of each cluster as 
representative of all genes in the group. We build a “medoid network” of reduced size, by evaluating 
the weight of interactions among all medoids. At this point, we have a hierarchical network, where 
each node is a group of genes, however, for evaluation and comparison with other methods, we need 
to provide a network with genes as nodes. Therefore, for each gene pair, we allocate as weight of their 
interaction the weight of interaction of their medoids. The rationale behind this choice is that based on 
the compactness of the clustering, we need to examine one profile per cluster. Another advantage of 
considering the medoid instead of each gene in a cluster is that the effect of the noise is reduced, as 
one can regard each gene as a noisy measure of the expression profile of the medoid. Figure 1 
summarizes the workflow of our proposed method. 

Under this framework, genes belonging in the same cluster appear to have maximum similarity 
(MIC value equal to 1). If a more detailed “picture” of the network is needed, the GRN method can be 
applied locally for each cluster. An extension of this framework is for each gene inside a cluster, to 

 
Figure 1. The workflow of our method. (A) In the schematic representation, every node indicates a 

gene. In (B) after clustering, the original input dataset is replaced by a compressed dataset represented by the 
medoids of the corresponding clusters and in (C) the weight of interactions among medoids is calculated. In 
(D) for interactions between two genes in different clusters, the weight of interaction between their 
corresponding medoids is assigned.  
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evaluate the interactions among the genes that belong only to a number of nearest clusters. To 
determine the distance between two clusters, similarity between their medoids can be used, which is 
already computed at the first step. However, initial experiments showed that this setup for large 
clustering resolution increased search space without changing substantially accuracy of the inferred 
network, so we have not performed these steps in this work. This is explained by the fact that the large 
number of clusters increased their compactness, so genes belonging in same cluster resulted in high 
similarity values and setting similarity to maximum was a satisfactory approximation.  

The time complexity of inferring a network of N genes is at least O(N2) for any method as the ones 
described above. To build the medoid network of C clusters, will demand O(C2) time, with C < N. 
Precisely, the total process will require additional time for clustering, but we can neglect it, since in 
practice clustering is usually a lot faster process than a applying a GRN method, regardless the 
clustering algorithm complexity, which is usually at least O(N2). So, a significant improvement in 
execution time can be achieved due to quadratic complexity.  

Additionally, to further reduce the size of the dataset, we can perform clustering across the 
samples. Most datasets contain few samples, but in cases such as the DREAM 5 datasets, where many 
microarrays have been aggregated, this could be very helpful. Computationally, it is known that as 
dimensionality increases, the points in space become very sparse and metrics underperform. From 
biological aspect, replicates or samples under the same condition hold similar information, so 
clustering can reduce this redundancy.  

The proposed method is general and can utilize any clustering algorithm in combination with any 
metric or GRN algorithm. However, in this paper for clarity, we use Affinity Propagation Clustering 
(Frey & Dueck, 2007) and MIC to estimate similarity between genes. A key property for selecting this 
algorithm is that returns medoids instead of centroids. Affinity Propagation Clustering algorithm 
iteratively transmits real valued messages among data points, updated in each round with purpose to 
minimize squared error, until a good set of medoids (exemplars) and corresponding clusters emerges. 
The method is called “affinity propagation”, because at any point in time, the magnitude of each 
message reflects the current affinity that one data point has for choosing another data point as its 
medoid. This algorithm accepts as input a similarity matrix (negative of Euclidean distance was used) 
and a parameter called preference, which indirectly affects the number of clusters. The value of 
preference can be adjusted so to get a specific number of clusters, if it is desired. Other algorithms can 
equally well be used such as k-centers (MacQueen, 1967), a medoid-based variation of k-means. 

2.4 Data 
To test the efficiency of our method, we used the datasets and the gold standards provided by 

DREAM 5 network inference challenge (Marbach, et al., 2012). The DREAM project provides 
benchmark datasets along with the real network topology derived from biological validated data and 
organized annual challenges for Systems Biology problems like network inference. We used the 3 
datasets with averaged experimental conditions, containing 1643 genes - 487 samples (in silico), 4511 
genes - 487 samples (E. Coli) and 5950 genes - 321 samples (S. cerevisiae), which from now on will 
be referred as D51, D53 and D54 respectively.  

Additionally, we used a human ovarian cancer microarray dataset accessible through NCBI's Gene 
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) with series accession number GSE14407 
(Bowen, et al., 2009), which is based on 12 normal surface epithelial cell samples and 12 unmatched 
cancerous epithelial cell samples from serous papillary ovarian adenocarcinoma (for the network 
construction, we used only the normal samples). This dataset is closer to most applications, as it has 
few samples and it is based on human data. Since a reference GRN does not exist, the evaluation was 
performed with the network of experimentally validated regulatory interactions from 
(Madhamshettiwar, et al., 2012), containing 6,330 interactions among 280 TFs and 2,170 targets, 
originally derived from TRANSFAC database.  
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Finally, we applied our method in a human aging dataset (NCBI GEO series accession number 
GSE11882), which profiles gene expression in 4 brain regions of cognitively intact humans, across the 
adult lifespan (173 samples of ages 20-99) (Berchtold, et al., 2008).We kept only the same 2450 genes 
with ovarian cancer dataset, in order to be able to use the known TF’s-Targets network for evaluation. 

3 Results 
To assess the accuracy of the inferred networks, Area Under Curve (AUC) was used, which is 

computed as the area under Receiver Operator Curve (ROC) which in turn is the plot of the true 
positive rate versus the false positive rate at various values of threshold. This way, we avoided 
selecting a specific threshold, which varies for each method and dataset, since AUC essentially takes 
into account all possible thresholds. All algorithms were implemented in Matlab and executed in a PC 
with i7 3.1 GHz CPU and 8GB RAM. MIC implementation by (Albanese, et al., 2013) was used. All 
data were normalized per gene profile to zero mean and unit variance. 

3.1 Benchmark datasets  
We used the DREAM 5 benchmark datasets, to explore the efficacy of our framework and fine 

tune the parameters. In all cases MIC parameter c was set to 15 (default) and alpha to 0.25, which 
yielded optimal performance in DREAM 5 datasets in terms of AUC (AUC was increased about 4% in 
D51and 2% in rest dataset), despite that this value led to examination of less and larger grids. In 
Figure 2 we show the performance of MIC in comparison with PCC, ARACNE and CLR. It is clear 
that MIC is competitive with these established methods and specifically better than MI based methods 
in D53 and D54 datasets. Remarkably, it achieves the best performance in Dataset 4, which is the 
largest, not only among the methods shown in Figure 2, but also among the 35 methods presented in 
(Marbach, et al., 2012). 

 

 
Figure 2. Performance of various metrics and methods on the 3 datasets of DREAM 5. MIC shows 

similar or better performance with other state of the art methods. 
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Next, we performed clustering across the samples for the two largest DREAM 5 datasets D53 and 
D54, keeping only the medoids, as shown in Figure 3, and then inferred the network using MIC. We 
observed that despite the large dimensionality reduction, performance has decreased in a relatively 
very small percentage and in one case there is improvement. The last observation indicates that a 
metric might perform better with less variables and that clustering managed to successfully compress 
the data. Therefore, it is a worthy process to get a quick estimation of the results, since the time needed 
for any method is directly proportional to number of samples. 

Moving forward, we applied our clustering framework in combination with MIC to DREAM 5 
datasets and the ovarian cancer dataset. In DREAM 5 datasets, GENIE3 was the best or among the top 
algorithms in performance, while for the ovarian cancer dataset 8 unsupervised GRN methods 
provided predictions slightly better than random guess (0.50), with Relevance Networks having 
maximum performance of 0.55 (Madhamshettiwar, et al., 2012). In Table 1, some indicative results of 
our method are shown, obtained by setting the number of clusters to 30% of the original genes in 
DREAM datasets and 10% in the case of ovarian cancer. As we observe, on one hand performance 
better than or close to maximum can be achieved with our method and on the other, in comparison to 
MIC, results remained unchanged or improved, while lowering the execution time 10 to 100 times. 
Similar results were observed for a wide range of cluster numbers (10%-30%). 

One important property of our method is that it can work under different metrics. Thus, replacing 
MIC with PCC, despite that it is an extremely fast method and time performance is not an issue, we 
observed similar behavior and improved accuracy. Specifically, in D54, PCC over the whole dataset 

 
Figure 3. Plots of (A) AUC and (B) time when clustering the 2 large DREAM 5 across samples varying 

the number of medoids (x axis represents the percentage of samples kept) and inferring the network with 
MIC. Keeping only about 60% of medoids results in small loss in performance and in one case in 
increment, while time is reduced significantly. 

Method Dataset 
D51 D53 D54 Ovarian Cancer 

AUC Time (sec) AUC Time (sec) AUC Time(sec) AUC Time (sec) 
GENIE3 0.81 1612 0.61 5832 0.52 4788 0.50 150 
MIC 0.76 411 0.60 3128 0.58 4727 0.51 204 
Our method 0.72 43 0.60 284 0.58 433 0.54 1.8 

Table 1. Indicative examples of performance and execution time of various methods in comparison to 
our method using MIC. 
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yielded an AUC of 0.52, while with our method and 2000 medoids (i.e. 1/3 of the genes), 0.58 was 
achieved. Similarly, in ovarian cancer dataset, PCC resulted in AUC=0.51 and with our method and 
1000 medoids (40% of genes), it was increased to 0.52. The conclusion from all experiments is that in 
order to retain a high performance, it is critical to have a very large number of clusters, with 30% 
representing a good balance between speed and accuracy. 

3.2 Aging 
Finally, we applied our method in a dataset studying human aging. Initially, we split the data into 3 

subsets, containing each young (20-30 years, 30 samples), middle (31-65, 54 samples) and old (66-99, 
89 samples) ages. Next, we built a network for each age group, by applying our method with MIC, 
clustering data into 500 groups. We observed a major difference in time and an improvement in 
performance. Specifically, for young ages we obtained by MIC AUC of 0.48 in 240 seconds versus 
0.54 in 10 seconds for our method. In both middle and old ages, the values for MIC were 0.49 in 580 
seconds and 690 seconds respectively, while our method achieved 0.51 in 21 and 22 seconds 
respectively. Consequently, we examined the genes which their interactions changed significantly 
during aging. To determine the differentiated regulatory links, we isolated the interactions that had 
more than 0.8 difference in MIC value between two networks. We detected 135 differentiated genes 
between young and middle networks, 34 between middle and old and 178 between young and old. For 
these genes we performed Gene Ontology (GO) and Pathway enrichment analysis using DAVID 
Functional Annotation tool (http://david.abcc.ncifcrf.gov) and some indicative results are shown in 
Table 2. These pathways and GO categories have been known to be associated with aging, for 
example Cell cycle and p53 signaling pathway (Rufini, et al., 2013) and MAPK signaling pathway 
specifically in brain tissue (Zhen, et al., 1999).  Also, some cancer related pathways appeared, which is 
no surprise, since literature supports that aging and cancer involve some common mechanisms (Finkel, 
et al., 2007).  

An important remark is that low AUC was achieved here and in previous datasets, but since gold 
standard is derived from experimentally validated interactions between TFs and targets, on one hand 
many true interactions are not known yet and on the other some interactions might not occur in the 
specific conditions of the experiment. Finally, the usefulness of our method lies in the fact that results 
can reveal valuable information when examined under different perspectives, such as genes 
cooperating in pathways. 

 
Condition Pathway / GO Term P-Value 
Young-Middle p53 signaling pathway 4,9E-5 
 Insulin signaling pathway 3,3E-3 
 TGF-beta signaling pathway 8,3E-3 
 regulation of cell death (GO) 1,7E-9 
 organ development (GO) 9,8E-13 
 system development (GO) 5,7E-12 
Young-Old Insulin signaling pathway 5.7E-3 
 MAPK signaling pathway 1,8E-2 
 Cell cycle 1,3E-2 
 Pathways in cancer 8,3E-5 
 Thyroid cancer 2,5E-4 
 Endometrial cancer 3,8E-3 

Table 2. Gene Ontology categories and KEGG Pathways detected to differentiate significantly 
among different age groups. 
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4 Conclusions and Future Work 
In this work we presented a general clustering strategy, which can be combined with any GRN 

method and achieve similar level of accuracy, by applying the GRN method in a fraction of the 
dataset, accelerating so the network inference. We introduced usage of MIC metric for GRN inference 
and achieved high performance and in some occasions better than any method reported in recent 
literature. Finally, in the application on aging dataset, groups of genes showing differentiation among 
different ages, successfully identified pathways relevant to the problem in study. 

In future work we plan to investigate the inclusion of different kind of a priori information, such as 
Gene Ontology (GO), Protein - Protein Interactions, Pathway Maps and TF's - targets (the latter is 
currently used for evaluation, so it is not possible to utilize it in network reconstruction). Embedding 
experimentally validated information into the network has been proved to increase the biological 
consistency of results (Maraziotis, et al., 2012). This is the only way to increase accuracy in datasets, 
in which all unsupervised methods provided results marginally better than random guess. A natural 
adaptation of our method is, complementary to clustering, to use GO terms or Pathway Maps, which 
provide a grouping of genes known to cooperate to perform a function. This way, researchers who are 
studying a specific biological problem can easily focus only on GO categories or pathways related to 
problem in study, rather than reconstructing the whole network. Moreover, Protein - Protein 
Interaction is a different kind of a priori knowledge that is available, but it does not provide a grouping 
of genes unless more preprocessing steps are followed (for example creation of a PPI graph and 
extraction of functional modules).  
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