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Abstract

We develop a theory of representations in Rm for directed strongly regular graphs, which gives a new
proof of a nonexistence condition of Jørgensen [L.K. Jørgensen, Non-existence of directed strongly regular
graphs, Discrete Math. 264 (2003) 111–126]. We also describe some new constructions.
c© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Directed strongly regular graphs are directed versions of strongly regular graphs, and were
originally defined by Duval [2]. Many results for strongly regular graphs have analogues for the
directed version; in particular the eigenvalues are strikingly similar. The interplay between the
straightforward eigenvalue results and the difficulties imposed by the nonsymmetric adjacency
matrix makes this an interesting subject.

Interest in these graphs was recently revived by Klin et al. [9], and there have been a number
of recent papers [3,4,6–8].

In particular, Jørgensen [8] independently proved Theorem 4.2 and the characterizations of
Section 5. We discovered the overlap between our work and his at the Com2Mac Conference on
Association Schemes, Codes and Designs in Pohang, Korea in July, 2000. We had both proved
inequalities and characterized graphs which have an eigenvalue of multiplicity 2, using different
methods. The inequality given here is due to Jørgensen, but proved using representations in R

m .
Section 2 of the paper gives definitions and basic results on directed strongly regular graphs.

Section 3 introduces representations; Sections 4 and 5 use them to prove the inequality, and
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then to characterize graphs with an eigenvalue of multiplicity 2. Section 6 gives some new
constructions.

2. Definitions

Suppose that Γ is a directed graph on v vertices with adjacency matrix A. We say that Γ is
a directed strongly regular graph with parameters v, k, t, λ, μ if 0 < t < k, and A satisfies the
following matrix equations:

J A = AJ = k J (2.1)

A2 = t I + λA + μ(J − I − A) (2.2)

where J is the all 1’s matrix.
If A satisfies the matrix equations and k = t , then Γ is an undirected graph which is

clearly strongly regular. If t = 0, then Γ is a doubly regular tournament. These have both been
extensively studied, and so we exclude these two cases.

We will write x → y if there is an edge from x to y in Γ , and x �→ y if there is no such edge.
We will also write x ∼ y if there are edges both from x to y and from y to x ; that is, x ∼ y if
both x → y and y → x . In this case, we will count these as one undirected edge, and say that x
is adjacent to y.

We have given a matrix definition for directed strongly regular graphs because our methods
focus on the matrix A. There is however an equivalent combinatorial definition. We say Γ is a
directed strongly regular graph with parameters (v, k, t, λ, μ) if and only if

(a) Every vertex x has in-degree and out-degree k, and is adjacent to t vertices.
(b) Let x and y be distinct vertices. The number of vertices z such that x → z → y is λ if

x → y, and μ if x �→ y.

Throughout the rest of the paper, we will assume that Γ is a directed strongly regular graph
with parameters (v, k, t, λ, μ) and adjacency matrix A.

The rest of this section will give some known results on directed strongly regular graphs which
we will require later.

Lemma 2.1 (Duval, [2]). For a directed strongly regular graph with parameters (v, k, t, λ, μ),

0 ≤ λ < t (2.3)

0 < μ ≤ t . (2.4)

The fact that μ > 0 means that the matrix equations give enough information to calculate the
eigenvalues of A.

Theorem 2.2 (Duval, [2]). Let A be the adjacency matrix of a directed strongly regular graph
with parameters (v, k, t, λ, μ). Then A has integer eigenvalues θ0 = k, θ1 = 1

2 (λ − μ + δ),

θ2 = 1
2 (λ − μ − δ) with multiplicities m0 = 1, m1 = − k+θ2(v−1)

θ1−θ2
and m2 = k+θ1(v−1)

θ1−θ2

respectively, where δ = √
(μ − λ)2 + 4(t − μ) is a positive integer.

Duval [2] gave a list of feasible parameter sets with v ≤ 20 which pass all parameter
conditions given in that paper. This list has been extended to v ≤ 110 by Hobart and Brouwer
and is available on the web [1], with notes giving the current knowledge about existence.
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3. Representations

We will require some further results about the eigenspaces of A.

Proposition 3.1. Let A be the adjacency matrix of a directed strongly regular graph with
parameters (v, k, t, λ, μ). Then

(a) A is diagonalizable but not normal.
(b) Suppose that z is any eigenvector for θ1 or θ2. Then z ⊥ 1, where 1 is the all 1’s vector.

Proof. The definition of directed strongly regular graph implies that A has minimum polynomial
of degree 3, namely

(A − k I )(A2 + (μ − λ)A + (μ − t)I ) = 0.

Since δ > 0, A has three distinct eigenvalues, and hence A is diagonalizable. Since A is a real
matrix with real eigenvalues which is not symmetric, it cannot be normal.

Suppose that z is a right eigenvector for θi . Then

k J z = J Az = θi J z

with k �= θi , and therefore J z = 0. The same argument applies to left eigenvectors. �
The fact that A is diagonalizable will allow us to map vertices to vectors in R

m , where m is
one of the multiplicities, in much the same manner as a representation of a graph (see, eg., [5],
Chapter 13). The difference is that each vertex maps to a pair of vectors.

Since A is diagonalizable, there exists an invertible matrix P such that A = PDP−1, where

D = diag(θ0, θ1, . . . , θ1, θ2, . . . , θ2)

and P has the form

P = (
X0 X1 X2

)
such that X0 = 1 and the columns of Xi form a basis for the right eigenspace corresponding to
θi .

Let matrices Y0 = 1, Y1, Y2 be defined so that

P−1 =
(m0

v
Y0

m1

v
Y1

m2

v
Y2

)T
.

Since P−1 P = I , we see that Y T
i Xi = (v/mi )I and Y T

i X j = 0 for i �= j . In addition, it is clear
that the columns of Yi form a basis for the left eigenspace of A corresponding to θi .

Let Ei = (mi/v)Xi Y T
i . Clearly E2

i = Ei , and the column space of Ei is the right eigenspace
corresponding to θi , so Ei is a projection onto this space. The projections Ei have many of the
same properties as they do in the graph case, but ET

i �= Ei unless i = 0.

Proposition 3.2. (a) Ei E j = δi j Ei .
(b) Ei is a projection onto the eigenspace corresponding to θi .
(c) A = θ0 E0 + θ1 E1 + θ2 E2
(d) I = E0 + E1 + E2.

Proof. We have already shown (a) and (b). The Eqs. (c) and (d) follow from A = PDP−1 and
the definitions of E0, E1, E2. �
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Fig. 1. Eigenspace representation of dsrg(6, 2, 1, 0, 1) is not injective. Left representation y j of a vertex j is solid while
x j is hollow/dashed.

Fix an eigenvalue θ = θi ∈ {θ1, θ2} and let τ be the remaining eigenvalue in this set. Let
E = Ei , X = Xi , Y = Yi , and m = mi . Let x j be the j th row of X , and y j the j th row of Y .
Then the maps j 	→ x j and j 	→ y j are a pair of maps from V (G) to R

m ; since AX = θ X and
Y T A = θY T, these maps satisfy∑

j→h

xh = θx j and
∑
h→ j

yh = θy j .

We will refer to these maps as the right and left representations (respectively) of Γ on the
eigenspaces corresponding to θ .

Example. The smallest directed strongly regular graph has parameters (6,2,1,0,1) and its
adjacency matrix has eigenvalues 2, 0 and −1. For θ = −1, we have m = 2 and

XT =
[

0 1 −1 −1 0 1
1 0 −1 −1 1 0

]
, Y T =

[
1 1 −2 1 −2 1
1 −2 1 −2 1 1

]
.

The right and left representations given by these are depicted in Fig. 1. �

The matrices E0, E1, E2 span a 3-dimensional subalgebra of Mv(R) which contains I and A,
and it follows that 〈E0, E1, E2〉 = 〈I, A, J − I −A〉. Since E is a projection, tr(E) = rk(E) = m,
and so

E = m

v
(I + αA + β(J − A − I )) (3.1)

for some α, β ∈ R.
If α = β, then E = m

v
(I + α(J − I )) has rank 1, v − 1, or v. But rk(E) = m < v − 1. If

rk(E) = 1, then α = β = 1 and E = (m/v)J contradicting E E0 = 0. Therefore, α �= β.
We can determine α and β in terms of the parameters of the directed strongly regular graph.

Proposition 3.3.

α = λ − k − τ

t + kτ
(3.2)

β = μ

t + kτ
. (3.3)
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Proof. Let

f (x) = (x − k)(x − τ )

(θ − k)(θ − τ )
.

Clearly f (A) = E , since they agree on the basis of eigenvectors.
But we can also calculate directly:

f (A) = 1

(θ − k)(θ − τ )
(A2 − (k + τ )A + kτ I )

= 1

(θ − k)(θ − τ )
((t + kτ )I + (λ − k − τ )A + μ(J − I − A)) .

By (3.1), this implies that

m

v
= t + kτ

(θ − k)(θ − τ )

m

v
α = λ − k − τ

(θ − k)(θ − τ )
m

v
β = μ

(θ − k)(θ − τ )
. �

Since E = m
v

XY T, we have XY T = I + αA + β(J − I − A). The (i, j) entry of this matrix
is the inner product 〈xi , y j 〉, and it follows that

〈xi , y j 〉 =
⎧⎨
⎩

1, if i = j ;
α, if i → j ;
β, otherwise.

(3.4)

We want to use the representations to give information about Γ .
We say that the right representation X is injective if xi = x j implies that i = j ; and similarly

for the left representation Y . The following theorem gives a sufficient condition for injectivity.

Theorem 3.4. Suppose α, β �= 1. Then both X and Y are injective.

Proof. Suppose xi = x j for some i �= j .
Then 1 = 〈xi , yi 〉 = 〈x j , yi 〉 = α or β as j → i or j �→ i , and hence either α = 1 or β = 1.
The proof for Y is similar. �

Any eigenvector of A is also an eigenvector of E ; the corresponding eigenvalues are 0, 0, and
1. The following equations are the result of using (3.1) and these eigenvectors.

0 = 1 + αk + β(v − k − 1) (3.5)

0 = 1 + ατ + β(−τ − 1) (3.6)
v

m
= 1 + αθ + β(−θ − 1). (3.7)

Lemma 3.5. (a) α = 1 if and only if τ = −1;
(b) β = 1 if and only if τ = 0.

Proof. Eq. (3.6) implies that 1 + ατ − β − βτ = 0, and the results follow since α �= β. �
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Corollary 3.6. Suppose τ �= 0,−1. Then X and Y are injective.

The converse is not true. The smallest directed strongly regular graph, with parameters
(6, 2, 1, 0, 1) provides a counterexample. Both left and right representations for eigenvalue 0
are injective, but τ = −1.

The reverse of Γ is the directed graph ΓT with matrix AT. It is also a directed strongly regular
graph, with the same parameters as Γ . This is useful because the transpose map interchanges the
roles of X and Y . If one of the representations is not injective, we can assume without loss of
generality that it is X .

The complement of Γ is the directed graph Γ c with matrix Ac = J − I − A; it is a directed
strongly regular graph, with parameters (v, v − k −1, v −2k + t −1, v −2k +μ−2, v −2k +λ)

and eigenvalues v − k + 1, −θ1 − 1, −θ2 − 1, and the same projections E0, E1, E2. It is clear
from the matrix equation (3.1) that taking the complement of Γ interchanges α and β. This will
be helpful in establishing properties of α and β. Note that Γ has eigenvalue −1 if and only if Γ c

has eigenvalue 0. Thus if either X or Y is not injective, we can assume that τ = −1 and α = 1.
We will require a few more straightforward results about the values of α and β.

Proposition 3.7. (a) α �= 0 and β �= 0.
(b) One of α and β is positive and the other is negative.
(c) If β > 0, then τ ≥ 0.

If β < 0, then τ < 0.
(d) α, β ≤ 1.

Proof. (a) Recall from (3.3) that β = μ/(t + kτ ). By (2.4), μ > 0, hence β �= 0. Considering
the complement, this implies that α �= 0.

(b) Eq. (3.5) shows that α and β cannot both be positive. Suppose that β is negative. By Eq. (3.3),
t + kτ < 0 and hence τ < 0. It follows that τ must be the eigenvalue θ2 in Theorem 2.2, and
hence τ = 1

2 (λ − μ − δ). Then

λ − k − τ = 1

2
λ + 1

2
μ − k + 1

2

√
(λ − μ)2 + 4(t − μ) ≤ 1

2
λ + 1

2
μ − k + 1

2
|λ − μ|.

This is equal to either λ − k or μ − k, both of which are less than 0. Therefore, α =
(λ − k − τ )/(k + tτ ) > 0, and α and β cannot both be negative.

(c) Assume that β > 0. Then by Eq. (3.3), t + kτ > 0. But k > t and τ is an integer; therefore
τ ≥ 0.

(d) Suppose β > 0, so τ ≥ 0. By (2.4), μ ≤ t ≤ t + kτ , hence β ≤ 1. Considering the
complement of Γ , one obtains the result for α. �

Corollary 3.8.

(1 − α)(1 − β) �= vαβ.

Proof. If β < 0, then 0 ≤ α ≤ 1. This means that (1 − α)(1 − β) ≥ 0, while vαβ < 0. The case
α < 0 is similar. �

4. Bounds on v for τ �= 0, −1

Recall that Γ is a dsrg(v, k, t, λ, μ) with nontrivial eigenvalues θ and τ and we are
considering the representations X and Y on the right and left eigenspaces corresponding to θ

where E = Eθ = m
v

XY T is written E = m
v
(I + αA + β(J − A − I )).
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If τ �= 0,−1, then we can use these representations to bound v. The proof requires the
following lemma.

Lemma 4.1. For a directed strongly regular graph such that τ �= 0,−1, (α2 − β2)τ �= β2 − 1.

Proof. Suppose α2 − β2 = 0. Since α �= 1, β2 − 1 �= 0 and so the inequality holds.
Now assume that α2 − β2 �= 0. Eq. (3.6) implies that

τ = β − 1

α − β
.

If

τ = β2 − 1

α2 − β2 ,

then
β + 1

α + β
= 1

which implies that α = 1, a contradiction. �

Theorem 4.2 ([8], Theorem 2). Suppose Γ is a directed strongly regular graph with τ �= 0,−1.
Then

(a) v ≤ m(m+3)
2 .

(b) If (α2 − β2)θ �= β2 − 1, then v ≤
(

m+1
2

)
.

Proof. We have two sets of v vectors {x1, . . . , xv} and {y1, . . . , yv} in R
m such that the inner

products are given by (3.4). For any polynomial f (ξ) ∈ R[ξ ] and any y ∈ R
m , define

fy ∈ R[z1, . . . , zm ] by fy(z) = f (〈z, y〉). Note that deg( fy) = deg( f ).
We want to choose f in such a way that fy1 , . . . , fyv are linearly independent.
For any f ∈ R[ξ ], let M f be the matrix whose (i, j) entry is f (〈xi , y j 〉). Then

M f = f (1)I + f (α)A + f (β)(J − I − A).

Suppose that
∑

ci fyi = 0. This gives a system of linear equations with coefficient matrix
M f . If all eigenvalues of M f are nonzero, then fy1 , . . . , fyv are linearly independent; and these
eigenvalues are easily calculated using the eigenvalues of the commuting matrices I , J , and A.

Let f (ξ) = ξ2 − (α + β)ξ . Then M f = (1 − α − β)I − αβ(J − I ), with eigenvalues
(1−α)(1−β) and (1−α)(1−β)−αβv. These are nonzero by the assumption on τ , Lemma 3.5,
and Corollary 3.8. Therefore, fy1 , . . . , fyv are linearly independent.

Each of the polynomials fyi has degree at most 2 and zero constant term. The subspace of

R[z1, . . . , zm ] consisting of polynomials with these properties has dimension
(

m+2
2

)
− 1 =

m(m+3)
2 , hence v ≤ m(m+3)

2 .
Now let f (ξ) = ξ2. Then M f = I +α2 A+β2(J − I − A), with eigenvalues 1+α2k +β2(v−

k − 1) which is clearly greater than 0, 1 + α2θ + β2(−1 − θ) which is nonzero by hypothesis,
and 1 +α2τ +β2(−1 − τ ) which is nonzero by Lemma 4.1. Therefore, fy1 , . . . , fyv are linearly
independent.

Each of the polynomials fyi is homogeneous of degree 2. Therefore, v ≤
(

m+1
2

)
, the

dimension of the corresponding subspace of R[z1, . . . , zm ]. �
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It follows from (3.1) that Jørgensen’s parameter qθθ
θ is given by qθθ

θ = 1+α2θ +β2(−1− θ),
and so this is precisely the same result as [8].

This bound rules out the feasible parameter set (80, 31, 24, 7, 15), for example.

5. Noninjective representations

If we do not assume that X is injective, we can still use the representation to get some
information about the graph. In particular we can completely determine the graphs with
an eigenvalue of multiplicity 2. These results were independently found by Jørgensen ([8],
Theorems 3, 4, and 5), using different methods.

Suppose X has d distinct rows, which we write as r1, . . . , rd . There are some fairly simple
bounds on d in terms of m.

Note that if m = 2 and τ is not 0 or −1, then by Theorem 4.2, v ≤ 5. The smallest directed
strongly regular graph has v = 6, thus no such directed strongly regular graph exists.

If τ is 0 or −1, then either α or β is 1. In fact our arguments are based on this and not whether
or not the representations are injective. Throughout this section, we will assume that α = 1 and
hence τ = −1.

Theorem 5.1. m + 1 ≤ d ≤ 2m.

Proof. Let s1, . . . , sm be rows of Y which form a basis for R
m ; these exist since Y has rank

m. For all ri , 〈ri , s j 〉 = 1 or β. This implies that given j , all ri lie in one of the two affine
hyperplanes

π j (1) = {z : 〈z, s j 〉 = 1}
and

π j (β) = {z : 〈z, s j 〉 = β}
which are parallel to s⊥

j .
Since {s1, . . . , sm} spans R

m ,⋂
j

s⊥
j = {0}.

It follows that
m⋂

j=1

(
π j (1) ∪ π j (β)

)
is a set of cardinality at most 2m which contains r1, . . . , rd .

On the other hand, {r1, . . . , rd } spans R
m , so d ≥ m. The columns of X are eigenvectors of A

corresponding to θ , hence are orthogonal to 1 and 1T X = 0. This gives a nontrivial dependence
relation on the vectors r1, . . . , rd , so d > m. �

Let Ca = { j : x j = ra}. The sets Ca determine a lot of the structure of Γ . Suppose i, j ∈ Ca .
Then xi = x j , so 1 = 〈xi , yi 〉 = 〈x j , yi 〉 and this means that j → i . Therefore Ca is a clique in
Γ .

Suppose i ∈ Ca , and i → l �∈ Ca . Then for all j ∈ Ca , 〈x j , yl〉 = 〈xi , yl〉 = 1, hence j → l.
In this case, we will write Ca → l.
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Assume that m = 2. By the previous theorem, d is 3 or 4. This will give us enough information
to determine all such directed strongly regular graphs, up to isomorphism and complementation.
The constructions of the relevant graphs are given in Section 6.1.

Theorem 5.2. Suppose Γ is directed strongly regular graph with eigenvalue τ = −1 such that
the representation corresponding to θ has m = 2 and d = 3. Then Γ has parameters v = 6c,
k = 4c − 1, t = 3c − 1, λ = 3c − 2, and μ = 2c for some integer c, and Γ is isomorphic to one
of the graphs of Corollary 6.3 with n = 3.

Proof. There are three sets C1, C2, C3 defined as above which are cliques in Γ . If i ∈ C1, then
since k < v − 1 we cannot have both C2 → i and C3 → i . If C2 �→ i and C3 �→ i , then all
edges pointing to i are from vertices of C1, and hence are undirected. But this would imply that
k = t , a contradiction. Therefore either C2 → i or C3 → i , but not both. A similar result holds
for vertices of C2 and C3.

Let Cab = {i ∈ Ca : Cb → i}, for a �= b. Then the sets Cab partition Ca . Let cab = |Cab| and
ca = |Ca|.

Considering in-degrees, it is easy to see that c1 = c2 = c3.
The number of 2-paths from a vertex of C1 to a vertex of C21 is λ = c1 + c21 − 2; from a

vertex of C1 to a vertex of C31, it is λ = c1 + c31 − 2. Therefore c21 = c31. Similarly we find
that cab is a constant c, and then ci = 2c. Now the parameters of the graph are easily calculated.

It is clear that the structure of Γ is completely determined (up to isomorphism), and that they
are the graphs of Corollary 6.3 with n = 3 and Ca,b = {(a, b, l) : 1 ≤ l ≤ c}. �

Theorem 5.3. Suppose Γ is a directed strongly regular graph with eigenvalue −1 such that the
representation corresponding to θ has m = 2 and d = 4. Then Γ has parameters v = 8c,
k = 4c − 1, t = 3c − 1, λ = 3c − 2, and μ = c for some integer c, and Γ is isomorphic to one
of the graphs of Corollary 6.6 with n = 2.

Proof. There are four nonempty sets C1, C2, C3, C4 which are cliques in Γ . We can order the
vectors so that C1 = {i : 〈xi , y1〉 = 1, 〈xi , y2〉 = 1}, C2 = {i : 〈xi , y1〉 = β, 〈xi , y2〉 = 1},
C3 = {i : 〈xi , y1〉 = 1, 〈xi , y2〉 = β}, and C4 = {i : 〈xi , y1〉 = β, 〈xi , y2〉 = β}, where y1
and y2 are linearly independent. Geometrically, we have a parallelogram whose vertices are the
vectors r1, r2, r4, r3 (moving clockwise around the parallelogram).

If there exists i ∈ C1 and j ∈ C4 such that i → j , then 〈xi , y j 〉 = 1 and 〈x j , y j 〉 = 1.
This means that the line {x : 〈x, y j 〉 = 1} contains the points r1 and r4. But then the parallel
line {x : 〈x, y j 〉 = β} must contain r2 and r3, which is impossible since they are diagonals
of the parallelogram. Therefore C1 �→ C4, that is, no vertex in C1 points to any vertex of C4.
Similarly C4 �→ C1, C2 �→ C3, and C3 �→ C2. This also shows that there is no yi such that
{x : 〈x, yi 〉 = 1} or {x : 〈x, yi 〉 = β} contains opposite vertices of the parallelogram.

Suppose there exists i ∈ C1 such that C2 → i and C3 → i . Let j ∈ C2 and l ∈ C3. Then
〈x j , yi 〉 = 〈xl , yi 〉 = 1, so the line {x : 〈x, yi 〉 = 1} contains the opposite points r2 and r3,
a contradiction. On the other hand if there exists i ∈ C1 such that C2 �→ i , C3 �→ i , then all
edges containing i are undirected and k = t , a contradiction. Therefore for any i ∈ C1, either
C2 → i or C3 → i , but not both. Hence we can partition C1 into C12 ∪C13, as in the d = 3 case.
Similarly C2 = C21 ∪ C24, C3 = C31 ∪ C34, and C4 = C42 ∪ C43.

Let cab = |Cab|, and ca = |Ca |. Checking in-degrees, it is easy to see that c1 = c2 = c3 = c4.
We will also show that the cab’s are constant.
Comparing the number of 2-paths from a vertex of C1 to a vertex of C21, to the number

of 2-paths from a vertex of C1 to a vertex of C31, we find that c21 = c31, which implies that
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c24 = c34. Similarly counting the number of 2-paths from C2 to C12, and from C2 to C42 shows
that c12 = c42 and c13 = c43.

Now using these equations and comparing out-degrees shows that all cab’s are a constant c.
It is clear that the structure of these graphs is completely determined (up to isomorphism),

and that they are the graphs of Corollary 6.6 with n = 2 and q = 2. �

This completely determines the directed strongly regular graphs with m = 2. It also shows
that each such graph is isomorphic to its reverse. In terms of parameters, we have the following.

Corollary 5.4. Suppose Γ is a directed strongly regular graph with a representation of
multiplicity 2. Then Γ or its complement has parameters either

v = 6c k = 4c − 1 t = 3c − 1 λ = 3c − 2 μ = 2c

or

v = 8c k = 4c − 1 t = 3c − 1 λ = 3c − 2 μ = c

for some integer c.

This rules out for example the feasible parameter sets (25, 10, 6, 1, 6) and (54, 24, 16, 4, 16).

6. Constructions

In this section, we will describe a number of constructions for directed strongly regular graphs.
Some of these give graphs with eigenvalue τ = −1; this is equivalent to α = 1. From (3.2) these
values imply that λ = t − 1 and we can then apply a construction of Duval.

Theorem 6.1 ([2, Theorem 7.2]). Suppose that Γ is a directed strongly regular graph with
parameters (v, k, t, λ, μ) where λ = t−1, and w is a positive integer. Then there exists a directed
strongly regular graph with parameters (vw, (k + 1)w − 1, (t + 1)w − 1, (t + 1)w − 2, μw).

6.1. Geometric constructions

The proofs of Theorems 5.2 and 5.3 construct the graphs (and thereby show uniqueness).
These proofs suggest generalizations of the constructions which are essentially geometric; these
are given below in Corollary 6.3 and Theorem 6.5. Note that the first three constructions are not
new; the graphs of Theorems 6.2 and 6.4 are isomorphic to certain cases of [4], Theorem 5.6(2),
and the graphs of Corollary 6.3 follow from them.

Theorem 6.2. Let n ≥ 3 be an integer. Let Γ be the directed graph with vertex set V = {(i, j) :
1 ≤ i, j ≤ n, i �= j}, and directed edges given by (i, j) → (a, b) if a = j , or a = i and b �= j .

Then Γ is a directed strongly regular graph with parameters v = n(n − 1), k = 2n − 3,
t = n − 1, λ = n − 2, and μ = 2. It has eigenvalues k, n − 3 and −1 with multiplicities 1, n − 1
and n(n − 2) respectively.

Proof. Use counting arguments. �

The graphs of the previous theorem have λ = t − 1, so we may apply Theorem 6.1.
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Corollary 6.3. For any n ≥ 3, w ≥ 1, there exists a directed strongly regular graph with
parameters v = wn(n − 1), k = w(2n − 2) − 1, t = wn − 1, λ = wn − 2, and μ = 2w.
This may be constructed as follows. Let V = {(i, j, l) : 1 ≤ i, j ≤ n, i �= j, 1 ≤ l ≤ w},
and directed edges given by (i, j, l) → (a, b, c) if a = j , or a = i and b �= j , or a = i and
b = j and l �= c. It has eigenvalues k, w(n − 2) − 1 and −1 with multiplicities 1, n − 1 and
n(wn − w − 1) respectively.

There is a q-analogue of the construction given in Theorem 6.2, which also gives a directed

strongly regular graph. As usual, we write
[

n
k

]
for the q-ary Gaussian binomial coefficient; that

is, [
n
k

]
= (qn − 1) · · · (qn−k+1 − 1)

(qk − 1) · · · (q − 1)
.

Theorem 6.4. Let q be a prime power, and n ≥ 2. Define Γ to be the directed graph with vertex
set

V = {(x, π) : x ∈ PG(n, q), π a line of PG(n, q), x ∈ π},
and directed edges given by (x1, π1) → (x2, π2) if x2 ∈ π1 and (x1, π1) �= (x2, π2).

Then Γ is a directed strongly regular graph with parameters v = (q + 1)
[

n + 1
2

]
, k =

(q + 1)
[

n
1

]
− 1, t =

[
n
1

]
+ q − 1, λ =

[
n
1

]
+ q − 2, and μ = q + 1. It has eigenvalues k,[

n
1

]
− 2 and −1 with multiplicities 1, q

[
n
1

]
and q

[
n + 1

1

] [
n − 1

1

]
respectively.

Theorem 6.5. Let n, q ≥ 2 be integers, and Q be a set of order q. Define Γ to be the directed
graph with vertex set V = Qn×{1, . . . , n} and directed edges given by (a, i) → (b, j) if ai = bi

and (a, i) �= (b, j).
Then Γ is a directed strongly regular graph with parameters v = nqn, k = nqn−1 − 1,

t = (q + n − 1)qn−2 − 1, λ = (q + n − 1)qn−2 − 2, and μ = (n − 1)qn−2. It has eigenvalues
k, qn−1 − 1 and −1 with multiplicities 1, n(q − 1) and n(qn − q + 1) − 1 respectively.

Proof. Easy counting arguments give the values for v, k, and t .
Suppose (a, i) �→ (b, j). We want to count the number of (c, l) such that (a, i) → (c, l) →

(b, j). We must have l �= i since ai �= bi , so there are n − 1 choices for l. Once l is chosen,
we must choose c so that ci = ai and cl = bl ; hence there are qn−2 choices for c, and
μ = (n − 1)qn−2.

Suppose (a, i) → (b, j). We want to count the number of (c, l) such that (a, i) → (c, l) →
(b, j). First, assume that i �= j . If we choose l = i , then c must satisfy ci = ai (which equals bi ),
and there are qn−1 − 1 such c �= a. On the other hand, if l �= i , then c must satisfy ci = ai and
cl = bl and there are qn−2 such c; but we must subtract 1 for the choice l = j , c = b. The case
that i = j is similar, and the number of choices of (c, l) is qn−1 − 2 with l = i and (n − 1)qn−2

with l �= i . Therefore, λ = qn−1 − 1 + (n − 1)qn−2 − 1. �
If q = 2 and Q = {0, 1}, there is an obvious map from V to R

n given by (a, i) → a. We can
adapt this to give a representation. Define

y(a,i) = a −
(

n2n−1 − 1

(n − 1)2n−2

)
1.
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Then it can be shown that the map (a, i) → y(a,i) is a right representation corresponding to the
eigenvalue 2n−1 − 1. Clearly this representation is not injective, which is not surprising since
τ = −1.

The smallest new graph given by this construction has parameters (375, 74, 34, 33, 10).
We can again apply Theorem 6.1 to the graphs of Theorem 6.5.

Corollary 6.6. Let n, q ≥ 2, and w ≥ 1 be integers. Then there exists a directed strongly
regular graph with parameters v = wnqn, k = wnqn−1 − 1, t = w(q + n − 1)qn−2 − 1,
λ = w(q + n − 1)qn−2 − 2, and μ = w(n − 1)qn−2. It has eigenvalues k, wqn−1 − 1 and −1
with multiplicities 1, n(q − 1) and n(wqn − q + 1) − 1 respectively.

These graphs can be explicitly described. Define Γ to be the directed graph with vertex set
V = Qn × {1, . . . , n} × {1, . . . , w} and directed edges given by (a, i1, i2) → (b, j1, j2) if
ai1 = bi1 and (a, i1, i2) �= (b, j1, j2).

6.2. Tensor constructions

Theorem 6.7. Let Γ be a directed strongly regular graph with parameters (v, k, t, λ, μ) such
that μ = λ and v = 4k − 4μ. Suppose there exists a c × c (1,−1) matrix H with 1’s on the
diagonal such that HJ = JH = dJ and H 2 = cI . Then there exists a directed strongly regular
graph with parameters (v, k, t, λ, μ) where λ = μ, v = 4k − 4μ, and

v = vc

k = c(2k − 2μ) + d(2μ − k)

t = c(k + t − 2μ) + d(2μ − k)

λ = μ = c(k − μ) + d(2μ − k).

Proof. Let A be the adjacency matrix of Γ and B = 2A − J . Then B is a (−1, 1) matrix with
(−1)’s on the diagonal. The assumptions on the parameters of Γ imply that

B2 = 4(t − μ)I + 4(λ − μ)A + (v − 4μ − 4k)J = 4(t − μ)I

and

B J = J B = (2k − v)J.

We will use this to construct a larger matrix with the same properties. Let B = B ⊗ H ; then
B is also a (−1, 1) matrix with (−1)’s on the diagonal. We can easily calculate

B J = J B = d(2k − v)J = d(4μ − 2k)J

B
2 = 4c(t − μ)I

where J and I are now vc × vc matrices.
The graph corresponding to the matrix B will be the new directed strongly regular graph Γ .

To show this, we undo the above process to get the adjacency matrix. Let

A = B + J

2
.
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Then

AJ = J A

= 1

2
(d(2k − v) + vc)J

= 1

2
(d(4μ − 2k) + c(4k − 4μ))J

= (d(2μ − k) + c(2k − 2μ))J

and

A
2 = 1

4
(B

2 + 2B J + J 2)

= 1

4
(4c(t − μ)I + 2d(4μ − 2k)J + c(4k − 4μ)J )

= c(t − μ)I + (d(2μ − k) + c(k − μ))J. �

Note that H must be a regular Hadamard matrix with constant diagonal. This implies that
c = 4s2 for some positive integer s, and d = ±2s.

For example, let

H =

⎛
⎜⎜⎝

1 −1 1 1
−1 1 1 1
1 1 1 −1
1 1 −1 1

⎞
⎟⎟⎠

which has c = 4 and d = 2. There exists a directed strongly regular graph Γ with parameters (8,
3, 2, 1, 1). Then Γ is a directed strongly regular graph with parameters (32, 14, 10, 6, 6) which is
new. Using instead the matrix H = 2I − J , which has c = 4 and d = −2, we construct Γ with
parameters (32, 18, 14, 10, 10) which is also new.

6.3. Matrix constructions

There are some simple constructions of directed strongly regular graphs using matrix products
which give new examples. These graphs all have 0 as an eigenvalue.

Theorem 6.8. Let B1, . . . , Bq be n × n (0, 1) matrices satisfying the following conditions.

(a) There is a constant c such that each Bi has constant row sum c.
(b) Bi has 0’s on the diagonal, for all i .
(c)

∑q
i=1 Bi = d(J − I ) for some integer d.

Then A =
(B1

.

.

.

Bq

)(
I . . . I

)
is the adjacency matrix of a directed strongly regular graph with

parameters v = nq, k = cq, t = cd, λ = cd − d, μ = cd.

Proof. Calculating using properties (a)–(c), we find that A2 = cd J − d A. �

Note that if the conditions are satisfied, then taking row sums on either side of the equation
in (c) implies that qc = d(n − 1). It is thus a necessary condition that c|d(n − 1); in fact, this
condition is also sufficient.
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Corollary 6.9. Suppose n, d, and c are positive integers such that c < n−1 and c|d(n−1). Then
there exists a directed strongly regular graph with parameters v = dn(n − 1)/c, k = d(n − 1),
t = cd, λ = cd − d, and μ = cd.

Proof. Let C be the n × n circulant with first row
(
0 1 0 . . . 0

)
. Note that

Cn = I,

and
n−1∑
i=1

Ci = J − I.

Let q = d(n − 1)/c.
Then we can find subsets S1, . . . , Sq of {1, . . . , n−1} of size c such that for j ∈ {1, . . . , n−1},

j occurs in d of the Si ’s.
Let Bi = ∑

j∈Si
C j . Then B1, . . . , Bq satisfy the hypotheses of the theorem and the result

follows. �
Let n = 10, c = 3, d = 1. Then by Corollary 6.9, there exists a directed strongly regular

graph with parameters (30, 9, 3, 2, 3), which is new.
The graphs constructed recently by Duval and Iourinski in [3] have adjacency matrices of the

form given in Theorem 6.8 (with d = 1).

Acknowledgment

The second and third authors would like to thank the department of Combinatorics and
Optimization at the University of Waterloo for their hospitality during the initial research for
this paper.

References

[1] A.E. Brouwer, S.A. Hobart, Parameters of directed strongly regular graphs. http://homepages.cwi.nl/∼aeb/math/dsrg/
dsrg.html.

[2] A.M. Duval, A directed graph version of strongly regular graphs, JCT(A) 47 (1988) 71–100.
[3] A.M. Duval, D. Iourinski, Semidirect product constructions of directed strongly regular graphs, JCT(A) 104 (2003)

157–167.
[4] F. Fiedler, M. Klin, Ch. Pech, Directed strongly regular graphs as elements of coherent algebras, in: K. Denecke,

H.-J. Vogel (Eds.), General Algebra and Discrete Mathematics, Shaker Verlag, Aachen, 1999, pp. 69–87.
[5] C.D. Godsil, Algebraic Combinatorics, Chapman and Hall, 1993.
[6] S.A. Hobart, T.J. Shaw, A note on a family of directed strongly regular graphs, European J. Combin. 20 (1999)

819–820.
[7] L.K. Jørgensen, Directed strongly regular graphs with μ = λ, Discrete Math. 231 (2001) 289–293.
[8] L.K. Jørgensen, Non-existence of directed strongly regular graphs, Discrete Math. 264 (2003) 111–126.
[9] M. Klin, A. Munemasa, M. Muzychuk, P.-H. Zieschang, Directed strongly regular graphs obtained from coherent

algebras, Linear Algebra Appl. 377 (2004) 83–109.

http://homepages.cwi.nl/~aeb/math/dsrg/dsrg.html
http://homepages.cwi.nl/~aeb/math/dsrg/dsrg.html
http://homepages.cwi.nl/~aeb/math/dsrg/dsrg.html
http://homepages.cwi.nl/~aeb/math/dsrg/dsrg.html
http://homepages.cwi.nl/~aeb/math/dsrg/dsrg.html
http://homepages.cwi.nl/~aeb/math/dsrg/dsrg.html
http://homepages.cwi.nl/~aeb/math/dsrg/dsrg.html
http://homepages.cwi.nl/~aeb/math/dsrg/dsrg.html
http://homepages.cwi.nl/~aeb/math/dsrg/dsrg.html

	Representations of directed strongly regular graphs
	Introduction
	Definitions
	Representations
	Bounds on  v  for  tau not = 0, - 1 
	Noninjective representations
	Constructions
	Geometric constructions
	Tensor constructions
	Matrix constructions

	Acknowledgment
	References


