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1. Introduction 

In mammalian tissues multiple forms of pyruvate 
kinase (ATP, pyruvate phosphotransferase, EC 
2.7.1.40) have been found with different kinetic, 
physicochemical and immunological properties [l-3] . 
In particular, significant differences exist in the regu- 
latory properties of the various types of this enzyme, 

especially in their sensitivity against allosteric effec- 
tors, like certain amino acids [3] and fructose 1,6- 
diphosphate [2] which are considered as being impor- 
tant for the coordination of glycolysis and gluconeo- 
genesis [4-61. In the course of an investigation of 
the regulation of glycolysis in Ehrlich ascites tumour 
cells it became necessary to study the pyruvate ki- 

nase of these cells [7] in more detail. In this paper, 
evidence will be presented that the negative allos- 

teric effector L-alanine, causes a dissociation of the 
tumour pyruvate kinase into two half molecules. 
Evidently, this dissociation may be reversed by the 
positive effector fructose 1,6-diphosphate. 

2. Materials and methods 

Ascites tumour pyruvate kinase was brought to a 
specific activity of 30 units per mg of protein by 
ultrasonic disintegration of the cells, ammonium 
sulphate fractionation in the range of 40-80% satu- 
ration and gel filtration on Sephadex G-200. The en- 
zyme preparation contained less than 0.03% of enolase, 
adenylate kinase and alanine aminotransferase and no 
detectable activities of NADH oxidases, fructose 

1,6-diphosphatase, aldolase, and proteases, respec- 
tively. Initial velocity was measured by coupling the 
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pyruvate kinase with lactate dehydrogenase in an 
Eppendorf Photometer at 334 nm. All assays were 
carried out at pH 7.2 and 25°C with final concen- 
trations of 50 mM Tris-maleate buffer, 100 mM 

KCI, 25 mM MgS04,0.3 mM NADH and 2 units 
lactate dehydrogenase per ml reaction mixture. 

The sedimentation coefficients were determined 
by sucrose density gradient centrifugation accord- 

ing to Martin and Ames [8], and the molecular 
weights were calculated assuming that the relation- 
ship between the sedimentation coefficient and the 
molecular weight of pyruvate kinase is the same as 
for the globular proteins used as references: ox 
heart lactate dehydrogenase (6.5 S, mol. wt = 
135 000), rabbit muscle aldolase (7.82 S, mol. wt = 
149 000), pig heart fumarase (9.09 S, mol. wt = 
220 000), rabbit skeletal muscle pyruvate kinase 
(10.04 S, mol. wt = 237 000) and yeast phospho- 

fructokinase (17.8 S, mol. wt = 570 000). The cen- 
trifugation was carried out at 53 000 rpm (5 hr, 
4°C) in a 5-20% linear sucrose concentration gra- 

m dient by using a Beckmann centrifuge type L2-65 B 
and the rotor SW 65 L-TI. 

Before its application to the gradient the enzyme 
was dialysed for 1 hr and diluted in the following 
buffer: 40 mM triethanolamine-HCl (pH 7.2), 50 
mM KC1 and 5 mM MgS04, in addition to the res- 
pective effector (s), as indicated in fig. 4. After di- 
viding the gradient into 45 fractions, the activity 
was determined by applying conditions, where max- 
imum activity is assured (see fig. 4). 

3. Results and discussion 

Lalanine acts as negative allosteric effector on the 
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enzyme from ascites tumour cells. The inhibition 
1.6 curve by alanine is sigmoidal with a Hill-coefficient 

of 1.8 (at 2.5 mM phosphoenol pyruvate and 0.3 mM 

1.6 

/ 

ADP). The heterotropic effect of alanine gives rise 
to apparent cooperative interactions of phosphoe- 

1.2 nolpyruvate (fig. 1). Without alanine the Hill-co- 
efficient for this substrate is about one, in its pre- 

$ 0.8 Sence the respective value is 1.9. 

Y Fig. 2 shows a Dixon plot of the dependence of 
a 
3 0.4 

pyruvate kinase activity on the alanine concentra- 
tion at different concentrations of ADP. The en- 

0 
zyme is apparently non-competitively inhibited by 
alanine in respect to ADP. One may conclude from 

the results of figs. 1 and 2, that the binding sites 
-0x for alanine are different from those of the two sub- 

strates. The inhibition of the enzyme by alanine is 
-a6 4 

-l2 -0.8 -0A 0 0.4 0.6 1.2 
very effectively counteracted by fructose 1,6-diphos- 
phate. At 2 mM alanine the half-saturation concen- 

C(phmphw~~*%#l tration is about 2 PM (at 0.3 mM phosphoenolpy- 

ruvate and’0.3 mM ADP). 
Fig. 1. Hill plot of pyruvate kinase for phosphoenolpyruvate 
in absence and presence of L-alanine. Experimental: ADP 
concentration was 0.3 mM (0) in absence of alanine; (X) in 
presence of 0.8 mM alanine. 

In the absence of alanine no effect of fructose 
1,6-diphosphate on the enzyme activity at saturat- 
ing concentrations of phosphoenolpyruvate and ADP 
could be detected. 

-OS - 0.6 - 0.L - 02 0 0.2 04 0.6 0.E 1.0 

O.l2 mM AOP 

CCUmMADP 

O.Lo mM ADP 

0.70 mM ADP 

L-alanine [mM] 

Fig. 2. Dependence of pyruvate kinase activity on L-alanine at various concentrations of ADP (Dixon plot) 3.0 mM phosphoenol- 
pyruvate. 
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Fig. 3. Inhibition and reactivation of pyruvate kinase by L- 
alanine and fructose 1,6-diphosphate. Experimental: The 
enzyme was diluted in 40 mM Tris buffer, pH 7.2; 0.1 mM 
EDTA; 50 mM KCl; 5 mM MgS04; to a final protein con- 
centration of 0.25 mg per ml incubation medium. Thereafter 
the enzyme was kept at 4°C and activity was measured at 
25°C in aliquots taken from the mixture. The low tempera- 
ture of incubation is necessary owing to a progressive inacti- 
vation of the diluted enzyme at room temperature in absence 
of stabilizing effecters like phosphoenolpyruvate, ADP or 
fructose 1,6-diphosphate, respectively. 

Further information about the effects of alanine 

and fructose 1,6-diphosphate has been obtained by 
adding both effecters successively to the enzyme 
with an interval of about 30 min (fig. 3). The in- 
hibition of the enzyme by alanine as well as its re- 
activation by fructose 1,6-diphosphate are time-de- 
pendent reactions requiring several minutes before 
attaining their respective steady state values. This 
result suggests that both effecters might induce 
relatively slow structural changes in the enzyme. 

In fig. 4 the sedimentation pattern of pyruvate 
kinase after sucrose density gradient centrifugation 
under different conditions is presented. Both effec- 
tors influence the dissociation-reassociation equali- 
brium of the enzyme. In the presence of alanine the 
enzyme sediments with about 5.3 S, which corre- 
sponds to a molecular weight of about 100 000. 
Addition of fructose 1,6-diphosphate to the alanine 
-containing gradient causes an association of the 

fraction number 

Fig. 4. Sucrose density gradient centrifugation of ascites tu- 
mour cell pyruvate kinase. Conditions as described in ‘Materi- 
als and methods’. Enzyme activity was measured in aliquots after 
fractionation of the gradient under the following optimum condi- 
tions: 2.5 mM phosphoenolpyruvate; 2.5 mM ADP and 1.0 mM 
fructose 1,6-diphosphate, pH 7.2. Gradient A. This type of 
enzyme distribution is obtained under the following condi- 
tions: (1) without any ligand or; (2) 2 mM L-alanine or; (3) 
2 mM L-alanine plus 0.5 mM phosphoenolpyruvate or; (4) 
2 mM L-alanine plus 0.5 mM ADP, respectively. Fraction 
No. 13 corresponds to 5.3 S mol. wt about 100 OOO).Gradi- 
en? B. This type of enzyme distribution is obtained under 
the following conditions: (1) 0.1 mM phosphoenolpyruvate 
or; (2) 0.2 mM ADP or; (3) 0.02 mM fructose 1,6-diphos- 
phate or; (4) 2 mM L-alanine plus 0.05 mM fructose 1,6-di- 
phosphate. Fraction No. 21 corresponds to 10 S mol. wt 
about 220 000). 

enzyme sedimenting with about 10 S. Referring to 
experiments described above, one may suppose 
that the 5.3 S form is less active then the 10 S 
molecule. 

The calculated molecular weight of the latter 
form is about 220 000, which is in fair agreement 
with the respective values of the pyruvate kinase 
from other biological sources [9]. Neither phos- 

phoenolpyruvate nor ADP at the reported concen- 
trations are able to reassociate the enzyme in the 

presence of alanine, underlining the specificity of 
the effect of fructose 1,6-diphosphate. When the 
enzyme is centrifuged without any effector it sedi- 
ments with 5.3 S too, as is the case in the presence 
of alanine. However, in this case not only fructose 
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1,6-diphosphate but also phosphoenolpyruvate or 
ADP, respectively, are effective in the reassociation 
of the enzyme to the 10 S molecule. Evidently, ala- 
nine stabilizes the 5.3 S form of tumour pyruvate 

kinase in such a way that it only may be reassociated 
by fructose 1,6-diphosphate but not by one of its 
two substrates. In view of the molecular weight of 
the enzyme (about 220 000) and the molecular 
weight of its subunits (around 50-60 000, unpub- 
lished experiments) , one may conclude that the 
effector-mediated control of ascites tumour pyru- 
vate kinase activity is caused by a dimer-tetramer 
equilibrium. 
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