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We consider partitioning problems subject to the constraint that the subsets in the partition are
independent sets or bases of given matroids. We derive conditions for the functions F and f such
that an optimal partition (S7,S5,...,S;) which minimizes F(f(S;), ..., f(S;)) has certain order

nronerties. Theee aorder nronerties allow ta determine ontimal nartitions by Greedv-like aloo-
propertics. 1nese oraer properties aliow o getermine ¢oplima: partitions oy Greeay-iixe aigo

rithms. In particular balancing partitioning problems can be solved in this way.

Keywords. Partitioning problems, matroids, Greedy algorithm, balancing objective function,
minimum variance.

1. Introduction

Partitioning of number sets have been studied by several authors, see e.g. Barnes

P | 'l_‘lAt‘an“ [1'| Mkl I\..I: P n b P TXxrn | & PrPe
aina raoirmain 1], LnaKkfravar I,_)’, /11l all l\otllululll lJ, "fj, riwaii lJ], IIWQIIE guu

o [6], and Tanaev [9] This pr m can be described a follows Let E=
{o‘,eum,-"} be a finite set of numbers Pigens -<e, and let P=(S,,5,,...,8;)
be a partition of E. That means the sets S;, i=1,2,...,k are nonempty, pairwise
disjoint and their union equals E. Now, let f be a real-valued function defined on
the subsets of E. We ask for a partition P* which minimizes the objective function

F(P):=Y/_, f(S5):
F(P*)=min{F(P) | P partition of E}. ¢))

if no further condition is given, this probiem is just caiied the partitioning
problem. If the number k of sets in the partition is fixed, we call the problem the

rrhlom Furtharmare not anly L san hae fived hit alea tha gizace
CECrre. 4 UlLliviiiiviv, 1IUL Viily v vadll UL L1IAVM, VUl Aldov v Jlovo

Sils ISa)s ---» ISk |- In this case we call the problem the k-shape partitioning
problem.

In this paper we study partitioning problems with additional constraints. We re-
quire that the sets S|, S,,...,S; of P are independent sets with respect to given
matroids M, i=1,2,...,k. Moreover, we study a general form of the functions
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f:28 > R and F: R¥—> R which yields that an optimal solution of the partitioning
problem exists showing special order properties. These order properties will then be
used to solve such problems efficiently.

In Section 2 we introduce the notion of constrained partitioning problems and
ordered solutions. In Section 3 we discuss a general form for the functions f and
F in the case of constrained 2-partitioning problems. In particular balancing con-
strained partitioning problems and problems minimizing the variance will admit
ordered solutions. Finally we extend these results in Section 4 to constrained k-
partitioning problems, discuss the underlying combinatorial structure of these pro-
blems and derive a solution method. The solution method consists in an iterated
application of a Greedy-like algorithm. If all matroids involved have the same struc-
ture, an optimal constrained k-partition can be found in O(k?) steps.

2. Constrained k-partitions

A 2-partitioning problem asks for a partition of the set E={e;,e,,...,¢,} into
two nonempty sets S; and S,. In the following we will impose further constraints
on the sets S;, i=1,2 for example that they are independent sets with respect to
given matroids M;=(E, %), i=1,2, where & denotes the class of independent sets
of matroid M;. If we define M, = M, by & :=2% we get the classical partitioning of
E into two sets. This leads to the following definition:

Definition 2.1 (constrained k-partition). Let k matroids M;(E, %;) be defined on FE
given by their classes &; of independent sets. A partition P=(S;,S,,...,S¢) of E is
called a constrained k-partition, if S;e &, for i=1,2;... k.

Example 2.2. Let the following two graphic matroids M; and M, be given on the
common ground set E={e, e, €3,€4€5}.

>

€y 1 €3
€s

€4
A constrained 2-partition is e.g. S;={e;,e3}, S;={e,, es,e5}. On the other hand

S ={e, e}, S;=1{e;,e,,e5} is not a constrained 2-partition, since S, is not an in-
dependent set with respect to M;.

Now we turn to shape partitions. Let P=(S}, S,) be a 2-shape partition of £ with
IS)| =u and |S,| =v, u+v=|E|. If we define matroids M;, i = 1,2 by their classes of
bases as follows:
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B ={SCE:|S|=u}, B,={SCE:|S|=v},

we can see that shape partitions are again very special constrained partitions of E.
Moreover, the two matroids defined above are dual to each other. This motivates
the following definition.

Definition 2.3 (complementary class of matroids). Let M;=(E, #;), i=1,2, ...,k be
matroids with ranks n; on the set F, defined by their classes &, of bases. These
matroids are called a complementary class on E if and only if the following two pro-
perties hold:

k
@ L=l @
i=1

(b) If S;e B;, j=1,...,n; j#i are pairwise disjoint sets, then
E\U S;e %, 3)

J#i

Example 2.4. Let M; be a matroid consisting of all (m x n) 0-1 matrices with at

most n; 1-entries in each column. If Zf.‘zl n;=m, these k matroids form a comple-
mentary class.

Now we define:

Definition 2.5 (constrained k-shape partition). Let M;=(E, 8B;), i=1,2,....,k be a
complementary class of matroids defined on E. A partition P=(S;, S, ...,S;) of E
is called a constrained k-shape partition, if S;e &, for i=1,2,...,k.

Example 2.6. Shape partitioning problems play a role in matrix decomposition pro-
blems. Given a nonnegative integer matrix 7=(f;), find 0-1 matrices §; with at
most one l-entry (or in general »; 1-entries) in each column, such that 7<Y 4;S;,
with ¥ A,— min. For example, let

2 4 2
T=13 1 4
11 2
be given. Then
1 01 010 0 0O
T=<2-10 1 0{4+4-/1 0 1|+2-{0 0 O
0 00 0 0 0 1 11

and this is best possible, since the last column sum is 8. Obviously the matrices
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and

(=R
O =0
oS O =
O = O
(=R
S = O
—_ o o
- o o
- o O

represent a shape partition in the complementary class of matroids introduced in the
previous example.

Now we endow the class of all subsets of E={ej,e,,...,e,} with a total order.
We say S, CE is lexicographically not greater than S,CE, if either $;CS, or
min{k: e, € S;\S,} <min{k: e, € S,\S,}.

Example 2.7. {e,e,} < {e;,es, 63} <{e},e4}.

This order enables us to introduce the notions of ordered sets and ordered par-
titions.

Definition 2.8 (ordered pair of sets). Let M,=(E,%,) and M,=(E,%,) be two
matroids. Two sets S, € #, and S, € &%, are called not ordered, if

de,e S, e,€8, with p<r,
and 4)
3e,€ S, ¢,€ S, with s>1,
such that
S{ :=Sl\{ep}u{er}’ SI’ :ZSI\{es}U{et} Egl,
and
S3:=5\{e}U{e,}, Sy :=S\{e}U{e} e F.

Otherwise they are called ordered.

Definition 2.9 (ordered partitions). A constrained k-(shape) partition P=
(S1, S ..., S¢) is called an ordered partition if and only if any two subsets S; and S;
are ordered.

Example 2.10. Let £= {e,, e;,e;,€,} be the ground set of a matroid M whose in-
dependent sets are arc sets in the graph G with the property that any two arcs have
no starting point in common.
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We define M :=M, :=M,. Then §;={e, e,}, S;={ey, €3} is not an ordered shape
partition since we can exchange e, against e, and e; against e;. By the first exchange

A A

we get S]:={e, e}, S;={e;,e,} and this partition is ordered.

Now let f: 7E——> R be a real-valued function

F:R¥—> R be a further real function. Th
defined as

F(P) :==F(f(51), f(52), -, f(S¢))- &)

(=
\
E
S
.
.
(o)
I ®
“o?
,.\
¢
é”
>£”
e’

tit1 D% vy is feasible (i

nar o 1
£ paiiiud on 7 Wiici 1§ 1€asicil (i.N.y 11U

minimizes F(P) is called optimal.

Example 2.11. Let us consider the matrix decomposition example again. For any
matrix S; we define

f(S;) := maximum nonzero entry,
F(P)= Y f(5)).

Thus the matrix decomposition problem asks for a partition of the underlying set
{(, /): 1=i=m, 1 <j<n} which minimizes the value F(P). Problems of this kind
play a role in the decomposition of traffic matrices arising in communication
systems (see e.g. Burkard [2]).

Definition 2.12 (OCP = OOCP). If there exists an optimal constrained partition
which is ordered, we say the problem has the property OCP=OOCP.

Originally, this notion was introduced in Hwang, Sun and Yao [6]. In many cases
partitioning problems with this property can be well solved by efficient methods as
will be shown in Section 4. In the next section we will discuss special problems and
examples which yield property OCP = OOCP. Clearly, if OCP=00OCP holds for
any shape of a constrained k-shape partitioning, then it holds also for the constrained
k-partitioning, but not vice versa.

3. Constrained 2-partitioning problems

We are now interested in the question of which types of the functions f and F
lead to partitioning problems with the property OOCP = OCP in the case of con-
strained 2-partitioning problems. Generalizing a result of Hwang, Sun and Yao [6]
we get as an immediate consequence of Definition 2.5:

Proposition 3.1. Let P=(S|,S,) be a nonordered constrained partition. If for one
of the two possible exchanges S{=S5\{x}U{y}, S3=S\{y}U{x} or §/=
SN\ {v}U{w}, S;=S,\{w}VU{v} the partition value does not increase

F(f(SD, S(SD) = F(f(8)), £(S2))
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or 6)
F(f(S)) f(S2) = F(f(S1), £(S52)),

then the partitioning problem has the property OCP=OOCP.

In the following we describe classes of functions f and F which fulfill the assump-
tions of Proposition 3.1. With any element e € E we associate a real number (cost)
c(e). Moreover, we index the elements of E such that c(e))=c(e))<---=c(e,).
Now, let g(x, ) be a symmetric real-valued function; g is called an interval function,

if it is increasing with max(x, y) and decreasing with min(x, ). An interval function
is called super-additive, if for x and y, both lying in the interval [z, w] the inequality

gz, W) +g(x, »)=g(z,x) +g(y, w) 7
holds.

Proposition 3.2. Let g be a super-additive interval function. We assume that for any
SCE the value u=u(S) is defined by

ES g(c(z), u) = min ZS g(c(z), ). (®)

Let f(S)=Y,.58(c(z),u) and F(X,Y)=X+Y. Then the constrained 2-shape parti-
tioning problem

F(P*)=min F(f(S)), f(S2))
P
has the property OCP=OOCP for any shape constraints on the sets S, and S,.

Proof. Let P=(S,,S,) be a nonordered constrained 2-shape partition and let
u=u(S;), v=u(S,) be defined by

Y glc(zw)=min Y g(c(z),a),

zZ€e S8 U zeS
Y glc@,v)=min ¥ g(c(z),0).
€8, UV ze$

Let us assume u<v. Since S|, S, are nonordered there exists an x € S; and an element
we S, with ¢(x) = c(w) such that S]:=S;\ {x}U{w}eF, 5;:=S:\{w}U{x} e%,.
For the real numbers c(w), c(x), u, v with ¢(w) < c(x) and u < v we have to consider
six possible cases, namely

49} cwysc(x)=u<v, cw)su=<c(x)<v and u<uv,
u<v=c(w)=c(x), u=sc(w)ysv=c(x) and u<v,
(I1) clw)y=u<v=c(x), uscw)=cx)=sv and u<v.

The superadditivity and monotonicity properties of the interval function g yield in
any of these cases
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gle(x), u) +glc(w), v) = glc(w), u) + g(c(x), v). 9
Thus,

= Y e@uw+gleuw+ ¥ glc@),v)+glc(w),v)

ze S\ {x} ze S\ {w}
= gle@,u)+glem,w)+ Y g(c(z),v) +glc(x),v)
ze S\ {x} ze SH\ {w}
E gle@,w+ ¥ gle(@)v)
zeS 7€83
=z ) gle@u)+ Y gle@),v)
ze S| z€8)
=f(81) +f(S) = F(P"). (10
Tharafara tha ot anliitiam ic Fangihla anmd hag wAa Aran ~nliantiva fiinetian valiia
11ICIC1VULIC l.llC HITW JSULULIVIL 1D 1CaAdlUVIC allu 11Ad 11U WUILOSL UUJRALLIYL TULIVLIVIL YalUun.
We show that u’<u and v<v’. This enables to continue this argument, until an op-
timal ordered solution is found. Suppose u'>u

From the definition of u follows

rv

f‘\

'
JW

SSn= Z glc@),u)< Ec g(c(2), u).

esi
Merging these two inequalities yields

glex), u) +glc(w), u’)<glelx), u’) +glc(w), u). (11)

Avgain there are gix nossihl ies for the real number C(W)SC’Y wu<u’. In case (I

apaill LCic a 1Db111t b ical Iy in case 4/

]
the inequality (11) contradicts the superadditivity of g, in case (II) this inequalit
is a contradiction to the monotonicity properties of g. Therefore u’<u. A similar
argument shows v<v’, This finishes the proof. [l

Examples for functions g(x, #) and u as specified in Proposition 3.2 are

o 1 o N
g(x,y)=}x—-yl, U= L C(Z)3 (12)
|S| ze$S
1

2o N =(x-»*, keN, u=— Y c@, (13)

]SI zes$

max(x, ) 18]
=—, = . 4
s = <ZEISC(Z)> (14)

Proposition 3.2 yields in particular that the following two kinds of partitioning
problems have the property OCP = OOCP.
An optimization problem is called balancing, if the difference between a maximum
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and a minimum coefficient in a solution is as small as possible (see Martello et al.
[7]). This motivates the following definition.

Definition 3.3 (balancing partitioning). A constrained 2-

is called baglancing, if P is a constrained 2-{chane) na
1s called balancing, 11 F 1S a constrain ed z-{shape) pa

F(P)=max{f(S,), /(S2)}

—~

shape) partmomng problem

where
1
fSH)=max |c@)-u|, u=7—= Y @ for i=1,2.
z€S; [2i] zeS;
Corollary 3.4. Balancing constrained 2-(shape) partitioning problems have the pro-

perty OCP=0QOCP.

Proof. Let g(x, y) = (x— »)* for k sufficiently large. When

(cf. inequalities (9) and (10)), then also

le@) —ul*+|c(w) —v|* = |c(W) —ul* +|c(x) —v|*  for all k=k,.

max{|c(x) —u|, |c(w) — v} = max{|c(w) - ul, [c(x) - v[}.

Therefore, relation (10) remains true, if the sum is replaced by maximum. But (10)
is the essential argument in the proof of Proposition 3.2. Therefore the same kind
of proof can be applied to balancing partitioning problems. [J

The value u=(1/|S|) ¥, sc(@) can be interpreted as mean value of the cost
elements of S. Then (1/|S]) Yieslc@— u)? is the variance of the cost elements of S.

Corollary 3.5. Variance minimizing constrained 2-shape partitioning problems with

IS,| =S| have the property OCP=OOCP.

Y (v v)2
)=X—))

at oflv v and (Y VYV
CL S\, anG \A,y £

Before we discuss another class of problems with property OCP =0OO0CP, we
state the following lemma (cf. Zimmermann [10]) which guarantees the existence of
a ‘‘smallest’” basis in a matroid. Let us recall that we ordered subsets SCE=
{ey, ey, ...,€,} lexicographically according to their indices.

Lemma 3.6 (Zimmermann). Let M =(E, &) be a matroid given by its class #B o

Locose Lo ser 2l noen casfoto o ol R odiioals fo T oian cindi o srad s doa Py AP A,
ouxed. 1 TIETL LIETE EXINIS 4 UAdIDS D7 WILICTL 1Y €Clermerii wide rio glCulCl triart urty oi

({4

o



Constrained partitioning problems 29

basis of M, i.e., IB*=(e;, €, ...,€;,) With i, <p<---<iy such that for all B=
(ejlaejz"--’ejk)s jl <j2<"'<jk’ Be ‘%9

i<j, r=12,..k (15)

holds. B* can be found by applying the Greedy algorithm starting from e, and in-
vestigating the elements in increasing order.

Proof. Let B*= {e,-l, €y vens e,-k} be the basis constructed in the above mentioned way
by the Greedy algorithm. Obviously, B* is lexicographically minimal. Let us now
assume B* is not the smallest basis, i.e., there exists a basis B= {ejl,ejz,...,ejk}
with i,<j, for 1 <=r<kg but iy, > . Then S*:={e;,...,e, } and S:={e;,...,e; }
are independent sets with |S*|<|S|. Therefore there exists an element e,€ S such
that S*U{e,} is independent and lexicographically smaller than B*. Since S*U {e,}
can be enlarged to a basis we get a contradiction that B* is lexicographically
minimal. [

The same argumentation yields:

Corollary 3.7. In any matroid M there exists a largest basis, i.e., a basis which is
elementwise not smaller than any other basis of M.

As a consequence of Corollary 3.7 we get:

Corollary 3.8. Let P=(5,,S,) be a constrained 2-shape partition of E. If S, is the
smallest basis of M;=(E, %)), then S, is the largest basis in the dual matroid
M2 = (E: '%2)

Proof. For any basis S, of M| =(E, %), S, :=FE\ S, is a basis of M, and P=(S,, S,)
is a 2-shape partition. Let S, be the smallest basis of M|, i.e., for all S;e %,:
S, <S;. This implies E\ §;=8,>S,. O

Proposition 3.9. If f(S) has the property f(A)=f(B) for |A|=|B|, A>B, A,BCE
and F: R > R is increasing in the first and decreasing in the second argument, then
the corresponding constrained 2-shape partitioning problem has the property
OCP=0OO0OCP.

Proof. Under the conditions stated the solution (S}, S,) is optimal where S, is the
smallest basis of M, and S, is the largest basis of M, (cf. Corollary 3.8). This solu-
tion is an ordered optimal solution. [

Corollary 3.10. The partitioning problem of Proposition 3.9 can be solved by apply-
ing the Greedy algorithm to matroid M, or M,.
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Example 3.11. Given E={c;: i=1,2,...,n}, ¢;e R, find that permutation ¢ which
maximizes the function ¥;_, c,;)— L., Cpq)- Obviously, this corresponds to the
situation described by Proposition 3.9 and therefore we get an optimal solution by
ordering the numbers ¢; decreasingly. [

In the next section we generalize these results to constrained k-shape partitioning
problems with £>2 and we derive an algorithm for problems with the property
OCP =0O0CP.

4. Constrained k-shape partitions

In this section we generalize the results of the previous section to constrained
k-shape partitions with k> 2. Moreover we analyze the corresponding combinatorial
structure of constrained partitioning problems and we derive a Greedy-like algorithm
for solving problems with the property OCP =QOCP.

At first we shall show that a k-shape partitioning problem has the property
OCP = 0OO0CP, if the problem restricted to any two matroids on a subset E’ of the
ground set E has this property. We deal with the following situation. Let M, :=
(E, B,), i=1,2,...,k (k=2) be a complementary class of matroids. Let f:2f->R
and let F: R¥ - R be a symmetric function with the following property. We denote
the restriction of F to two variables by F*. Then F must fulfill

F*(S7, SJ*)SF*(S,', S;)
= F(S), .., 85 S, S =F(Sy, .00, 8p). (16)

For any subset £'C E and any pair (i, j) of different indices / and j, 1 <i, j<k the
problem (&, ; | E’)

mln{F*(f(B,),f(BJ)). Bie e%i, Bje ‘%J’ BIUBJQE,, B,ﬂBj=ﬂ}

is called 2-restriction of .

If the set £ does not contain a pair of bases for the matroids M, and M;, we say
(%, ;| E") has no feasible solution and define the value of (#,; | E’) to be +co.
Notice that M; restricted to any set E’ still is a matroid. By Definition 2.8 we can
define ordered solutions of (&, ; lE'). Now we prove:

Proposition 4.1. Let & be a constrained k-shape partitioning problem with a sym-
metric value function F which fulfills (16). If any 2-restriction of & which has a
Seasible solution also has an ordered optimal solution, then & has the property
OCP=00CP.

Proof. Let (S},...,S;) be an optimal constrained k-shape partition of . At first
we consider the 2-restriction of # defined by matroids M; and M, and E’ :=S,US,.
Since (S, S,) is a feasible solution of this problem there exists according to our
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assumption an ordered solution (S, S{") with F*(S{", S{") < F%(S,, S,) and S{" < S{V.
Therefore (15) yields

FSO, 50,85, ..., 8 ) < F(51, 85, .05 Sp).

CI I T a e 1¢. Tha came
inea vy V11, 1V13 and £/ =S U o3, 1nc same

Next we consider the 2-restriction de
argumentation as above yields an optimal solution S(z), S“) with F *(S(z) S“))_<_
p*m(l) S;) and therefore pm(z) c(l) QU) , S )< F(S, S, ). We apply this argu-

37 S LURALAVEL £ .. (S ERAAR RS ') LRR2S
ment untll we get S(k 1),S(1), ...,S“) wrth Sl(k‘l)< Sj“) for all j and
k-1 &1 e~ — ey o o
F(S)" ,bz‘,...,o,;")sr(ol,oz,...,ok).
Next, this step is repeated with sy .., S,ﬁ”. Finally, we arrive at an ordered solu-
tion S¥ 1,81, ..., 8% of the k-shape partitioning problem with

FSED,80, . SO<F(S,, ..., 5).

Since (S|, ..., Sg) is optimal, also this ordered solution (S¥~1,8{,...,8¥) is op-

As a consequence of this theorem we get that the conditions stated in Proposition
3.2 and its Corollaries 3.4 and 3.5 also guarantee the property OCP =OQOCP fi
constrained k-shape partitioning problems, since F(X|,...,X)=X,+ +Xk as
well as F(X;, ..., X;)=max(X, ..., X;) are symmetric and fulfill (16). In particular
balancing k-shape partitioning problems have this property. If the bases of all
matroids M;, 1 i<k, have the same cardinality, then also k-shape partitions which
minimize the variance have the property OCP =0OO0CP.

Example 4.2. A soccer club has k goalkeepers, 4k defenders, 3k midfield players
and 3k forwards. Thus the set of 114 members splits into 4 classes: E| goalkeepers,
E, defenders, E; midfield players and E, forwards. Let the number c(i) be a

xx7

measure for the ability of player i. We want to organize teams 7,, r=1,2,...,k
such that the eff1c1ency of the players in a team is about the same. This leads to the

following va

Let M =(E, &) be defined as partition matroid with

fn\n nrohle
uJiL },uuundu

Thus every basis corresponds to a soccer team. Further, let M; :=Mforr=1,2,..., k.

Y7 Pl AW ey AN £\

We want to find teams 7}, 15, ..., T; such that F(f(T}), ..., f(7})) is minimum whe e
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By Corollary 3.5 of Proposition 3.2 and Proposition 4.1 the optimal solution of par-
titioning the members into teams 7}, 15, ..., T; will be an ordered partitioning. We
shall see later that such an ordered solution can be found by an algorithm with com-
plexity O(k?).

Before we discuss an algorithm for solving problems with the property OCP =
ht i

OOCP we prove two theorems which provide some insi

(=208 0 UL PIOVIGC SO

tructy

ordered partitions.

Proposition 4.3. If P=(S,S,,...,S;) is an ordered constrained k-shape partition
and S| is that subset which contains the smallest element of E, then S| has the
following properties:

(i) No element of S, can be exchanged against a smaller element in another set
S;, i=1.

(ii) S, is elementwise smaller than any other basis in M|, if we arrange the
elements in any basis in increasing order.

Proof. The subsets S;, i=1,2, ...,k are lexicographically ordered if the elements in
each S, are arranged increasingly. Since e; € S, we get S; < S, for all i= 2. Therefore
el cain DC CXLIldIlgeU WlLIl any cremcm lIl cevery set O,, I)L DIIILC \01, i) IS Oiﬁdefed,
this implies that no element of S; can be exchanged against a smaller element of the
cet S.. Thic nroves (1)

SOl Si. 2 1iis PIOVIS .

Now let us assume there exists a basis B of matroid M, such that B; < S;. The
components e; of By and e; of S, fulfill

e =e forr=12,....,p-1, e,<ej,.

Since e; €S, we get p=2. Moreover, since S) is a basis and e; ¢S, there is a
unique circuit in S;U { e!-p}. By (i) no element of S, can be exchanged against a
smaller element. Therefore e, is the largest element in this circuit. This implies

={e;.¢,,---»€;, €, } is dependent in M,. But TC B, which is a contradiction.
Therefore S, is the smallest basis of matroid M, by Lemma 3.6. []

In a similar way we get by induction:

Proposition 4.4. Let P=(S,,S,, ..., Sy) be an ordered constrained k-shape partition
of E with §,<8,<:--<S;. Then this partition has the following properties:

() Any S;, i=1,2,...,k contains the smallest element of E' :=E\ U;i S
(i) Any element of S;, i=1,2,...,k—1 cannot be exchanged against a smaller
element in any S; with j>1i.
(iil) S; is the lexicographically smallest basis of matroid M; which does not inter-
sect any set S; with j<I.
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From the definition of ordered partitions and Propositions 4.3 and 4.4 we get im-
mediately

Corollary 4.5. A constrained k-shape partition P=(S,,S,,...,8;) with §,<
S, < -+ <8, is ordered, if and oniy if

(i) S, is the smallest basis of matroid M|,
(ii) S;, 2<i=<k is the lexicographically smallest basis which contains only ele-
ments of E\ U, _;S;.

Next we derive a solution method for k-shape partitioning problems with the pro-

erty OCP = OOCP which is based on Propositions 4.3 and 4.4.

Let us fix the sequence of matroids M, M,,...,M,. We can find an optimal
ordered partition (S;, S, ..., S;) subject to §; basis of M;, S, basis of M,,...,S;

basis of M, by repeatedly applying the Greedy algorithm:

Step 1. Determine by the Greedy algorithm a smallest basis S; of M;. Let i=2,
S:=8S\§,.

Step 2. Let M be the matroid M, restricted to S. Determine by the Greedy algo-
rithm a smallest basis S; of M.
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Step 3. If i<k, let §:=8§ \ 5;, i =i+ 1 ana repeat Step 2.

Now let us analyze the complexity of this algorithm. We denote the rank of
matroid M; by r;. For determining S, we need at most # calls of an independence
oracle. Then S is reduced by r; elements. Thus we need not more than n —r, calls to
determine S,. Now S is reduced again. Therefore this algorithm yields after at most

k-2
k=Dn—- 3}, (k—i-lr, 17

i=1

calls of the independence oracle an optimal solution. If all r; are equal, say », we
need at most

(k—-2)
K:=(k—1)<n—r . ) (18)
steps to find an optimal solution. Since n=r- k, this yields a complexity O(k?).

lll gt:ucuu Lllﬁ UluCl Ul llldllUlub w1u 11OL UC u)(cu lllClClUIC wo llCCU LU Loilparc
all k! possible arrangements for finding a global optimum. But if all matroids M;
are equal, any of these arrangements yields the same (unique) solution. Therefore
we can find the optimal ordered solution in this case in at most K steps. Moreover,
any constrained 2-partitioning problem with OCP = OOCP can be solved by just in-
vestigating M, first and then M, and vice versa. Therefore it can be solved in at

most 2n steps by applying the above algorithm just twice.
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5. Conclusion

We consider in this paper partitioning problems subject to the constraint that the
partition sets are bases of matroids. For several classes of functions it was possible
to show that there exists an ordered optimal solution. Such an ordered optimal solu-
tion can be determined by repeatedly applying the Greedy algorithm. In particular,
we get an algorithm of complexity O(k?) if all k given matroids are the same.

There is a number of questions for further research. One such question concerns
the combinatorial structure of complementary classes of matroids and further
examples for such classes. A second question concerns further classes of functions
F and f which yield the property OCP =QOCP. A further question concerns the
modifications necessary to find partitions, whose sets are in the intersection of two
matroids. An important example for such a problem is the matrix decomposition
problem (cf. Burkard [2]) which is, however, known to be NP-hard (Rendl [8]).
Finally we can ask for efficient algorithms or good approximation algorithms, if the
involved matroids are not all equal. In particular, if certain problems yield a special
sequence for the matroids involved, they could be solved in polynomial time.
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