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We consider partitioning problems subject to the constraint that the subsets in the partition are 

independent sets or bases of given matroids. We derive conditions for the functions Fand f such 

that an optimal partition (ST, S,*, . , St) which minimizes F(f(S,), . . . , f(Sk)) has certain order 

properties. These order properties allow to determine optimal partitions by Greedy-like algo- 

rithms. In particular balancing partitioning problems can be solved in this way. 

Keywords. Partitioning problems, matroids, Greedy algorithm, balancing objective function, 

minimum variance. 

1. Introduction 

Partitioning of number sets have been studied by several authors, see e.g. Barnes 
and Hoffman [l], Chakravarty, Orlin and Rothblum [3,4], Hwang [5], Hwang, Sun 
and Yao [6], and Tanaev [9]. This problem can be described as follows. Let E = 

{el,e2, . . . . e,} be a finite set of numbers ei I e,s .‘. 5 e,, and let P= (S1, Sz, . . . , Sk) 

be a partition of E. That means the sets Si, i = 1,2, . . . , k are nonempty, pairwise 
disjoint and their union equals E. Now, let f be a real-valued function defined on 
the subsets of E. We ask for a partition P* which minimizes the objective function 

P(P) := If= 1 f (Si): 

F(P*) = min{F(P) 1 P partition of E}. (1) 

If no further condition is given, this problem is just called the partitioning 
problem. If the number k of sets in the partition is fixed, we call the problem the 
k-partitioning problem. Furthermore, not only k can be fixed, but also the sizes 

(shapes) ISrl, ISzl, . . . . IS, I. In this case we call the problem the k-shape partitioning 
problem. 

In this paper we study partitioning problems with additional constraints. We re- 
quire that the sets S,, S2, . . . , Sk of P are independent sets with respect to given 
matroids Mi, i= 1,2, . . . , k. Moreover, we study a general form of the functions 
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f: 2E-+ R and F: Rk -+ R which yields that an optimal solution of the partitioning 

problem exists showing special order properties. These order properties will then be 

used to solve such problems efficiently. 

In Section 2 we introduce the notion of constrained partitioning problems and 

ordered solutions. In Section 3 we discuss a general form for the functions f and 

F in the case of constrained 2-partitioning problems. In particular balancing con- 

strained partitioning problems and problems minimizing the variance will admit 

ordered solutions. Finally we extend these results in Section 4 to constrained k- 

partitioning problems, discuss the underlying combinatorial structure of these pro- 

blems and derive a solution method. The solution method consists in an iterated 

application of a Greedy-like algorithm. If all matroids involved have the same struc- 

ture, an optimal constrained k-partition can be found in 0(k2) steps. 

2. Constrained k-partitions 

A 2-partitioning problem asks for a partition of the set E = {e,, e,, . . . , e,} into 

two nonempty sets Si and S2. In the following we will impose further constraints 

on the sets S;, i = 1,2 for example that they are independent sets with respect to 

given matroids M,= (E,Sj), i= 1,2, where @; denotes the class of independent sets 

of matroid Mj. If we define Mi = M2 by 9 := 2E we get the classical partitioning of 

E into two sets. This leads to the following definition: 

Definition 2.1 (constrained k-partition). Let k matroids Mi(E, @) be defined on E 
given by their classes si of independent sets. A partition P= (S,, S2, . . . , Sk) of E is 

called a constrained k-partition, if Si E $i for i = 1,2, . . . , k. 

Example 2.2. Let the following two graphic matroids M, and M2 be given on the 

common ground set E = { el, e2, e3, e4, es}. 

A constrained 2-partition is e.g. Si = {e,, e3}, S2 = {e2, e4, e5}. On the other hand 

S, = (el,ez}, S,= {e3,e4,e5} is not a constrained 2-partition, since S, is not an in- 

dependent set with respect to M,. 

Now we turn to shape partitions. Let P= (S,, S,) be a 2-shape partition of E with 

jSr / = u and IS21 = u, u + u = jE 1. If we define matroids Mi, i = 1,2 by their classes of 

bases as follows: 
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zB,={ScE: ISI=u}, BQ2={ScE: lSl=o}, 

we can see that shape partitions are again very special constrained partitions of E. 
Moreover, the two matroids defined above are dual to each other. This motivates 

the following definition. 

Definition 2.3 (complementary class of matroids). Let Mi = (E, CBi), i = 1,2, . . . , k be 

matroids with ranks nj on the set E, defined by their classes 93i of bases. These 

matroids are called a complementary class on E if and only if the following two pro- 

perties hold: 

(a) ;f, ni= IEI. (2) 

(b) If SjE~j,j=l,..., n; j+i are pairwise disjoint sets, then 

E\ u SjES?i. 
j#i 

(3) 

Example 2.4. Let Mi be a matroid consisting of all (m x n) O-l matrices with at 

most Izi l-entries in each column. If CfE, ni=m, these k matroids form a comple- _ 
mentary class. 

Now we define: 

Definition 2.5 (constrained k-shape partition). Let Mi=(E, L%‘i), i= 1,2, . . . . k be a 

complementary class of matroids defined on E. A partition P= (S,, S,, . . . , Sk) of E 
is called a constrained k-shape partition, if Si E Z??i for i = 1,2, . . . , k. 

Example 2.6. Shape partitioning problems play a role in matrix decomposition pro- 

blems. Given a nonnegative integer matrix T= (to), find O-l matrices Si with at 

most one l-entry (or in general ni l-entries) in each column, such that TI 1 nisi, 
with C pi -+ min. For example, let 

2 4 2 

T= 3 1 4 

I j 1 1 2 

be given. Then 

T52.[: 1 ;j +4[[ ; [j+2.E ; ;j 

and this is best possible, since the last column sum is 8. Obviously the matrices 
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represent a shape partition in the complementary class of matroids introduced in the 
previous example. 

Now we endow the class of all subsets of E= {el, e2,. . . , e,} with a total order. 
We say S, c E is lexicographically not greater than S2 c E, if either S, c S2 or 
min{k: e,ES1\S2}<min{k: ekES2\S1}. 

Example 2.7. (el,e2} I {el,e2,e3> I {el,ed). 

This order enables us to introduce the notions of ordered sets and ordered par- 
titions. 

Definition 2.8 (ordered pair of sets). Let Mr = (E,S,) and M2= (E,g2) be two 
matroids. Two sets S, E .?Fr and S2 E & are called not ordered, if 

and 
je,,ES,, e,ES, with p<r, 

ge,ESr, e,ES2 with s>t, 
such that 

and 
S; :=Sr\{e,}U{e,}, S;l :=S,\{e,}U{e,} l g,, 

Si:=S2\{e,}U{eP}, S;:=S2\{e,}U{e,}E&. 

Otherwise they are called ordered. 

(4) 

Definition 2.9 (ordered partitions). A constrained k-(shape) partition P= 

(S1,S2, . . . . Sk) is called an ordered partition if and only if any two subsets Si and Sj 
are ordered. 

Example 2.10. Let E = {el, e2, e3, e4} be the ground set of a matroid M whose in- 
dependent sets are arc sets in the graph G with the property that any two arcs have 
no starting point in common. 

el . 
G x e2 e3 

e4 
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We define M := A4i := M,. Then S, = { ei, e4}, S, = { e2, e3} is not an ordered shape 

partition, since we can exchange e4 against e2 and el against e3. By the first exchange 

we get S; := {er, e2}, Si = {e3,e4} and this partition is ordered. 

Now let f: 2E+ IR be a real-valued function defined on the subsets of E and let 

F: Rk -+ IR be a further real function. The value of a partition P= (S,, S2, . . . , Sk) is 

defined as 

F(P) :=F(f(S,),f(W, . . ..f(&>>. (5) 

A partition P* which is feasible (i.e., fulfills shape and matroid constraints) and 

minimizes F(P) is called optimal. 

Example 2.11. Let us consider the matrix decomposition example again. For any 

matrix Si we define 

f (Si) := maximum nonzero entry, 

F(P) = c f(K). 

Thus the matrix decomposition problem asks for a partition of the underlying set 

{(i, j): 1~ is m, 1 sjl n} which minimizes the value F(P). Problems of this kind 

play a role in the decomposition of traffic matrices arising in communication 

systems (see e.g. Burkard [2]). 

Definition 2.12 (OCP=OOCP). If there exists an optimal constrained partition 

which is ordered, we say the problem has the property OCP= OOCP. 

Originally, this notion was introduced in Hwang, Sun and Yao [6]. In many cases 

partitioning problems with this property can be well solved by efficient methods as 

will be shown in Section 4. In the next section we will discuss special problems and 

examples which yield property OCP = OOCP. Clearly, if OCP = OOCP holds for 

any shape of a constrained k-shape partitioning, then it holds also for the constrained 

k-partitioning, but not vice versa. 

3. Constrained 2-partitioning problems 

We are now interested in the question of which types of the functions f and F 

lead to partitioning problems with the property OOCP = OCP in the case of con- 

strained 2-partitioning problems. Generalizing a result of Hwang, Sun and Yao [6] 

we get as an immediate consequence of Definition 2.5: 

Proposition 3.1. Let P= (S,, S2) be a nonordered constrained partition. If for one 
of the two possible exchanges S; =S,\{x} U { y}, S;=S,\{ y} U {x} or S;l= 
S1 \ (u} U { w}, $’ = S,\ { w} U {u} the partition value does not increase 

F(f (S;), f 6%)) 5 F(f 6% 1, f W) 
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or 

F(f(S;), f(G)) 5 F(f(S, ), “Iv,)>, 

then the partitioning problem has the property OCP= OOCP. 

(6) 

In the following we describe classes of functions f and F which fulfill the assump- 

tions of Proposition 3.1. With any element eE E we associate a real number (cost) 

c(e). Moreover, we index the elements of E such that c(e,)<c(e,)l ... ~c(e,). 

Now, let g(x, y) be a symmetric real-valued function; g is called an intervalfunction, 
if it is increasing with max(x, y) and decreasing with min(x, y). An interval function 

is called super-additive, if for x and y, both lying in the interval [z, w] the inequality 

holds. 
g(z,w)+g(x,Y)~g(z,x)+g(Y,w) (7) 

Proposition 3.2. Let g be a super-additive interval function. We assume that for any 
S c E the value u = u(S) is defined by 

,;s g(c(z), u) = mjn C g@(z),0 (8) 
ZES 

Let f (S) = C,, s g(c(z), u) and F(X, Y) =X+ Y. Then the constrained 2-shape parti- 
tioning problem 

F(P*) = min F(f (S, ), f (S2)) 
P 

has the property OCP= OOCP for any shape constraints on the sets S, and SZ. 

Proof. Let P= (S,, S,) be a nonordered constrained 2-shape partition and let 

u=u(S,), u= u(S,) be defined by 

C &(z),u)=m~n C g(dz),@, 
ZESI ZESI 

C g(c(z),u)=min C &(z),Q. 
ZESZ 0 ZES2 

Let us assume u I u. Since S1, Sz are nonordered there exists an x E St and an element 

WE& with c(x)>c(w) such that S; :=S,\{x}U(w) E@,, $:=S2\{w)U{x}~g2. 

For the real numbers c(w), c(x), u, u with c(w) 5 c(x) and u 5 u we have to consider 

six possible cases, namely 

(I) c(w) I c(x) 5 u < u, C(W)ISUIC(X)IU and u<u, 

u < u 5 c(w) 5 c(x), U<C(W)IUIC(X) and u<u, 

(II) c(w) I u < 0 5 c(x), U<C(W)IC(X)(U and u<u. 

The superadditivity and monotonicity properties of the interval function g yield in 

any of these cases 
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Thus, 
g(c(x), a) + g(c(M, 0) 2 g(c(w), u) + g(c(x), u). 

F(P) =f(S,) +_m2) 

27 

(9) 

= c g(c(z), u) + g(c(x), a> f c g(dz)9 0) + g(c(w), u) 
zESl\{xl ZE.c\{Wl 

~zts~(x) g(c(z),u)+g(c(w),u)+z~s~(W) g(c(z), u>+g(c(x), u) 

zzFs; g(c(z),~‘)+z~slg(c(z),v’) 

=f(L!$) +f(s;) = F(P). (10) 

Therefore the new solution is feasible and has no worse objective function value. 

We show that U’I u and u I u’. This enables to continue this argument, until an op- 

timal ordered solution is found. Suppose u’>u. 

From the definition of u follows 

f(&) = c g(c(z), u) + g(0), u) 5 c g(c(z), u’) + g(0), u’). 
ZE&\{Xl z~sl\lxl 

Similar for u’: 

f(6) = c g(c(z), u’)< c g(c(z), u). 
ZcSi zssi 

Merging these two inequalities yields 

&c(x), u) +g(c(N, u’) <&c(x), u’) + g(c(N, u). (11) 

Again there are six possibilities for the real numbers c(w) I c(x), u < u’. In case (I) 

the inequality (11) contradicts the superadditivity of g, in case (II) this inequality 

is a contradiction to the monotonicity properties of g. Therefore U’IU. A similar 

argument shows u I u’. This finishes the proof. 0 

Examples for functions g(x, U) and u as specified in Proposition 3.2 are 

g(x,Y)=(x-_Y)2k, keN, 24 = & ,Fs c(z)9 

max(x, _Y> ( > 
10 

g(x,_Y)= 
min(x, y) ’ 

a= zrIscc(z) . 

(12) 

(13) 

(14) 

Proposition 3.2 yields in particular that the following two kinds of partitioning 

problems have the property OCP=OOCP. 

An optimization problem is called balancing, if the difference between a maximum 
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and a minimum coefficient in a solution is as small as possible (see Martello et al. 

[7]). This motivates the following definition. 

Definition 3.3 (balancingpartitioning). A constrained 2-(shape) partitioning problem 

is called balancing, if P is a constrained 2-(shape) partition with value 

where 
QP)=max{f(St),f(S,)I 

f(Si)=max IC(Z)- UI, U= _!- C C(Z) for i= 1,2. 
z E s, ISi1 ZGS, 

Corollary 3.4. Balancing constrained 2-(shape) partitioning problems have the pro- 
perty OCP = OOCP. 

Proof. Let g(x, y) = (x- Y)~ for k sufficiently large. When 

2(4x), u) + &?(c(w), u) 2Hc(w), n) +&c(x), u) 

(cf. inequalities (9) and (lo)), then also 

~c(x)-ulk+lc(w)-ulk21c(w)--U~k+lc(x)-~lk for all krk,. 

This implies for k + 03 

max{Ic(x)-ui,Ic(w)-ol}rmax{Ic(w)-ul,lc(x)-ol}. 

Therefore, relation (10) remains true, if the sum is replaced by maximum. But (10) 

is the essential argument in the proof of Proposition 3.2. Therefore the same kind 

of proof can be applied to balancing partitioning problems. 0 

The value u=(l/JSI)C,,, c(z) can be interpreted as mean value of the cost 

elements of S. Then (l/IS/) CzEs (c(z) - u ) * is the variance of the cost elements of S. 

Corollary 3.5. Variance minimizing constrained 2-shape partitioning problems with 
IS, I = IS21 have the property OCP = OOCP. 

Proof. Let g(x, y) = (x-y)* and set F(X, Y) = (l/a)X+ (l/a)Y with a = ISI1 = 

P2l. q 

Before we discuss another class of problems with property OCP =OOCP, we 

state the following lemma (cf. Zimmermann [lo]) which guarantees the existence of 

a “smallest” basis in a matroid. Let us recall that we ordered subsets S c E= 

{q,e2,..., e,} lexicographically according to their indices. 

Lemma 3.6 (Zimmermann). Let M= (E, 33) be a matroid given by its class 35’ of 
bases. Then there exists a basis B* which is elementwise not greater than any other 
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basis of M, i.e., 3 B* = (ei,, ei2, . . . , eik) with i, < i2 < .a. < ik such that for all B = 

(ej,, ej2, . . . , ejkJy .A Q2< ..-<j,, BEST, 

i, sj, , r=l,2,...,k (15) 

holds. B* can be found by applying the Greedy algorithm starting from el and in- 
vestigating the elements in increasing order. 

Proof. Let B* = { ei,, ei,, . . . , e. } be the basis constructed in the above mentioned way ,k 

by the Greedy algorithm. Obviously, B* is lexicographically minimal. Let us now 

assume B* is not the smallest basis, i.e., there exists a basis i?= {ej,,ej,,..., Jk e, 1 
withi,.lj,for lsr<k, but ikO>jkO. ThenS*:={ei,,...,eik,_,} andS:=(ej,,...,ej,,} 

are independent sets with IS*) < Is/. Therefore there exists an element e, E s such 

that S*U {e,} is independent and lexicographically smaller than B*. Since S* U (e,] 

can be enlarged to a basis we get a contradiction that B* is lexicographically 

minimal. Cl 

The same argumentation yields: 

Corollary 3.7. In any matroid M there exists a largest basis, i.e., a basis which is 
elementwise not smaller than any other basis of M. 

As a consequence of Corollary 3.7 we get: 

Corollary 3.8. Let P= (s,, S2) be a constrained 2-shape partition of E. If S, is the 
smallest basis of M, = (E, %‘,), then S2 is the largest basis in the dual matroid 

M2=E 332). 

Proof. For any basis St of M, = (E, c%‘~), S2 := E \ S, is a basis of M2 and P= (S,, S2) 
is a 2-shape partition. Let s, be the smallest basis of M,, i.e., for all St E .%I,: 

S, 5 St. This implies E \ s, = s2 L S2. 0 

Proposition 3.9. Iff (S) has the property f (A) 2 f(B) for IA I= IBl, A 2 B, A, B c E 
and F: lR2 + R is increasing in the first and decreasing in the second argument, then 
the corresponding constrained 2-shape partitioning problem has the property 
OCP = OOCP. 

Proof. Under the conditions stated the solution (S,,S2) is optimal where St is the 

smallest basis of MI and S2 is the largest basis of M2 (cf. Corollary 3.8). This solu- 

tion is an ordered optimal solution. 0 

Corollary 3.10. Thepartitioningproblem of Proposition 3.9 can be solved by apply- 
ing the Greedy algorithm to matroid M, or M2. 
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Example 3.11. Given E= {c;: i= 1,2, . . . , n}, c; E R, find that permutation ~1 which 

maximizes the function CT= 1 cpci) - C:=,+ 1 c . Obviously, this corresponds to the (4c1j 
situation described by Proposition 3.9 and therefore we get an optimal solution by 

ordering the numbers ci decreasingly. 0 

In the next section we generalize these results to constrained k-shape partitioning 

problems with k>2 and we derive an algorithm for problems with the property 

OCP = OOCP. 

4. Constrained k-shape partitions 

In this section we generalize the results of the previous section to constrained 

k-shape partitions with k > 2. Moreover we analyze the corresponding combinatorial 

structure of constrained partitioning problems and we derive a Greedy-like algorithm 

for solving problems with the property OCP = OOCP. 

At first we shall show that a k-shape partitioning problem has the property 

OCP = OOCP, if the problem restricted to any two matroids on a subset E’ of the 

ground set E has this property. We deal with the following situation. Let A4; := 

(E, 33;), i= 1,2, . . . . k (kr 2) be a complementary class of matroids. Let f: 2E -+ fR 

and let F: Rk + R be a symmetric function with the following property. We denote 

the restriction of F to two variables by F*. Then F must fulfill 

F*(ST,Sj*)SF*(S;,Sj) 

* F(S,, . . . . S;*, . . . ,Sj*, . . . ,&)<F($, . . . . Sk). (16) 

For any subset E’ C_ E and any pair (i, j) of different indices i and j, 15 i, Jo k the 

problem (gi,j 1 E’) 

min{F*(f(B;),f(Bj)): BLESS’;, BjeC&‘j, BiUBjCE’, BifTBj=0} 

is called 2-restriction of 9. 
If the set E’ does not contain a pair of bases for the matroids Mi and A4j, we say 

(Yi,j 1 E’) has no feasible solution and define the value of (Y;,j ) E’) to be +m. 

Notice that A4i restricted to any set E’ still is a matroid. By Definition 2.8 we can 

define ordered solutions of (9i.j 1 E’). Now we prove: 

Proposition 4.1. Let 9 be a constrained k-shape partitioning problem with a sym- 
metric value function F which fulfills (16). If any 2-restriction of 9 which has a 
feasible solution also has an ordered optimal solution, then 9 has the property 
OCP = OOCP. 

Proof. Let (S,, . . . , Sk) be an optimal constrained k-shape partition of 9. At first 

we consider the 2-restriction of 9 defined by matroids M, and M2 and E’ := S, U S2. 

Since (S,,S,) is a feasible solution of this problem there exists according to our 
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assumption an ordered solution (S, (I),?$)) with F*(S,(‘),S~‘))IF*(S~, S,) and S,“‘< Si”. 

Therefore (15) yields 

F(S”’ 9’) s, 
1’ 2’ )...) &)5F(S,,S2 )..., Sk>. 

Next we consider the 2-restriction defined by Mi , M3 and E’ := S,“‘U S3. The same 

argumentation as above yields an optimal solution S,(‘), Si” with F*(S,‘2’,Si1))5 

R’*(S”) S,) and therefore F(S1(2),S~1!S3(1), . . ..&)sF(S., . . . ,&). We apply this argu- 
1 ’ 

ment until we get Sik- l), Sil), . . . , Sf’ with Sikml) < Sjl’ for all j and 

F(S,‘k_ ‘), sin, . . . ) q-“> G&s,, s,, . . . , Sk). 

Next, this step is repeated with Si”, . . . , k . SC’) Finally, we arrive at an ordered solu- 

tion S+ ‘), SF’, . . . , 
1 

SF) of the k-shape partitioning problem with 

F(S,‘k-‘),S;), . . . . S$F(S,, . ..) S,). 

Since (S,, . . . , Sk) is optimal, also this ordered solution (S/“- ‘), Sir’, . . . , S,f’> is op- 

timal. Thus OCP=OOCP. 0 

As a consequence of this theorem we get that the conditions stated in Proposition 

3.2 and its Corollaries 3.4 and 3.5 also guarantee the property OCP=OOCP for 

constrained k-shape partitioning problems, since F(X,, . . . , X,) =X1 + 1.. +X, as 

well as F(Xi, . . . ,X,) = max(X,, . . . , X,) are symmetric and fulfill (16). In particular 

balancing k-shape partitioning problems have this property. If the bases of all 

matroids M;, 15 is k, have the same cardinality, then also k-shape partitions which 

minimize the variance have the property OCP=OOCP. 

Example 4.2. A soccer club has k goalkeepers, 4k defenders, 3k midfield players 

and 3k forwards. Thus the set of 11 k members splits into 4 classes: El goalkeepers, 

E2 defenders, E3 midfield players and E4 forwards. Let the number c(i) be a 

measure for the ability of player i. We want to organize teams T,, r= 1,2, . . . , k 

such that the efficiency of the players in a team is about the same. This leads to the 

following variance minimization problem: 

Let M= (E, LB) be defined as partition matroid with 

B={(ScE: IsflEj/=djforj=1,2,3,4}, 

d,=l, d2=4, d3=d4=3. 

Thus every basis corresponds to a soccer team. Further, let Mj := M for r = 1,2, . . . , k. 

We want to find teams T,, q, . . . , Tk such that F(f(T,), . . . ,f(Tk)) is minimum where 
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By Corollary 3.5 of Proposition 3.2 and Proposition 4.1 the optimal solution of par- 

titioning the members into teams T,, T2, . . . , T, will be an ordered partitioning. We 

shall see later that such an ordered solution can be found by an algorithm with com- 

plexity O(k*). 

Before we discuss an algorithm for solving problems with the property OCP = 

OOCP we prove two theorems which provide some insight in the structure of 

ordered partitions. 

Proposition 4.3. If P = (S,, S2, . . . , Sk) is an ordered constrained k-shape partition 
and S, is that subset which contains the smallest element of E, then S, has the 
following properties: 

(i) No element of S, can be exchanged against a smaller element in another set 
S;, i21. 

(ii) Si is elementwise smaller than any other basis in M,, if we arrange the 
elements in any basis in increasing order. 

Proof. The subsets S;, i= 1,2, . . . , k are lexicographically ordered if the elements in 

each Sj are arranged increasingly. Since e, E S, , we get Si < S; for all ir 2. Therefore 

e, can be exchanged with any element in every set S;, i> 2. Since (S,, Sj) is ordered, 

this implies that no element of S, can be exchanged against a smaller element of the 

set S;. This proves (i). 

Now let us assume there exists a basis B, of matroid M, such that Bi < Si. The 

components eir of B, and eJr of Si fulfill 

eir = f?jr for r= 1,2, . . . , p - 1, e,p 5 t?j, . 

Since ei ES,, we get ~12. Moreover, since Si is a basis and eip@ S,, there is a 

unique circuit in S, U { ejp > . By (i) no element of S, can be exchanged against a 

smaller element. Therefore eip is the largest element in this circuit. This implies 

T:=(ej,,ej,,...,ejp_,, eiD} is dependent in M, . But TcB, which is a contradiction. 

Therefore Si is the smallest basis of matroid M, by Lemma 3.6. 0 

In a similar way we get by induction: 

Proposition 4.4. Let P = (S,, S2, . . . , S,) be an ordered constrained k-shape partition 
ofE with S,<S2< ... < Sk. Then this partition has the following properties: 

(i) Any Si, i= 1,2, . . . , k contains the smallest element of E’ := E \ u;l: Sj. 
(ii) Any element of S;, i= 1,2, . . . , k- 1 cannot be exchanged against a smaller 

element in any Sj with j > i. 
(iii) Si is the lexicographically smallest basis of matroid Mi which does not inter- 

sect any set Si with j < i. 
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From the definition of ordered partitions and Propositions 4.3 and 4.4 we get im- 

mediately 

Corollary 4.5. A constrained k-shape partition P= (S,, S2, . . . , Sk) with S, < 
S2 < a.+ < Sk is ordered, if and only if 

(i) S, is the smallest basis of matroid MI, 
(ii) S;, 2 I is k is the lexicographically smallest basis which contains only ele- 

ments of E \ IJj<i Sj. 

Next we derive a solution method for k-shape partitioning problems with the pro- 

perty OCP=OOCP which is based on Propositions 4.3 and 4.4. 

Let us fix the sequence of matroids M,, MZ, . . . , Mk. We can find an optimal 

ordered partition (S,, S,, . . . , Sk) subject to St basis of M, , S, basis of iHZ, . . . , Sk 

basis of Mk by repeatedly applying the Greedy algorithm: 

Step 1. Determine by the Greedy algorithm a smallest basis S, of A4i. Let i = 2, 

s:=s\s,. 

Step 2. Let A4 be the matroid A$ restricted to S. Determine by the Greedy algo- 

rithm a smallest basis Si of M. 

Step 3. If i<k, let S:=S\Si, i:=i+l and repeat Step 2. 

Now let us analyze the complexity of this algorithm. We denote the rank of 

matroid Mi by ri. For determining S, we need at most n calls of an independence 

oracle. Then S is reduced by rl elements. Thus we need not more than n - rl calls to 

determine S,. Now S is reduced again. Therefore this algorithm yields after at most 

k-2 

(k- l)n- c (k-i- l)ri 
i=l 

(17) 

calls of the independence oracle an optimal solution. If all r, are equal, say r, we 
need at most 

K:=(k-l)(n--ry) (18) 

steps to find an optimal solution. Since n = r. k, this yields a complexity O(k2). 
In general the order of matroids will not be fixed. Therefore we need to compare 

all k! possible arrangements for finding a global optimum. But if all matroids A4; 

are equal, any of these arrangements yields the same (unique) solution. Therefore 

we can find the optimal ordered solution in this case in at most K steps. Moreover, 

any constrained 2-partitioning problem with OCP = OOCP can be solved by just in- 

vestigating Mi first and then M2 and vice versa. Therefore it can be solved in at 

most 2n steps by applying the above algorithm just twice. 
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5. Conclusion 

We consider in this paper partitioning problems subject to the constraint that the 

partition sets are bases of matroids. For several classes of functions it was possible 

to show that there exists an ordered optimal solution. Such an ordered optimal solu- 

tion can be determined by repeatedly applying the Greedy algorithm. In particular, 

we get an algorithm of complexity 0(/c2) if all k given matroids are the same. 

There is a number of questions for further research. One such question concerns 

the combinatorial structure of complementary classes of matroids and further 

examples for such classes. A second question concerns further classes of functions 

F and f which yield the property OCP = OOCP. A further question concerns the 

modifications necessary to find partitions, whose sets are in the intersection of two 

matroids. An important example for such a problem is the matrix decomposition 

problem (cf. Burkard [2]) which is, however, known to be NP-hard (Rend1 [S]). 

Finally we can ask for efficient algorithms or good approximation algorithms, if the 

involved matroids are not all equal. In particular, if certain problems yield a special 

sequence for the matroids involved, they could be solved in polynomial time. 
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