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Trivial lagrangians in field theory* 

AIwwt: The paper presents a complete description of trivial lagrangians in tield theory. It iq shown that 

any higher order trivial lagrangian can be expressed as the horirontal component of the exterior deriative 

of a projectable form 

Kc,~~~nrtl.c: Lagrange structures. variational sequence. trivial lagrangians. horirontalization. projectable 

Inmj. 

1. Introduction 

A lagrangian of order r is called triviul, or null, if its Euler-Lagrange form vanishes identi- 

cally. The problem of finding all trivial lagrangians belongs to the most difficult problems of the 

geometrical variational theory. It can be easily seen that the well-known classical result stating 

that each trivial lagrangian is of the diveqencr type should be reformulated more precisely 

because the problem is connected, via the Stokes integral theorem, rather with the exterior 

derivative than the divergence operator. 
Partial results, concerning thejfirst order trivial lagrangians, have been obtained by several 

authors (see, e.g.. Hojman 171, Krupka [8. 121. Rund 1191, and the references in Olver IlX]). 

A complete characterization of trivial Iagrangians of the 1 st order has been given. within the 

geometric variational theory on tibered manifolds. by Krupka [ 1 I] (see also [9]). According to 

thik theory, a lagrangian h defined on the first jet prolongation J ’ Y of a tibered manifold Y over 

an II-dimensional base X is trivial if and only if it has the form of the horizontal component 01‘ 
a closed n-form defined on Y, i.e., h = hq. dq = 0 This result shows. in particular. that there 

arc much more first order trivial lagrangians than the divergencies. 

Several partial results for higher order lagrangians have been obtained by Aldersley 11 1, Ball, 

Currie, and Olver 141, Olver 1181 (polynomial lagrangians), Krupka I I 1 ] (relations with Lepage 

forms). Implicit characterization of trivial lagrangians has been provided by the variational 
bicomplex theory (Anderson [2], Anderson and Duchamp [3]. Chrastina 151, Dedecker and 
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Tulczyjew [6], Saunders [20], Tulczyjew [23], Vinogradov [24], and others), and by the theory 

of finite order variational sequences (Krupka [ 15, 161). 

The aim of this paper is to prove a complete analog of the above mentioned result [ 1 I] 

for lagrangians of all orders. This improves a description of trivial lagrangians as given by 

Anderson and Duchamp [3], and corrects the proof of the same result given by Krupka in [ 151. 

2. Decompositions of forms 

In this section we summarize some results on the decomposition of forms on jet spaces into 
their contact components. For more details we refer the reader to [ 171. 

As the underlying space we use an (n + m)-dimensional fibered manifold Y over an y1- 

dimensional base X, with projection n : Y + X. The r-jet prolongation of Y is denoted by 

J’Y, n’ : J’Y + X and E’.,’ : J’Y + J”Y. Y 3 .r 3 0, being the corresponding canonical 

projections. A fibered chart on Y, the associated chart on the base and the associated fibered 

chart on J’Y are denoted by (V, +), I,!I = (x’ , y”). (U, v), 9 = (xi), and (Vr, 1cI’), $’ = 

(xi,~“,L’~,“‘,Y;:,.,j, ), respectively. If W c Y is an open set, we denote Q2;;W the ring of 

smooth functions on W’ = (IT~.~)-’ (W), and Qi W the Q2;;W-module of smooth q-forms on 

W’. The forms (dx’, coy, , _ _ . , coy, ___, b_, . dy4 ,__ jp 1. where 

@J: . ..j. = dYT,,,jk - Yy, ,,,, jLidx', (1) 

define a basis of l-forms on V’. 

Let Q E fii V be a form. There is a unique decomposition 

(n r+‘.r)*~ = he + pe = he + pie + . . + pqe (2) 

of the form Q into its horizontal, or O-contact, component he = pot and the k-contact compo- 

nents pk~, 1 < k < q. Denote by (‘;) the multiindices (7, ,..,j$ ) for 0 < s < r, s = 111 being the 
length of the multiindex Z. We also use the following notations 

pdf = p’df + af w;, 
a)); 

111 = r, 

where f E RGV; d; is the total derivative with respect to the variable xi. 

Lemma 1. Let W c Y be an open set, q > 1 an integer, and Q E 52: W a q-form. Let (V, $) 

be ajbered chart on Y for which V c W. Suppose that the chart expression of e is 

e = 2 A;,22 . . . Is (T( i,+,i,+z, _;,~ dye’ A dyj” A . . . A d.y~ A dx“+’ A dX-‘\+~ A . . . A dxi~ (3) 
.r=O 

with coeficients antisymmetric in all multiindices ((L:), . . . , (L:)), 0 6 1 I/, I< r, 1 6 p < s, anti- 

symmetric in all indices (i,+l , . . , iq) and symmetric in all indices within each multiindex I,. 



alt(ir.+,il; t-2 . . i,,). O<k<q. 

‘-2 proof of Lemma I is given in [ 171. 

-\ form Q E 52; V is called ir”-horizontal if (n ,‘+I.‘)*, = he. It is called contact if I?@ = 0. 

Every q-form with q > II is contact. A q-form Q. 11 < q < N. is called strongl~~ cozztuc~t 

if p,,- ,,e = 0. ,4 q-form is called decorTzposable if it is the sum of a horizontal form and a 

contact form (for I <cl < /I), or the sum of a (q - rz)-contact and a strongly contact form (fog 
II 1 q 5; N). 

dx’” 2 A A fi.Y’,’ , (4) 

m!. / ,m, 
.“I( / , ii . ! /,I . 

(5) 

Lemma 2. Let W c Y be u~z open set, q an ilzteger, 1 < y < II. und Q E 52: W (I ,fi,rnz. Let 

(V. $) be unyjbered chart on Y for which V c W. Then t1zeJnr.m Q is contact (f’rrrzcl orzl\, (f’it 

CLIII be expressed as 

@ = @A wy, q = 1, O</.//<r - 1. 

Q = co; A II/; +dQ, 
(h 1 

2<q <I?. O< l./i<r - I. 

cP,/ E Q;,V being .sonze ,functions, +,” E Cl:_, V some (q - 1 )Tfiwms. and \I, E Q:i , V i.5 

a (‘twztuct (q - 1 ):fi)rm which can be expressed US WY A XL ,fi,r .wnyIp (q - 2)7fi)rnzs x: E 

Q2:, ZV. 111 = r - 1. 

We say that the forms e. = ~7 A Q,“, + = 07 A xi m (6) are gerzemted by the forms 

0’; 0 r; / ./ 1 < r -- I 

3. Projectability of forms 

In this section we show that a q-form q defined on J’Y. 1 < q < II - I, whose exterior 

derivative is decomposable, can be locally expressed as the sum of a closed form. a contact 

form and a T”.“--‘-projectable form. 

In what follows, alt (resp. sym) denotes antisymmetrization (resp. symmetrization). 

Lemma 3. Let W c Y be an opelz set, q an integer. 1 <q <II. Let (V. $I) be an~,fibered c.1ztrr.t 

011 Y ,fi)r lvhich V c W. A n’-horizontal.fhrm Q E !G?i W btlith the chart expressiozz 

@=A ,,,1 . . . . (, dx” A dx” A . . . A d.& 

is r’,‘- ’ -projectable if and only if _ . 

W,,~...,,, 

2.Y: 
s;, = 0. alt(ioi,iz . iy), sym(l.j). j I 1 = t+. 17) 
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Proof. If a Y-horizontal form Q is n”**-’ -projectable, then its coefficients A;,;?.,,;+ are defined 

on V”-‘. Thus, conditions (7) are satisfied trivially. Consequently, only the converse needs 

proof. Since Q is +-horizontal we can write 

(n r+‘.r)*d@ = hd@ + P,dQ, 

hdQ = hdAi,iz,.,;,, A dx” A dx” A . . . A dxiY 

= d,~,Ai,i2.,,;y + $$y y;j2,.,j,iCi dxio A dx” A dxiz A . . . A dxiv, 
.I I J' ..h 

‘- aAi,iz.../<, 

mde = c 

k=O aY,y,,jz... jr 

wrl jz...jh Adxii//dx”A...Adxiy. 

Suppose that conditions (7) are satisfied. This immediately implies that 

aAl,;2...i0 ,4 

ay,: j2,.. j, J.jl .j2....jr& dx’” A dx” A dx” A . . A d& = 0 

and thus hdg is nr+‘,r -projectable. This leads to the n’+‘.’ -projectability of plde as well. 

aA;,i+...i, 

"J.1'1 ji... j, 

= 0, 

proving rrr.r-’ -projectability. 

Theorem 1. Let W c Y be an open set, q an integer, 1 <q < II - 1, and q E C2: V a form. The 

,following two conditions are equivalent: 

(i) hdq is r”.‘-’ -projectable. 

(ii) For eveqjbered chart (V, $), $ = (x’, y”), on Y such that V c W there exist aform 

x E Qi-’ V, a contact j&m v t C$ V and a,form t E !2&, V such that 

q = (IF-‘)*x + u + dr. (8) 

Proof. Since the condition (ii) obviously implies (i), only the converse needs proof. We proceed 
in several steps. 

1. Let n E Qi V, and let hdq be x’+‘.” -projectable. Then theform pdq = pldq+. . .+p,,d~ 

is xr+‘s’-projectable and contact, and thus, by Lemma 2, it is of the form pdq = Qo+duo where 

both ~0 and vo are contact and generated by the l-forms ~7 with 0 6 1 J ( < Y - 1. Consequently, 

dy = hd r] + @(I+ duo, so that hdq + ~0 = dq0 for some form ~0 E Q&, . Integrating we obtain 

r~ = ~0 + ua + dto where ra is a (q - 1)-form. The form ~0 has the following basic properties: 
(a) hdqo = hdy, i.e., hdqo is n’+‘,‘-projectable, 

(b) pJdqo = pseo for 1 6 s <q + 1, which implies that the forms p,dr]o. . , py+ldqO are 
generated by the forms WY, 0 < 1 J / < r - 1. 

In what follows, we construct a suitable sequence of triples (l]k, Vk, rk), 1 < k < q, such 

that vk and p,drlk, . . . . pq_k+ld?lk are generated by the forms oy,O < 1 J 1 < r - 1, and 

pq__k+i?,k = . = ,DyP’jk = 0, and, IllOl-eOVer, ?‘,!,-I = ?‘,k + vk + ds (indeed, p++zd?lk = 
. . . = py+,dqk = 0). By construction, we get for k = q a rr’-horizontal form Q, which 



satisfies the relation hdq, = hdqq_, = . . . = hdql = hdqo = hdq. Finally, we use the 

rr’+‘,‘-projectability of hclqq, and we prove that the form ?I‘, can be expressed as (rV.‘.-’ )i:x 
2. Taking into account that (~~+‘,~)*dn~ = d(n”+-I.” * > no. we can easily obtain the identities 

(IT ‘-+‘.“+‘)*h~l~~~ = hdhq”, 

CT ‘-+?-.r+‘)*p&j~~ = pufpk-‘qo + pfidpxvo. 1 <k <Cl. (9) 

(?I ‘-+‘.rf’Ypy+‘d~O = y,+ldp,qo. 

Suppose the form qo to be expressed as in (3) and decomposed into its contact components by 

Lemma 1. Then by the first part of this proof, and by the last of equations (9) the form 

(10) 

b,here 1 loI = I-, should be generated by the forms ~7. 0 < IJ 1 < r - 1. Taking the terms with 

j/,,j. l/t/. . ., II+ = r. weobtain 

i3 B,$; . 2, 

“y;:’ 
w;: A coy; A al;?2 A . . . A ,,q = 0 

Y 

n,hich implies 

;3 B<;;$ . 2, 

“y;’ 
= 0. aIt((~ (7)). 

But by (S), BL;:? . 2, = A>,& 2, and thus 

ilA,$,:2 . 2, 

i3.v;:’ 
= 0. aM($(y:). . . (:;;)I. Ihl. 111 I. , l&,1 

Define a mapping x : R x V’ + V’ by 

and consider the (q - I)-form 

(II) 

(12) 

(1.3) 



298 D. Krupka, J. Musilovci 

The second term in dt, can be expressed as 

The expression in parentheses can be replaced by the antisymmetrized one which has the form 

Taking into account (13) and interchanging the multiindices (i:), (1’)) we finally obtain 

acI2’3 . . . 4 
u203 

ay;l 
Oy dy;’ A dyz A dyz A.. . A dy,q: 

I 

=9 
s .( 

& A:,$ . . . ; o x . L sq 

4 
ds . dy;’ A dyz A dy{j A . . . A dyy 

Y 
0 

Consequently, 

ro = &,i?...iy dx” A dxi2 A . . . A dxiY 

4-1 
+ c A;,;* . . . ~~ ii+.,in+z,,,;, dyl”,’ A dyes A . . . A dyl:” A dxlk+’ A dxik+’ A . . . A dxiY 

k=l 

+ c A;; . . 2 dyJ”; A dyyf A . . . A dy? 
(16) 

Y 

where at least one of the summation multiindices in the sum c A:;$ . . . 2 dyy: A dy;t A . . . A 

dy;J is of the length lower than r. Now we write (16) in terms of the basis (dx’, 07, dy;), 



Trivial lagranginns infield theon 

where 0 < I J I :Z Y - I, (I ( = r. Using the decompositions 

dy; = co; + $dx’, d’@’ . . . 2, = j~d’C$~3 . 2, + pd’(+~; . . 2, ozm1 

we get for tjto the expression 170 = q1 + vi + ds,, where 

‘II = Ali,,,...,,, dx” A clx” A . A dxil/ 

q - 1 

+ c $!$ . . . f$L rl+,ii+ ,,,, i, dy/q’ A dyz A . . . r\ dyz A dxi”+l A dx’“+? A . . . A dx’,! 
(17) 

/C=I 

with proper coefficients, and VI is a contact form generated by forms 0:. 0 < 1 J 1 < r - 1, 

Clearly hdqo = Izdq,, which implies that the form hdq, is ir”“,‘-projectable. 

3. Consider the form ~1 in (17) written, for simplicity, with the coefficients denoted again as 
Al’& .., ‘A 

7201 oI ,i_ ,ii+2,.,,, instead of i:,& . . . ,$k ii+,ik+2,__l,,. Recall that hdr]l is ++‘.‘--projectable. It 
can be easily seen, from (17), that py ql = 0, and thus 

q-1 

(75 ‘+‘.‘)*m = hq1 + c pkrjl 
L=I 

The k-contact components of the form ~1, with 0 < k < q - 1, have again the form (4) 

u ith coefficients BL$; 8 ri,,ir+2,..i,, related to A;,:? . . ‘\ c,,r,.,,,+i<,.k ,< .y G 4 - 1, by the 
expressions (S). Especially, fork = q - 1 we have 

Lsing the relation (x”+*.~+’ * 1 p,dvl = pydpq_,qr, resulting from the decompositions (9;~ 
written for 17, and the fact that pyql = 0, we can write 

But, by n’+‘.’ -projectability, pqdql should be generated by the forms ~7.0 < I./I < r - 1, 

Taking the terms labelled by multiindices such that 1101, I II 1, I I?( . . . , /lq__, / = I’ we obtain 
for the coefficients B$:? . . k--f, i, and A:,‘& . . ‘~1 the relations completely analogous to 
( 1 1-I 3). The same procedure as in the part 2 of thi?&zof leads to the following decomposition 
of‘ ylI 

,]I = ~72 + ~2 + dq (18, 

in which u2 is contact and generated by forms uy . O,< (I( 6 r - 1, the form ~2 is given by 
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and ~2 is of the form 

q2 = Ai,i*...i, dx’l A dxi2 A . , . A dxiq 

q-2 
+ c A:,$ . . 

(19) 
~ ik+,ikt2...iri dy14’ A dye A . . . A dye A dxlk+’ A dxlk+’ A . . . A dx’y. 

k=l 

It holds hdql = hdr/2 and thus hdr]2 is n’+‘s’-projectable. 

4. Now, we proceed by induction. As the induction hypothesis, we suppose that 

qq-p = Ai,i2,,,i, dx” A dxiz A . . . A dxi* 

+ f: A2,;2 . . . Ik 
gkik+,ik+2.,.iq dyz A dyz A _ . . A dy? A dxik+l A dxihc2 A . . . A dxiq , 

(20) 

k=l 

where061ZII,IZ2I,..., 11,16r, is a form for which hd+,, is n”+‘.‘-projectable. We wish to 

show that r),_, can be written as 

rq-p = rq--p+l + vq-p+l + dr,-,+l, (21) 

where rq-P+i is a q-form, uq-P+l is a contact form generated by the forms w?, 0 < 1 .Z 16 r - 1, 
and q-p+1 is given by 

qq-p+l = Ai,i2,,,iq dx” A dxiP A . . . A dxiq 

p-1 

+ c A:,22 . . . 
(22) 

~ ik+,ik+2,,,iy dye’ A dye A . . . A dye A dx’“+’ A dxlk+’ A . . . A dx’y. 
k=l 

For p = q and p = q - 1 this hypothesis is satisfied (see parts 2 and 3 of this proof). For the 

form qq_p given by (22) it holds pp+l qqpp = 0, thus 

(n ‘+‘v’)*r]q-p = hr+p + 2 Pkqq-p 

k=l 

with components hqq--p, plqq-p, . . . , p,,~~_~ given by (4), the coefficients being expressed 
by (5). Then, by analogy with (9), we have (n rf2,rf’)*pp+]d~q_P = Pp+,dppqq_p. Thus, the 
form 

Pp+idr+p 

= P’dB2z ” ’ ~,i,+li,+~...i, A LO;,’ A 02 A . . . A WY A dxiP+’ A dxip+? A . . . A dxiq P 

+ 
ay2 

4; Ao;; Ao$;A...A$ Adx+’ Adxipi2A...Adxiq, P 

where 11,~ 1 = Y, should be generated by the forms WY, O<].Z/<r- l.Takingthetermswith 
IZal, 1111, . . , lZql = Y, we obtain 

aB”‘z . . . ‘P 
DlQ ap lp+llp+Z...L? 

ay,qp wz A w;; A co? A . . . A co;; A dxiP+[ A dxip+2 A . . . A dx’q = 0. 
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This implies, together with (S), 

Consider the (q -- I)-form 

?--/‘+I = p+;, II’ (T,’ ,,,L ,;,,+2,,,;<, dyz A dy,:' A . . A dy;:' A d,?,,+l A da?, 2 A . . A dx”f. 

where 

where I I I / = r. The second term in dt,_,+ 1 can be expressed as 

The expression in parenthesis can be replaced by the antisymmetrized one which has the form 

Taking into account (23) and interchanging the multiindices (1:). (i). we obtain (see the same 



procedure in the part 2 of this proof) 

qq-p = Ai,i2,.,i, dx” A dxi2 A e m a A dXiq 

P--l 
+ c A;,:? -. - 

lk 

uk il+l itf2...iy dy;’ A dyz A . . . A dyz A dxikCl A dxik+2 A. _ _ A dxiq 
k=l (24) 

+ c A;;; . . - 2 dy;,’ A dy;; A , . . A dy;; A d&+’ A dxilr+2 A . . . n dxiq + dtgbp+, 

- df@ . . . f, 
nzg3 ap ~p+lfp+Z...iq 

A dy: A dy; A . . . A dy;; A d&+’ A dxiP+’ A . . . A dxiY 

where at least one of the multiindices in the sum c A:$ , . . :’ ip+,ir+z,..iq d$; A dy;; A . . . A 

dy;;; ~dx~p+’ A dxip+2 A . . . A dxiq is of length lower than r. Now we write (24) in terms of the 

basis (d-x”, ~7, dyy), where 0 < 1 J I 6 Y - 1, 111 = r . Using the decompositions 

dye = We + y~j dxJ 

and 
d’CIZi3 . , . I I’ 1, . ‘52u.7 a,, z~,+II,,+~..+ = j&&z’” . . . 

Q2Q-3 VP i,+li,,+z...i, + Pdfcit?3 . ’ ’ 2; iP+liP+2,. i - .4 

we get for +P the expression (21) in which Q-~+I has the form (22) and u~-~+~ is the contact 
form generated by forms 07, O< IJI 6r - 1. Clearly hdqyvp = hd+p+,, which implies that 
the form hdqy_pfl is nYt’T”-projectable. 

5. For p = 1, formula (21) gives 

vq-1 = vq + vq +dt, 

in which q4 has the form 

~q = Aili2_.,zq dx” A dxi’ A . . . A dxiY. 

Since the form 

hdq, = dA.. ,,,2,,, i, A dx” A dxi2 A . . . A dxiY 

= hd’Aili2,..iq + aAi,i2...iy 
aY7 

y,q, dxi” A dx;’ A dxi2 A ‘ ‘ ‘ A dxiq 



is again r’+‘.‘- -projectable, we obtain 

a Ai i?...l,, 
T7-p s,:, = 0 alt(ioi,i1. . . iy). sym(Zj), 111 = r. 

I 

Thus, it is evident that the form yly is in”,‘-’ -projectable by Lemma 3. Denoting by x the form 

for which ?I,, = (n”.+’ )*x we complete the proof. 

4. Variational sequence 

In this section, we briefly recall basic concepts of the calculus of variations, related to the 

Euler-Lagrange mapping (see, e.g., 1171). 
Let (Y. n, X) be a fibered manifold, dim Y = n + rn. dim X = PI. and J’Y its r-jet pro- 

lonoation. dim J”Y = N n’ , . J”Y + X, T’.’ : J’Y -+ J’Y the canonical projections (see 

ScLTion 2). Let 1/ : X 4 Y be a section of the manifold (Y. JT. X) and J’y : X ---, Y its r-jet 

prolongation. Any rr”-horizontal n-form h E Q;;Y is called a lagrangian of the order r; (75% A) 

ix called a Lagrunge structure. In a fibered chart (V. $I, on Y and the associated tibered chart 

( \ i . $” 1 on J” Y we have 

h = ct.\-‘. y”. y:, , . . . , yy,,;? _,,, / ) dx’ A cl.2 A . A dx”. (25) 

For a given h and any compact, n-dimensional submanifold C2 c X with boundary, we get a 

real-valued function 

Y -+ I’ J’-)/*I. 

n 
(26) 

defined on the set of sections of (Y. IT. X), called the actiorzfinction associated with A and Q. 

The,fir.yf varinti~~~7~zl~i)r~?llla for (26) can be derived in an intrinsic way by means of the Lepage 
forms. the Lie derivative, and the exterior derivative d. This involves the introducing the global 

f~lller--LaRrange~,nn associated with h 

E;. = 15, (,C) do>” A dx’ A dx’ A . . A dr”. (27) 

&,CLC) = $ + k(-l)‘d;,d,l.. .d,, -_. ~~ 

k=I 
(28) 

k,, (,C) being the Euler-Lagrange expressions. The mapping E, + E,_ is called the Eulrr- 

Lrrgrorzgr mupping. The kernel of this mapping describes tri\Gl or null lagrangians. its image 
describes ~uriatiorlui (n + l)yform.~. 

Let LIS now take into account the notation introduced in Section 2; QL. q 3 0. is the direcr 

ilrm<gr of the sheaf of smooth q-forms over J’Y by the jet projection 17”.“. For 1 <q 6 n, resp. 

for q > 17 + 1, denote by Qi;,C, the subsheaf of contact, resp, strongly contact, forms (Q2;;,r, = (0)) 
Define (3’ = (2” 4 u (,,( +clQ:;.-,,,.. q 3 1. where d!C?i_ ,.(. is the imuge slzeqfof 52&, ,(, by d. We gel 
the subsequence 
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of the deRham sequence 

and the corresponding quotient sequence 

0 + Iwy + !G?2;/0; -+ fi2;/0; -+ . . . -+ c22rpprp + !a$+, -+ . . . + !22’, + 0 (29) 

which is called the variational sequence. The quotient mapping, denoted by E, is defined by 

putting E([Q]) = [de], where [q] denotes the class of the form n. It can be shown that the 

variational sequence is an acyclic resolution of the constant sheaf IWJJ. Consequently, by the 

abstract deRham theorem, the complex of global sections of the variational sequence has the 

same cohomology as the manifold Y. Denoting the sequence (29) by 0 + IWr + Vr, and 

the corresponding cochain complex of global sections by 0 -+ r (Y, Iw,) + r (Y, 52; / 0;) -+ 

r(Y, s22;/0;,) -+ . . .) or simply by r(Y, V’), we have @(r(IWr, 17’)) = Hk(Y, IK). 

A basic observation connecting the variational sequence with the calculus of variations comes 

from the analysis of the (n - l)-, n- and (n + I)-terms in (29), so called variational terms. 

Describing the sheaf Q21; / Ol;, resp. Ql;+i / 01;+, , as a certain subsheaf the sheaf of forms S21;+‘, 

resp. a:+:‘, one can easily see that the corresponding representation of the quotient mapping 

E : S-221;/@; + i221;+,/01;+, concides with the Euler-Lagrange mapping h + EA. 

5. Trivial lagrangians 

Now we are in a position to describe the local structure of trivial lagrangians of order r. 

Recall that the rth order lagrangian h E fi; Y over a fibered manifold (Y, n, X) is called trivial 

if its Euler-Lagrange form is the identically zero, i.e., EL = 0. 

Theorem 2. A lagrangian h of order r over (Y, n, X) is trivial if and only if to each point 

y E Y there exist ajbered chart (V, @) on Y and an (n - 1)-form x on V’-’ C Jr-‘Y such 

that h = hdx on V’. 

Proof. It is immediately given by the variational sequence of order r that a lagrangian h is 

trivial if and only if it can be locally expressed in the form h = hdr]. up to a projection, 

where n is an (n - 1)-form. Thus, only the nr*+’ -projectability of r] needs proof. Assume that 

hdy = (n r+‘%r)*h. Since hdr] is nr+‘xr -projectable, it follows from Theorem 1 that q is of the 

form q = (n r.r-l)*~ + u + dt, where u is a contact and x is defined on VT-‘. Consequently, 

hdy = h(7t ‘J-l)*dx = (&?l * ) hdx which completes the proof. 
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