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1. Introduction

A lagrangian of order r is called rrivial, or null, if its Euler—Lagrange form vanishes identi-
cally. The problem of finding all trivial lagrangians belongs to the most difficult problems of the
geometrical variational theory. It can be easily seen that the well-known classical result stating
that each trivial lagrangian is of the divergence type should be reformulated more precisely
because the problem is connected, via the Stokes integral theorem, rather with the exterior
derivative than the divergence operator.

Partial results, concerning the first order trivial lagrangians, have been obtained by several
authors (see, e.g.. Hojman [7], Krupka [8, 12], Rund [19], and the references in Olver | 18]).
A complete characterization of trivial lagrangians of the Ist order has been given. within the
geometric variational theory on fibered manifolds, by Krupka [11] (see also [9]). According to
this theory, a lagrangian A defined on the first jet prolongation J 'Y of a fibered manitold Y over
an n-dimensional base X is trivial if and only if it has the form of the horizontal component of
a closed n-form defined on Y, i.e., A = hn. dn = 0. This result shows, in particular, that there
arc much more first order trivial lagrangians than the divergencies.

Several partial results for higher order lagrangians have been obtained by Aldersley | 1], Ball,
Currie, and Olver [4], Olver [18] (polynomial lagrangians), Krupka |1 1] (relations with Lepage
forms). Implicit characterization of trivial lagrangians has been provided by the variational
bicomplex theory (Anderson [2], Anderson and Duchamp {3]. Chrastina [5], Dedecker and
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Tulczyjew [6], Saunders [20], Tulczyjew [23], Vinogradov [24], and others), and by the theory
of finite order variational sequences (Krupka [15, 16]).

The aim of this paper is to prove a complete analog of the above mentioned result [11]
for lagrangians of all orders. This improves a description of trivial lagrangians as given by
Anderson and Duchamp [3], and corrects the proof of the same result given by Krupka in [15].

2. Decompositions of forms

In this section we summarize some results on the decomposition of forms on jet spaces into
their contact components. For more details we refer the reader to [17].

As the underlying space we use an (n 4 m)-dimensional fibered manifold Y over an n-
dimensional base X, with projection w : ¥ — X. The r-jet prolongation of Y is denoted by
JY.,7n" 0 J'Y = Xand 7™ JY — J'Y,r 25 20, being the corresponding canonical
projections. A fibered chart on Y, the associated chart on the base and the associated fibered
chart on J”Y are denoted by (V, %), ¥ = (x', ), (U, ), ¢ = (x'), and (V',¢"), " =
(x%, y°, Y5 ¥h ), respectively. If W C Y is an open set, we denote $24W the ring of
smooth functions on W’ = (n"o)"(W), and Qfl W the QgW-module of smooth g-forms on

W’. The forms (dx', 7 ..., @9 , .dy7 ). where
o _ R v i
Ojy e = d}jlmjk )’.Il»--.IAldx ’ (1

define a basis of 1-forms on V'.
Let ¢ € €2,V be a form. There is a unique decomposition

(@Yo =ho+ po=ho+pio+ -+ pse (2)

of the form g into its horizontal, or O-contact, component hp = pop and the k-contact compo-
nents pro, 1 <k < g. Denote by (‘;) the multiindices (‘}I”J-\) for 0< s <r, s = |I| being the
length of the multiindex /. We also use the following notations

af af af , af
dif = '-+E ey T oy = d o+ —— ],
T T A ey i T
/ af o
pdf = pdf + —Fwj, |l =r,
0y7

where f € QL V; d; is the total derivative with respect to the variable x'.

Lemma 1. Let W C Y be an open set, g > 1 an integer, and o € QW aqg-form. Let (V, ¥)
be a fibered chart on Y for which V. C W. Suppose that the chart expression of ¢ is

¢
s=0
with coefficients antisymmetric in all multiindices ((;‘1), R (;“)), 0, < 1< p<s, anti-

symmetric in all indices (isy, ..., 1i,) and symmetric in all indices within each multiindex I,.
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Then the k-contact component of o has the chart expression

_ phi 1 o a: o gk g i, )
PRO = Bol G i, @1, ANOL A Ao AT AT A A d 4)

L/ ——k

BI|/3 I _ q AI]/Q R I; . 1, Tkt T,

mioy T G iy ) e e e i N e Mo
=k q—:

211[(1'/\4_11./\4‘3...1'(,). Oékgq

A proof of Lemma 1 is given in [17].

Aformg € Q; V is called " -horizontal if (m"7'")* 0 = ho. It is called contact it hp = ().
Every g-form with ¢ > n is contact. A g-form o, n < g < N, is called strongly contact
it p,,0 = 0. A g-form is called decomposable if it is the sum of a horizontal form and a
contact form (for 1 < ¢ < n), or the sum of a (¢ — n)-contact and a strongly contact form (for
n < g<N).

Lemma 2. Let W C Y be an open set, g an integer, 1 < g <n.and p € QQIW a form. Let
(V) be any fibered chart on Y for which V-.C W. Then the form o is contact if and only if it

can be expressed as
o= ®! v, g=1. O <r — 1. "
0)
0=l AV +dV, 2<qg<n, 0<|JI<r — L

®! € QV being some functions, \If[f € Q:,—l V some (¢ — )-forms, and WV € Q:/ Vs
a contact (g — 1)-form which can be expressed us w{ A X(ﬁ for some (q — 2)-forms x! €
Q, V. .l=r—-1L

We say that the forms gy = w5 A WS W = w7 A x! in (6) are generated by the forms
oS 0<|J|<r — 1.

3. Projectability of forms

In this section we show that a g-form 5 defined on J'Y. | < ¢ < n — 1, whose exterior
derivative is decomposable, can be locally expressed as the sum of a closed form, a contact
form and a 7"~ '-projectable form.

In what follows, alt (resp. sym) denotes antisymmetrization (resp. symmetrization).

Lemma 3. Let W C Y be an open set, g an integer, | <q < n. Let (V, ) be any fibered chart
onY for which V.C W. A n"-horizontal form ¢ € $2; W with the chart expression

0 = Ai|ij«»»i¢/ (IXI.‘ A d,’Cil JANAVAN d.’Ci‘/

is 7" Y-projectable if and only if

DA i, o |
d’]\(y—’ 81{) =0, altlipiyiz...ig), sym(lj). |l =r 7)
S
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Proof. If a 7"-horizontal form g is 7"~ -projectable, then its coefficients A;;, ;, are defined
on V'~ Thus, conditions (7) are satisfied trivially. Consequently, only the converse needs
proof. Since g is " -horizontal we can write

(r""Y*do = hdo + pido,

hdo = hd Ay, i, Adx" Adx® A A dx'

in 9 ";':ja...j, JiJ2e-Jrio

A , . . A
= (df Ajir.i, T e ) dx Andx" Adx? A ANdx',

r

0A; i, A , ,

_ 121y v i in ’q

prdo =3 S el Adxt Adx AL A
k=0 "2k

Suppose that conditions (7) are satisfied. This immediately implies that

aAi i...1 1 ' [ 1
SUhBedy o g0 A dx A dX AL A dx =0
ayf] jzjl S L2 frto
and thus hdp is 7”1 -projectable. This leads to the 7" '"-projectability of p;do as well.
Then

proving "~ !-projectability.

Theorem 1. Let W C Y be an open set, q an integer, | <q<n—1,and n € Q_V a form. The
following two conditions are equivalent:

() hdn is 7" "' -projectable.

(ii) For every fibered chart (V, ), v = (x', y°), on Y such that V C W there exist a form
X € Qf{’] V., a contact formv € SV and a formt € & |V such that

n=@" Yy +v+dr. (8)

Proof. Since the condition (ii) obviously implies (i), only the converse needs proof. We proceed
in several steps.

l.Letn € 2, V,andlethdn be 7+ projectable. Then the form pdn = pidn+-- -+ p,dn
is 7" +1 _projectable and contact, and thus, by Lemma 2, it is of the form pdn = g¢+d v, where
both gq and vy are contact and generated by the 1-forms w9 with 0 <|J{<r — 1. Consequently,
dn = hdn+ o + dvy, so that hdn+ oy = dnp for some form ng € Qf{_l . Integrating we obtain
n = no + vo + d1p where 1 is a (¢ — 1)-form. The form 7y has the following basic properties:

(a) hdng = hdn, i.e., hdng is 7" -projectable,

(b) psdng = pyoo for 1 <s <q + 1, which implies that the forms pdno. ..., py+1dno are
generated by the forms 0%, 0<|Ji<r — 1.

In what follows, we construct a suitable sequence of triples (n, vk, k), 1 < k < g, such
that v and pdny, ..., pj—k+1dni are generated by the forms w%,0 < [J| < r — 1, and
Pg—k+1Mk = -+ = pgtik = 0, and, moreover, ny—; = N + v + dti (indeed, py—yi2dne =

- = pgy+1dn; = 0). By construction, we get for k = ¢ a 7"-horizontal form n, which
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satisfies the relation hdn, = hdn,_y = --- = hdn, = hdny = hdn. Finally, we use the
"+17 projectability of hdn,, and we prove that the form 7, can be expressed as (7" ") x.
2. Taking into account that (" "!"")*dny = d (7" "")*ny. we can easily obtain the identities

T

(7_[/"+2.)‘+l)*hdno — hdhr}(),

r42.r+1

(m Ypedno = prdpe—ino + prdping, 1<k <q. (9)

(T Y pysidng = pyridpyno.

Suppose the form 5o to be expressed as in (3) and decomposed into its contact components by
Lemma 1. Then by the first part of this proof, and by the last of equations (9), the form

1|[W 1 (2] T2 Oy
Py+1dno = pdBg ;- - o NOI AN LA o)
— g phi I, o %y
=pdB;; - o A W] A o], AL Aoy
(10)
I 1,
dBmm o

g 00 a) o2 Ty
+ (,()](l AN U)h VAN Cl)[2 VANPERRVAN (I)Iq

T0
dy Iy

where |Ip| = r, should be generated by the forms 9.0 < |J| <r — I. Taking the terms with

I 10l, .+, = r, we obtain
dB;‘(’,’ 1{/
102 Ty agy Ty —-() (H)
— G Wy /\w, /\a),, VANV AN OF SIS
a\ﬂn 0 7
AN

which implies

0 B;I‘l;‘ B ‘I;:/ o, 12
W:O, alt((l())(])“'(ll;))' (12)
Butby (5), BAL - o = ADL - ([ﬂ', and thus
;;A’tlz vl
7 Wq:()’ alt((?ﬁ)(?,’)(?;b (o, il ..., [, =r. (13)

Define a mapping x : R x V7 — V" by

. [ ] R K4 — _rr m Ke) (T
X s (o vyl e Y Y i) = (x', o ) T AT A A

and consider the (¢ — 1)-form

a,

Ty = CI 2, ([;Z/dy;? VAN dy?j FANIRNVAN d_\’I[I (14)

[enlen)

where

13[3 [ — ]121‘ I ([—l
Cmm ' / q)J/( 1’(73(71'.. (Tiil OX)'S .
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Then
dvy =d'C2p - o A dy Ady] A A dyy!
Ll
+ —6230;“1 “dyy Ady AdyD AL oAdy L] =
1

The second term in dt; can be expressed as

bLiy |,
0203 0, el o3 o3 9
“T—’— dy,] A dy,z A dy[3 AL A dquq
ayy,
1
A L (15)
. VINEYE 1, V0203 04 v [[—l
—6[/ Aaldztfz"'o;+ v yylox-s' ds
4 Y

x dy]' ndyp? A dyy; /\.../\dy;:q.

The expression in parentheses can be replaced by the antisymmetrized one which has the form

aaJblL Jhl o, JhL
14]|1213 ]q+1 dAU0'20'3 O'q aAUO']O'} Uq 8AUO’:(73 O'q,](f] yu
ol _ N _ v
R % g ayy, AN ay;,

Taking into account (13) and interchanging the multiindices (! ), (7), we finally obtain

achL ... 1

T203 g, g1 o> 03 g
———*-ay(;l—qdy]] /\dylg /\d_)[3 AL, /\dquq
1

1
1 0ALLL
LLI I 10205 "0y v -1 o o o
=q/ Aa‘l§2§3-~-;q+g—~T"yj ox st ds - dy; Adyp; AL o~ dyy!
J
0

I
d 1
:q/w(AI‘IZ“ ---f;’qox-;sq>ds-dy7“ /\dyzz/\dyff/\.../\dy(,z"

ds \  717%

= ADbbDL A dyl AdyD AdyT AL A dy)

010203
Consequently,

no = Aji,.i, dx'" Adx AL A dx

g—1
2 I 3 [ [fa2 [
+ Z ADL - o ivstivsandy YT AN AYE A ANdYTE A X AdXT A A d '
k=1
(16)
J ./g J, aj [oge) a,
+Y ANE . Jdyyl Ay A Ady]!
+dty —d'CEL . I Ady AdY]E AL A dY
1 0203 e yl:)_ y13 st qu 3
. G J
where at least one of the summation multiindices in the sum )_ A ({: ;2 ceondyy NdYT AN

dy;;’ is of the length lower than r. Now we write (16) in terms of the basis (dx/, w9, dy?),
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where 0<|J|<r — 1. [I]| = r. Using the decompositions

dyj = of +y5dx!. d'CRL -l = hd'CED g pd'ClD

T203 02073 0203 (T(/

we get for ng the expression g = 1, + v; + drl, where
N = /i,-l,-:u_,-u dx" Adx™ AL A dx

Vo [ | Can
+ZA"'" ok 4 AVINAYTE A AdYT A Xt A dx A LA

T2 Ok ikt kgl -
with proper coefficients, and v, is a contact form generated by forms 3,0 < |J| <7 — 1.
Clearly hdng = hdn, which implies that the form Adn, is 7' ' -projectable.
3. Consider the form n; in (17) written, for SlmphClty, with the coefficients denoted again as

Abl b ;, instead of AL ... Recall that hdy, is 77" -projectable. It
can be easily seen, from (17), that p,n, = 0, and thus
g—1
@Y =hm + ) pem
k=1

The k-contact components of the form 7y, with 0 < k < g — 1, have again the form (4}
with coefficients Biif, . (’,i icaricen.i, Telated to A(’,'IQZ e (I;;IH,\ i, k<5 <q -1, by the

expressions (5). Especially, for k = ¢ — | we have

hily [q—l | [o£] Ty—1

i
pq__]n] = Bmm . Uq—l"q CL)[I /\Q)[z /\.../\(L)](/ ' /\dxq.

Using the relation ("> *")*p,dn, = p,dp,-in;, resulting from the decompositions (9}
written for n; and the fact that pem = 0, we can write

. I, : - i
pgdm = deé:(’h g ! i) A w)l AT A LA a)(,’q’"]l Adx'
. .y . -
=p dBé:([,, e i N AT A LA w;/’ill A dx'
dB[]['v . Iq—l i
+ 2 R AT AT AL A wZ;’_]' ndx't o gl =1
8) In
But, by ="' -projectability, pqgdn, should be generated by the forms 5.0 < [J| < r — 1.
Taking the terms labelled by multiindices such that |Io|. |1}, |[5] . . My -] = r we obtain
for the coefficients B])%: - .- ’q t.and ADL ..o Te- o the relations Completely analogous to

ll G102 Ty—1ly

([1-13). The same procedure as in the part 2 of this proof leads to the following decomposition
of n
m=m+rntdn (18)

in which v, is contact and generated by forms . 0<|/|<r ~ 1, the form 13 is given by

1a-! .

7, = Chi . A dx'e

T207 (T(, } I

o,
dyp; Ady[ AL ondy)!
1
I lyov v S 1,0 g—2
C"""* iy T (g - I)yJ/Avmm oy OX S ds
0
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and 7, is of the form

n = Am—%iq dx'" Adx A ... Adxls

=2 TNl I al a2 ay i kg2 i (19)
+ Z AU‘I(,Z2 T o eninrady dy;' Ndyp Ao ondypE AdxET AT AL A dX
k=1
It holds #dn; = hdn, and thus hdn; is 771" -projectable.
4. Now, we proceed by induction. As the induction hypothesis, we suppose that
Ng—p = Aiyir..d, dx'" Adx AL Adx'e
. L1, I o a2 Tk iry1 its2 i (20)
FY AN e AYT ANAYE A LAY A X A dx AL A dx,
k=1
where O0< | 11|, |12, ..., [I,| <r,is a form for which hdn,_, is "t _projectable. We wish to
show that n,_, can be written as
Ng—p = Ng—p+1 + Vg-p+1 + qu—p—i—la 2n

where 7,_, is ag-form, v,_, is a contact form generated by the forms w7, 0< |[J|<r — 1,
and n,_ 4 1s given by

Ng—p+1 = A~ili2~~-iq dx'" Adx? A ... Adx's

-] (22)
ihl I . - ,
+ E ApiG, oriirineand, AVL AN AYE A ANAYE ANdXTT A dx AL A dx".
k=1

For p = g and p = g — 1 this hypothesis is satisfied (see parts 2 and 3 of this proof). For the
form n,_, given by (22) it holds p,,in,—, = 0, thus

p
(”r+l'r)*77q—p = h’?q—p + Z Pillg—p
k=1
with components Ang_p,, piig-p, .- -, Pplig—p given by (4), the coefficients being expressed
by (5). Then, by analogy with (9), we have (z"*2"*1y*p . 1dn,_, = pps1dppn,—,. Thus, the
form

pp+1d77q—p
— aphbk . r oy a2 op it ipt2 iy
_deO']Uz Upip+lip+2--~iq /\Cl)[l /\C()12 /\.../\Cl)[p /\dx /\dx /\/\d.x
Y L .
)0 Opl 1 al o ; ; ;
= 3 PR ) A wf A of ANt AdxT Adx T AL A dx
Y

where |Iy] = r, should be generated by the forms w$, 0 < |J| <r — 1. Taking the terms with
[Iol, 1111, ..., |1;] = r, we obtain
ILh /
aBO’:U} T U[;, ip+1ip+2...iq

0 y;’o(’

OP AT AP A AW AdxT AP A L A dX =
I 1 A I,
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This implies, together with (5),

Il I, _ ahhb 1,
Bma U apipripaiy T Amaz T O prtipeaidyt
A"’“...’l’. . .
T oo Oplp—tlpe2.dy oy a, . A
o =0, al(()(G) - (7). Mol il Ml =r. (23)
Consider the (g — 1)-form
T, =cht .l i, Y7 Ady] AdY]T AdXT A dx A A dx
g-—-p+1 — 0103 opi ,,‘11,,+w . .)/ y .. >, Nt -
where
1
I L, v Al Ip =1 g
C(TWU\ e {’I/) - p}‘/ /( Vo203 o U,;i,y+|i,)+1...i(l © X) -8 dS.
0
Then
, I, 7 » s v
(/rqA/J—H = d,Cé;([:‘ T (f,,, Ipctipia.d /\ dy /\d\/h N /\(1_\7[; /\d,’(l/Hl /\dx”’ AL A
I Ix Ip
C”’(Ta Y Opiptlip.a..dy a) (o3 a3 Tp fptl ipgo li
+- dy;' Adyp Advi Ao ondy Adxttt AdxTr AL A d X
8VU| o I] < 1’_) R - 1,,
711

where [/1| = r. The second term in d, p+1 can be expressed as

()CI T 1
203 o, i+p+liya..i, 5 [ i [ ia
BLERE ‘)’m Prlrele gy /\dyi“/\dyf;/\.../\dy,,f Adx"" ANdxTTTTA A dx
oyy, ) ’
! AL I,,
_ LI I, V0203 Opiptiipyaciiy p—1 ;.
- p/ Ao']m(r T (T],, + K Yrpjpox-s ds
3.\'1
0
xdy[' AdyP AdyP A LA a’v Adx'T U Adx A LA dx

The expression in parenthesis can be replaced by the antisymmetrized one which has the form

Ll 1y
T G203 Oplpiiipra.dy
1 JA JI”‘...[” aA”ll?...[” .
Vo203 Oplptllp-2..-1y Vo 03 Oplpriipgr--dy
o noo3
p ayy, CAVS
d JI 1y I,
Va2 a3 Tp 101 ips1ipya. iy W
a Op }J‘
Yi

»

Taking into account (23) and interchanging the multiindices ([‘) (‘J) we obtain (see the same
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procedure in the part 2 of this proof)

gchh ..
0203 ; %r otz dyp' Ady7? Ady? AL A a’y?pﬂ Adx'" ANdx'P A A dxt
Y
[
d ] I
— - hibty A P
- pb/ d.S‘ A010203 Oplptlps2.dQ o X p A dS
el [} o3 Op i i i
xdyp' Adyi A dyj; A ANdyp AdxtY AdxT AL A dx
— Al 1y o) a2 a3 op in ipy2 i
=A) e O iperipia iy QYT NAYLIAAY] A ../\dy,p Adx"" Adxtt AL A d X,
Finally

Ng—p = Aiin.i, dx" AdX* A A dxle

o102 Ok bpibka2.ndy

p—1
+Y AbE Lk dyi Ndygp Ao AdYTE A dXE Adx AL A dx's
k=1 24)

+ Z Al s dygt Ay AL A dyjl Adx's mdxie AL Adxt 4+ dT,_

[ef kel

_d/C]213 i;"

0163 Opipsiipra.dg

ANdYZ NAYTI AL A dy]T Adx Adxint AL A dxe

Lo Jp
where at least one of the multiindices in the sum 3> AJ %2 - 27, o dyJ AdYT AL A

a’yi’: Adx'rtt Adx'r=2 A A dx's is of length lower than r. Now we write (24) in terms of the
basis (dx’, w7, dy7), where 0<|J| <r — 1, |I| = r. Using the decompositions
dyj = G+ y7; dx’
and
r~hai Ip — by bl rhals ip
d C0203 e Op l’p+1l‘,,+2...l',, - hd Cc720’3 . Tp fp+1f,,+z...fq + pd C(rzo_; o Gp ip+1i,;+3...fq

we get for 5, _ , the expression (21) in which Ng~p+1 has the form (22) and v, _ ,+ is the contact
form generated by forms 5, 0< [J|<r — 1. Clearly hdng-, = hdng_p41, which implies that
the form hdn,_ ., is 7" -projectable.

5. For p = |, formula (21) gives

Ng—1 = 1g + Vg +d1,
in which 5, has the form

Ng = Aiiyi, dx" Adx AL Adxle,
Since the form

hdng =dA; ;i) ndx" Adx AL A dx

A, i,

= (hdlAi;iz..,iq + By

Vi dxi"> Adx"AdxT AL A dx's
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is again 7" -projectable, we obtain

IAi i, L :
gl =0 alt(oiia. .. ig).  sym(lj), |I|=r.
Ay

Thus. it is evident that the form n, is 7"~ !-projectable by Lemma 3. Denoting by x the form
for which n, = (r""~")*x we complete the proof.

4. Variational sequence

In this section, we briefly recall basic concepts of the calculus of variations, related to the
Euler—Lagrange mapping (see, e.g., [17]).

Let (Y. . X) be a fibered manifold, dim¥Y = n +m,dim X = n, and J'Y its r-jet pro-
longation, dim J'Y = N, x”" : J'Y — X, n"™ : J'Y — J’Y the canonical projections (see
Section 2). Let y : X — Y be a section of the manifold (Y. 7. X)and J"'y : X — Y its r-jet
prolongation. Any 7"-horizontal n-form A € QY is called a lagrangian of the order r: (;r. 1)
is called a Lagrange structure. In a fibered chart (V, ¢) on ¥ and the associated fibered chart
(V7oyyon J'Y we have

N [ 2 R
A= L vyt Vi) dx' AdxP AL ndx (25)

For a given A and any compact, n-dimensional submanifold € C X with boundary. we get a
real-valued function

y — /J’")/*k (26)
Q

defined on the set of sections of (Y, r, X), called the action function associated with A and €.
The first variational formula for (26) can be derived in an intrinsic way by means of the Lepage
torms. the Lie derivative, and the exterior derivative d. This involves the introducing the global
Euler—Lagrange form associated with A

E, = E,(LYdy" ndx! Adx> Ao A dx". (27)
9L r AL
E. (L) = + —Ddid, .. .d | ———]. (28)
) 8-\,(7 ;( ) 144 k <8-Vzg|1'w...ik>

E., (L) being the Euler-Lagrange expressions. The mapping A — E; is called the Euler-
Lagrange mapping. The kernel of this mapping describes rrivial or null lagrangians. its image
describes variational (n + 1)-forms.

Let us now take into account the notation introduced in Section 2; £27. ¢ = 0. is the direci
image of the sheaf of smooth g-forms over J”Y by the jet projection 7"-°. For 1 <¢ <n. resp.
forg =n+1, denote by €2 the subsheaf of contact, resp, strongly contact, forms (€2, . = {0}).
Define @) = €  +d< | .. g =1, where d2 | .is the image sheaf of <2 _, by d. We ge
the subsequence

0 —> ("‘)’l. —> ("‘)’2 — s > (N)'F’ N 0‘ P =m (HTLTI)
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of the deRham sequence
0->Ry—-Q - Q- ---—>Qy—>0
and the corresponding quotient sequence
0= Ry - Q)/0] = Q5,/0), - -+ = Qp/Op > Qp | = -+ = Qy >0 (29

which is called the variational sequence. The quotient mapping, denoted by E, is defined by
putting E([e]) = [de], where [n] denotes the class of the form 5. It can be shown that the
variational sequence is an acyclic resolution of the constant sheaf Ry. Consequently, by the
abstract deRham theorem, the complex of global sections of the variational sequence has the
same cohomology as the manifold Y. Denoting the sequence (29) by 0 - Ry — V", and
the corresponding cochain complex of global sections by 0 — I'(Y, Ry) — I'(Y, Q]/0)) —
I'(Y, /0% — ---, or simply by ['(Y, V), we have HX(I'(Ry, V")) = H*(Y, R).

A basic observation connecting the variational sequence with the calculus of variations comes
from the analysis of the (n — 1)-, n- and (n + 1)-terms in (29), so called variational terms.
Describing the sheaf Qf,/©7, resp. Q) ,/©}_,, as a certain subsheaf the sheaf of forms €/,/,
resp. Q,zlfll one can easily see that the corresponding representation of the quotient mapping
E:Q /0, — Q /0, concides with the Euler-Lagrange mapping A — Ej.

5. Trivial lagrangians

Now we are in a position to describe the local structure of trivial lagrangians of order r.
Recall that the rth order lagrangian A € €)Y over a fibered manifold (Y, , X) is called trivial
if its Euler-Lagrange form is the identically zero, i.e., £, = 0.

Theorem 2. A lagrangian ) of order v over (Y, , X) is trivial if and only if to each point
y € Y there exist a fibered chart (V, ¥y on Y and an (n — 1)-form x on V"= C J"71Y such
that A = hdy on V",

Proof. It is immediately given by the variational sequence of order r that a lagrangian A is
trivial if and only if it can be locally expressed in the form A = hdn, up to a projection,
where 7 is an (n — 1)-form. Thus, only the 7”"~!-projectability of n needs proof. Assume that
hdn = (w"+t1"")*A. Since hdn is "+ -projectable, it follows from Theorem 1 that 7 is of the
form n = (7" ~')*x + v + dt, where v is a contact and x is defined on V" ~!. Consequently,
hdn = h(x"™ Y*dx = (" ')*hd x which completes the proof.
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