Trivial lagrangians in field theory*

Demeter Krupka
Department of Mathematics, Silesian University at Opava, Bezručovo nam. 13, 746 01. Opara, Crech Republic
Jana Musilová
Department of Physics, Masaryk University at Brno, Kotlářská 2. 611.37. Brno, Czech Republic
Received 21 October 1996

Abstract

The paper presents a complete description of trivial lagrangians in field theory. It is shown that any higher order trivial lagrangian can be expressed as the horizontal component of the exterior derivative of a projectable form. Keviords: Lagrange structures, variational sequence, trivial lagrangians, horizontalization. projectable fomes.

MS'lassification: 49F05, 58A15, 58A20, 58E99.

1. Introduction

A lagrangian of order r is called trivial, or null, if its Euler-Lagrange form vanishes identically. The problem of finding all trivial lagrangians belongs to the most difficult problems of the geometrical variational theory. It can be easily seen that the well-known classical result stating that each trivial lagrangian is of the divergence type should be reformulated more precisely because the problem is connected, via the Stokes integral theorem, rather with the exterior derivative than the divergence operator.

Partial results, concerning the first order trivial lagrangians, have been obtained by several authors (see, e.g.. Hojman [7], Krupka [8, 12]. Rund [19], and the references in Olver |18|). A complete characterization of trivial lagrangians of the 1 st order has been given, within the geometric variational theory on fibered manifolds, by Krupka [11] (see also [9]). According to this theory, a lagrangian λ defined on the first jet prolongation $J^{\prime} Y$ of a fibered manifold Y over an n-dimensional base X is trivial if and only if it has the form of the horizontal component of a closed n-form defined on Y, i.e., $\lambda=h \eta, d \eta=0$. This result shows, in particular, that there are much more first order trivial lagrangians than the divergencies.

Several partial results for higher order lagrangians have been obtained by Aldersley |1], Ball, Currie, and Olver [4], Olver [18] (polynomial lagrangians), Krupka|11] (relations with I epage forms). Implicit characterization of trivial lagrangians has been provided by the variational bicomplex theory (Anderson [2], Anderson and Duchamp [3]. Chrastina [5], Dedecker and

[^0]Tulczyjew [6], Saunders [20], Tulczyjew [23], Vinogradov [24], and others), and by the theory of finite order variational sequences (Krupka [15, 16]).

The aim of this paper is to prove a complete analog of the above mentioned result [11] for lagrangians of all orders. This improves a description of trivial lagrangians as given by Anderson and Duchamp [3], and corrects the proof of the same result given by Krupka in [15].

2. Decompositions of forms

In this section we summarize some results on the decomposition of forms on jet spaces into their contact components. For more details we refer the reader to [17].

As the underlying space we use an $(n+m)$-dimensional fibered manifold Y over an n dimensional base X, with projection $\pi: Y \rightarrow X$. The r-jet prolongation of Y is denoted by $J^{r} Y, \pi^{r}: J^{r} Y \rightarrow X$ and $\pi^{r . s}: J^{r} Y \rightarrow J^{s} Y, r \geqslant s \geqslant 0$, being the corresponding canonical projections. A fibered chart on Y, the associated chart on the base and the associated fibered chart on $J^{r} Y$ are denoted by $(V, \psi), \psi=\left(x^{i}, y^{\sigma}\right),(U, \varphi), \varphi=\left(x^{i}\right)$, and $\left(V^{r}, \psi^{r}\right), \psi^{r}=$ $\left(x^{i}, y^{\sigma}, y_{j_{1}}^{\sigma}, \ldots, y_{j_{1} \ldots j_{r}}^{\sigma}\right)$, respectively. If $W \subset Y$ is an open set, we denote $\Omega_{0}^{r} W$ the ring of smooth functions on $W^{r}=\left(\pi^{r .0}\right)^{-1}(W)$, and $\Omega_{q}^{r} W$ the $\Omega_{0}^{r} W$-module of smooth q-forms on W^{r}. The forms $\left(d x^{i}, \omega_{j_{1}}^{\sigma}, \ldots, \omega_{j_{1} \ldots j_{r-1}}^{\sigma}, d y_{j_{1} \ldots j_{r}}^{\sigma}\right)$, where

$$
\begin{equation*}
\omega_{j_{1} \ldots j_{k}}^{\sigma}=d y_{j_{1} \ldots j_{k}}^{\sigma}-y_{j_{1} \ldots j_{k} i}^{\sigma} d x^{i}, \tag{1}
\end{equation*}
$$

define a basis of 1-forms on V^{r}.
Let $\varrho \in \Omega_{q}^{r} V$ be a form. There is a unique decomposition

$$
\begin{equation*}
\left(\pi^{r+1 . r}\right)^{*} \varrho=h \varrho+p \varrho=h \varrho+p_{1} \varrho+\cdots+p_{q} \varrho \tag{2}
\end{equation*}
$$

of the form ϱ into its horizontal, or 0 -contact, component h $\varrho=p_{0} \varrho$ and the k-contact components $p_{k} \varrho, 1 \leqslant k \leqslant q$. Denote by $\binom{\sigma}{I}$ the multiindices $\binom{\sigma}{j_{1} \ldots j_{s}}$ for $0 \leqslant s \leqslant r, s=|I|$ being the length of the multiindex I. We also use the following notations

$$
\begin{aligned}
& d_{i} f=\frac{\partial f}{\partial x^{i}}+\sum_{|J|<r} \frac{\partial f}{\partial y_{J}^{\sigma}} y_{J_{i}}^{\sigma}+\frac{\partial f}{\partial y_{I}^{\sigma}} y_{I_{i}}^{\sigma}=d_{i}^{\prime} f+\frac{\partial f}{\partial y_{I}^{\sigma}} y_{I i}^{\sigma}, \\
& p d f=p^{\prime} d f+\frac{\partial f}{\partial y_{I}^{\sigma}} \omega_{I}^{\sigma}, \quad|I|=r,
\end{aligned}
$$

where $f \in \Omega_{0}^{r} V ; d_{i}$ is the total derivative with respect to the variable x^{i}.
Lemma 1. Let $W \subset Y$ be an open set, $q \geqslant 1$ an integer, and $\varrho \in \Omega_{q}^{r} W$ a q-form. Let (V, ψ) be a fibered chart on Y for which $V \subset W$. Suppose that the chart expression of ϱ is

$$
\begin{equation*}
\varrho=\sum_{s=0}^{\varphi} A_{\sigma_{1} \sigma_{2}}^{I_{1} I_{2}} \ldots{\stackrel{\sigma_{s}}{\sigma_{s} i_{s+1} i_{s+2} \ldots i_{q}}}_{I_{i}} d y_{j_{1}}^{\sigma_{1}} \wedge d y_{j_{2}}^{\sigma_{2}} \wedge \ldots \wedge d y_{j_{s}}^{\sigma_{s}} \wedge d x^{i_{s+1}} \wedge d x^{i_{s+2}} \wedge \ldots \wedge d x^{i_{q}} \tag{3}
\end{equation*}
$$

with coefficients antisymmetric in all multiindices $\binom{l_{1}}{\sigma_{1}}, \ldots,\binom{I_{4}}{\sigma_{s}}, 0 \leqslant\left|I_{p}\right| \leqslant r, 1 \leqslant p \leqslant s$, antisymmetric in all indices $\left(i_{s+1}, \ldots, i_{q}\right)$ and symmetric in all indices within each multiindex I_{p}.

Then the k-contact component of ϱ has the chart expression

$$
\begin{align*}
& p_{k} \varrho=B_{\sigma_{1} \sigma_{2}}^{l_{2} l_{2}} \ldots{ }_{\sigma_{k}}^{I_{k}} i_{k+1} i_{k+2} \ldots i_{4} \omega_{l_{1}}^{\sigma_{1}} \wedge \omega_{l_{2}}^{\sigma_{2}} \wedge \ldots \wedge \omega_{l_{k}}^{\sigma_{k}} \wedge d x^{i_{k!1}} \wedge d x^{i_{k-2}} \wedge \ldots \wedge d x^{i_{4}}, \tag{4}
\end{align*}
$$

$$
\begin{align*}
& \operatorname{alt}\left(i_{k+1} i_{k+2} \ldots i_{q}\right) . \quad 0 \leqslant k \leqslant q . \tag{5}
\end{align*}
$$

A proof of Lemma 1 is given in [17].
A form $\varrho \in \Omega_{\varphi}^{r} V$ is called π^{r}-horizontal if $\left(\pi^{r+1 . r}\right)^{*} \varrho=h \varrho$. It is called contact if h $\varrho=0$. Every q-form with $q>n$ is contact. A q-form $\varrho, n<q \leqslant N$. is called strongly contact if $p_{q-n} \varrho=0$. A q-form is called decomposable if it is the sum of a horizontal form and a contact form (for $1 \leqslant q \leqslant n$), or the sum of a $(q-n)$-contact and a strongly contact form (for $n \cdot q \leqslant N$).

Lemma 2. Let $W \subset Y$ be an open set, q an integer, $1 \leqslant q \leqslant n$, and $\varrho \in \Omega_{q}^{r} W$ a form. Let (V, ψ) be any fibered chart on Y for which $V \subset W$. Then the form ϱ is contact if and only if it can be expressed as

$$
\begin{array}{lll}
\varrho=\Phi_{\sigma}^{J} \omega_{J}^{\sigma}, & q=1, & 0 \leqslant|J| \leqslant r-1 \\
\varrho=\omega_{J}^{\sigma} \wedge \Psi_{\sigma}^{J}+d \Psi, & 2 \leqslant q \leqslant n, & 0 \leqslant|J| \leqslant r-1 \tag{6}
\end{array}
$$

$\Phi_{\sigma}^{J} \in \Omega_{0}^{r} V$ being some functions, $\Psi_{\sigma}^{J} \in \Omega_{q-1}^{r} V$ some $(q-1)$-forms, and $\Psi \in \Omega_{q-1}^{r} V$ is a contact $(q-1)$-form which can be expressed as $\omega_{l}^{\sigma} \wedge \chi_{\sigma}^{l}$ for some $(q-2)$-forms $\chi_{\sigma}^{l} \in$ $\Omega_{4}^{r}{ }_{2} V,|I|=r-1$.

We say that the forms $\varrho_{0}=\omega_{J}^{\sigma} \wedge \Psi_{\sigma}^{J}, \Psi=\omega_{l}^{\sigma} \wedge \chi_{\sigma}^{l}$ in (6) are generated by the forms $\omega_{j}^{\tau}, 0 \leqslant|J| \leqslant r-1$.

3. Projectability of forms

In this section we show that a q-form η defined on $J^{r} Y, 1 \leqslant q \leqslant n-1$, whose exterior derivative is decomposable, can be locally expressed as the sum of a closed form, a contact form and a $\pi^{r . r-1}$-projectable form.

In what follows, alt (resp. sym) denotes antisymmetrization (resp. symmetrization).
Lemma 3. Let $W \subset Y$ be an open set, q an integer, $1 \leqslant q \leqslant n$. Let (V, ψ) be any fibered chart on Y for which $V \subset W$. A π^{r}-horizontal form $\varrho \in \Omega_{q}^{r} W$ with the chart expression

$$
\varrho=A_{i_{1} i_{2} \ldots i_{4}} d x^{i_{1}} \wedge d x^{i_{2}} \wedge \ldots \wedge d x^{i_{i j}}
$$

is $\pi^{r . r-1}$-projectable if and only if

$$
\begin{equation*}
\frac{\partial A_{i_{1} i_{2} \ldots i_{q}}^{\partial y}}{\partial y_{I}^{\sigma}} \delta_{i_{1}}^{j}=0, \quad \operatorname{alt}\left(i_{0} i_{1} i_{2} \ldots i_{q}\right), \quad \operatorname{sym}(I j), \quad|I|=r . \tag{7}
\end{equation*}
$$

Proof. If a π^{r}-horizontal form ϱ is $\pi^{r, r-1}$-projectable, then its coefficients $A_{i_{1} i_{2} \ldots i_{q}}$ are defined on V^{r-1}. Thus, conditions (7) are satisfied trivially. Consequently, only the converse needs proof. Since ϱ is π^{r}-horizontal we can write

$$
\left.\begin{array}{l}
\left(\pi^{r+1, r}\right)^{*} d \varrho=h d \varrho+p_{1} d \varrho \\
h d \varrho=h d A_{i_{1} i_{2} \ldots i_{q}} \wedge d x^{i_{1}} \wedge d x^{i_{2}} \wedge \ldots \wedge d x^{i_{q}} \\
\quad=\left(d_{i_{0}}^{\prime} A_{i_{1} i_{2} \ldots i_{\varphi}}+\frac{\partial A_{i_{1} i_{2} \ldots i_{q}}}{\partial y_{j_{1} j_{2} \ldots j_{r}}^{\sigma}} y_{j_{1} j_{2} \ldots j_{j, i_{0}}}^{\sigma}\right) d x^{i_{0}} \wedge d x^{i_{1}} \wedge d x^{i_{2}} \wedge \ldots \wedge d x^{i_{q}}, \\
p_{1} d \varrho
\end{array}\right)=\sum_{k=0}^{r} \frac{\partial A_{i_{1} i_{2} \ldots i_{4}}}{\partial y_{j_{1} i_{2} \ldots j_{k}}^{v}} \omega_{j_{1} j_{2} \ldots j_{k}}^{v} \wedge d x^{i_{1}} \wedge d x^{i_{2}} \wedge \ldots \wedge d x^{i_{q}} .
$$

Suppose that conditions (7) are satisfied. This immediately implies that

$$
\frac{\partial A_{i_{1} i_{2} \ldots i_{q}}}{\partial y_{j_{1} j_{2} \ldots j_{r}}^{\sigma}} y_{j_{1} j_{2} \ldots j_{r} i_{0}}^{\sigma} d x^{i_{0}} \wedge d x^{i_{1}} \wedge d x^{i_{2}} \wedge \ldots \wedge d x^{i_{q}}=0
$$

and thus $h d \varrho$ is $\pi^{r+1, r}$-projectable. This leads to the $\pi^{r+1, r}$-projectability of $p_{1} d \varrho$ as well. Then

$$
\frac{\partial A_{i_{1} i_{2} \ldots i_{4}}}{\partial y_{j_{1} j_{2} \ldots j_{r}}^{v}}=0
$$

proving $\pi^{r, r-1}$-projectability.
Theorem 1. Let $W \subset Y$ be an open set, q an integer, $1 \leqslant q \leqslant n-1$, and $\eta \in \Omega_{q}^{r} V$ a form. The following two conditions are equivalent:
(i) $h d \eta$ is $\pi^{r, r-1}$-projectable.
(ii) For every fibered chart $(V, \psi), \psi=\left(x^{i}, y^{\sigma}\right)$, on Y such that $V \subset W$ there exist a form $\chi \in \Omega_{q}^{r-1} V$, a contact form $\nu \in \Omega_{q}^{r} V$ and a form $\tau \in \Omega_{q-1}^{r} V$ such that

$$
\begin{equation*}
\eta=\left(\pi^{r, r-1}\right)^{*} \chi+v+d \tau \tag{8}
\end{equation*}
$$

Proof. Since the condition (ii) obviously implies (i), only the converse needs proof. We proceed in several steps.

1. Let $\eta \in \Omega_{q}^{r} V$, and let $h d \eta$ be $\pi^{r+1, r}$-projectable. Then the form $p d \eta=p_{1} d \eta+\cdots+p_{q} d \eta$ is $\pi^{r+1, r}$-projectable and contact, and thus, by Lemma 2, it is of the form $p d \eta=\varrho_{0}+d \nu_{0}$ where both ϱ_{0} and ν_{0} are contact and generated by the 1 -forms ω_{J}^{σ} with $0 \leqslant|J| \leqslant r-1$. Consequently, $d \eta=h d \eta+\varrho_{0}+d v_{0}$, so that $h d \eta+\varrho_{0}=d \eta_{0}$ for some form $\eta_{0} \in \Omega_{q-1}^{r}$. Integrating we obtain $\eta=\eta_{0}+\nu_{0}+d \tau_{0}$ where τ_{0} is a $(q-1)$-form. The form η_{0} has the following basic properties:
(a) $h d \eta_{0}=h d \eta$, i.e., $h d \eta_{0}$ is $\pi^{r+1 . r}$-projectable,
(b) $p_{s} d \eta_{0}=p_{s} \varrho_{0}$ for $1 \leqslant s \leqslant q+1$, which implies that the forms $p_{1} d \eta_{0} \ldots, p_{q+1} d \eta_{0}$ are generated by the forms $\omega_{J}^{\sigma}, 0 \leqslant|J| \leqslant r-1$.

In what follows, we construct a suitable sequence of triples $\left(\eta_{k}, v_{k}, \tau_{k}\right), 1 \leqslant k \leqslant q$, such that ν_{k} and $p_{1} d \eta_{k}, \ldots, p_{q-k+1} d \eta_{k}$ are generated by the forms $\omega_{J}^{\sigma}, 0 \leqslant|J| \leqslant r-1$, and $p_{q-k+1} \eta_{k}=\cdots=p_{q} \eta_{k}=0$, and, moreover, $\eta_{k-1}=\eta_{k}+\nu_{k}+d \tau_{k}$ (indeed, $p_{q-k+2} d \eta_{k}=$ $\cdots=p_{q+1} d \eta_{k}=0$). By construction, we get for $k=q$ a π^{r}-horizontal form η_{q} which
satisfies the relation $h d \eta_{q}=h d \eta_{q-1}=\cdots=h d \eta_{1}=h d \eta_{0}=h d \eta$. Finally, we use the $\pi^{r+1, r}$-projectability of $h d \eta_{q}$, and we prove that the form η_{q} can be expressed as $\left(\pi^{r . r-1}\right)^{*} \chi$.
2. Taking into account that $\left(\pi^{r+1 . r}\right)^{*} d \eta_{0}=d\left(\pi^{r+1 . r}\right)^{*} \eta_{0}$. we can easily obtain the identities

$$
\begin{align*}
& \left(\pi^{r+2 . r+1}\right)^{*} h d \eta_{0}=h d h \eta_{0} \\
& \left(\pi^{r+2 . r+1}\right)^{*} p_{k} d \eta_{0}=p_{k} d p_{k-1} \eta_{0}+p_{k} d p_{k} \eta_{0}, \quad 1 \leqslant k \leqslant q \tag{9}\\
& \left(\pi^{r+2 . r+1}\right)^{*} p_{q+1} d \eta_{0}=p_{q+1} d p_{q} \eta_{0}
\end{align*}
$$

Suppose the form η_{0} to be expressed as in (3) and decomposed into its contact components by Lemma 1. Then by the first part of this proof, and by the last of equations (9), the form

$$
\begin{align*}
p_{q+1} d \eta_{0}= & p d B_{\sigma_{1} \sigma_{2}}^{I_{1} I_{2}} \ldots{ }_{\sigma_{\varphi}}^{I_{\varphi}} \wedge \omega_{I_{1}}^{\sigma_{1}} \wedge \omega_{l_{2}}^{\sigma_{2}} \wedge \ldots \wedge \omega_{l_{\varphi}}^{\sigma_{4}} \\
= & p^{\prime} d B_{\sigma_{1} \sigma_{2}}^{I_{1} I_{2}} \ldots{ }_{I_{4}}^{I_{4}} \wedge \omega_{I_{1}}^{\sigma_{1}} \wedge \omega_{l_{2}}^{\sigma_{2}} \wedge \ldots \wedge \omega_{I_{4}}^{\sigma_{\sigma_{4}}} \tag{10}\\
& +\frac{\partial B_{\sigma_{1} \sigma_{2}}^{L_{2}} \ldots{ }_{\sigma_{4}}^{I_{q}}}{\partial y_{I_{0}}^{\sigma_{0}}} \omega_{I_{1}}^{\sigma_{0}} \wedge \omega_{I_{1}}^{\sigma_{1}} \wedge \omega_{I_{2}}^{\sigma_{2}} \wedge \ldots \wedge \omega_{I_{4}}^{\sigma_{\varphi}}
\end{align*}
$$

where $\left|I_{0}\right|=r$, should be generated by the forms $\omega_{J}^{\sigma}, 0 \leqslant|J| \leqslant r-1$. Taking the terms with $\left|I_{1}\right|,\left|I_{1}\right|, \ldots,\left|I_{q}\right|=r$, we obtain

$$
\begin{equation*}
\frac{\partial B_{\sigma_{1} \sigma_{2}}^{I_{1} I_{2}} \cdots{ }_{I_{q}}^{I_{q}}}{\partial y_{l_{1}}^{\sigma_{\sigma_{1}}}} \omega_{I_{0}}^{\sigma_{\sigma_{1}}} \wedge \omega_{I_{1}}^{\sigma_{1}} \wedge \omega_{I_{2}}^{\sigma_{2}} \wedge \ldots \wedge \omega_{I_{q}}^{\sigma_{4}}=0 \tag{II}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\frac{\partial B_{\sigma_{1} \sigma_{2}}^{I_{1} I_{2}} \ldots{ }_{I_{q}}^{I_{q}}}{\partial y_{l_{11}}^{\sigma_{0}}}=0, \quad \operatorname{alt}\left(\binom{\sigma_{0}}{I_{0}}\binom{\sigma_{1}}{\sigma_{1}} \ldots\binom{\sigma_{q_{4}}}{I_{q}}\right) \tag{12}
\end{equation*}
$$

But by (5), $B_{\sigma_{1} \sigma_{2}}^{I_{1} I_{2}} \cdots \frac{I_{q}}{\sigma_{4}}=A_{\sigma_{1} \sigma_{2}}^{I_{1} I_{2}} \cdots \frac{I_{q}}{\sigma_{q}}$ and thus

$$
\begin{equation*}
\frac{\partial A_{\sigma_{1}}^{I_{1} I_{2}} \ldots{ }_{\sigma_{2}}^{I_{q}}}{\partial y_{I_{q}}^{\sigma_{0}}}=0, \quad \operatorname{alt}\left(\binom{\sigma_{0}}{\sigma_{0}}\binom{\sigma_{1}}{\sigma_{1}} \ldots\binom{\sigma_{\sigma_{y}}}{I_{q}}, \quad\left|I_{0}\right|,\left|I_{1}\right| \ldots,\left|I_{q}\right|=r .\right. \tag{13}
\end{equation*}
$$

Define a mapping $x: \mathbb{R} \times V^{r} \rightarrow V^{r}$ by

$$
\chi\left(s,\left(x^{i}, y^{\sigma}, y_{j_{1}}^{\sigma_{1}}, \ldots, y_{j_{1} \ldots j_{r-1}}^{\sigma}, y_{j_{1} \ldots j_{r}}^{\sigma}\right)\right)=\left(x^{i}, y^{\sigma} \cdot y_{j_{1}}^{\sigma_{1}}, \ldots y_{j_{1} \ldots j_{1,1}}^{\sigma}, s y_{j_{1} \ldots j_{r}}^{\sigma}\right)
$$

and consider the $(q-1)$-form

$$
\begin{equation*}
\tau_{1}=C_{\sigma_{2} \sigma_{3}}^{l_{2} l_{3}} \ldots{ }_{\sigma_{4}}^{I_{4}} d y_{l_{2}}^{\sigma_{2}} \wedge d y_{l_{3}}^{\sigma_{3}} \wedge \ldots \wedge d y_{l_{4}}^{\sigma_{4}} \tag{14}
\end{equation*}
$$

where

$$
C_{\sigma_{2} \sigma_{3}}^{I_{2} l_{3}} \cdots{ }_{\sigma_{q}}^{I_{\varphi}}=q y_{J}^{v} \int_{0}^{1}\left(A_{\nu \sigma_{2} \sigma_{3}}^{J I_{2} I_{3}} \ldots{ }_{\sigma_{q}}^{I_{q}} \circ \chi\right) \cdot s^{q-1}
$$

Then

$$
\begin{aligned}
d \tau_{1}= & d^{\prime} C_{\sigma_{2} \sigma_{3}}^{I_{2} I_{3}} \ldots{ }_{\sigma_{q}}^{I_{q}} \wedge d y_{I_{2}}^{\sigma_{2}} \wedge d y_{I_{3}}^{\sigma_{3}} \wedge \ldots \wedge d y_{I_{q}}^{\sigma_{q}} \\
& +\frac{\partial C_{\sigma_{2} \sigma_{3}}^{I_{3} I_{3}} y_{\sigma_{q}}^{\sigma_{q}}}{\partial y_{I_{1}}^{\sigma_{1}}} d y_{I_{1}}^{\sigma_{1}} \wedge d y_{I_{2}}^{\sigma_{2}} \wedge d y_{I_{3}}^{\sigma_{3}} \wedge \ldots \wedge d y_{I_{q}}^{\sigma_{q}}, \quad\left|I_{1}\right|=r .
\end{aligned}
$$

The second term in $d \tau_{1}$ can be expressed as

$$
\begin{align*}
& \frac{\partial C_{\sigma_{2} \sigma_{3}}^{l_{2} I_{3}} \cdots{ }_{\sigma_{q}}^{I_{q}}}{\partial y_{I_{1}}^{\sigma_{1}}} d y_{I_{1}}^{\sigma_{1}} \wedge d y_{I_{2}}^{\sigma_{2}} \wedge d y_{I_{3}}^{\sigma_{3}} \wedge \ldots \wedge d y_{I_{q}}^{\sigma_{q}} \\
& = \tag{15}\\
& \quad q \int_{0}^{1}\left(A_{\sigma_{1} \sigma_{2} \sigma_{3}}^{I_{1} I_{2} I_{3}} \cdots{ }_{\sigma_{q}}^{I_{q}}+\frac{\partial A_{\nu \sigma_{2} \sigma_{3}}^{J I_{2} I_{3}} \cdots{ }_{I_{q}}^{I_{q}}}{\partial y_{I_{1}}^{\sigma_{1}}} y_{j}^{\nu}\right) \circ \chi \cdot s^{q-1} d s \\
& \quad \times d y_{I_{1}}^{\sigma_{1}} \wedge d y_{I_{2}}^{\sigma_{2}} \wedge d y_{I_{3}}^{\sigma_{3}} \wedge \ldots \wedge d y_{I_{q}}^{\sigma_{q}}
\end{align*}
$$

The expression in parentheses can be replaced by the antisymmetrized one which has the form

$$
A_{\sigma_{1} \sigma_{2} \sigma_{3}}^{I_{1} I_{2} I_{3}} \cdots{ }_{\sigma_{q}}^{I_{q}}+\frac{1}{q}\left(\frac{\partial A_{\nu \sigma_{2} \sigma_{3}}^{J I_{2} I_{3}} \cdots{ }_{\sigma_{q}}^{I_{q}}}{\partial y_{I_{1}}^{\sigma_{1}}}-\frac{\partial A_{v \sigma_{1} \sigma_{3}}^{J I_{1} I_{3}} \cdots{ }_{\sigma_{q}}^{I_{q}}}{\partial y_{I_{2}}^{\sigma_{2}}} \cdots-\frac{\partial A_{v v)_{2} I_{3}}^{J I_{2} I_{3}} \cdots{ }_{\sigma_{q}-1 \sigma_{1}}^{I_{1} I_{1}}}{\partial y_{I_{q}}^{\sigma_{q}}}\right) y_{J}^{v} .
$$

Taking into account (13) and interchanging the multiindices $\binom{I_{1}}{\sigma_{1}},\binom{J}{v}$, we finally obtain

$$
\begin{aligned}
& \frac{\partial C_{\sigma_{2} \sigma_{3}}^{I_{2} I_{3}} \cdots{ }_{\sigma_{q}}^{I_{q}}}{\partial y_{I_{1}}^{\sigma_{1}}} d y_{I_{1}}^{\sigma_{1}} \wedge d y_{I_{2}}^{\sigma_{2}} \wedge d y_{I_{3}}^{\sigma_{3}} \wedge \ldots \wedge d y_{I_{q}}^{\sigma_{q}} \\
& \quad=q \int_{0}^{1}\left(A_{\sigma_{1} \sigma_{2} \sigma_{3}}^{I_{1} I_{3}} \ldots{ }_{\sigma_{q}}^{I_{q}}+\frac{1}{q} \frac{\partial A_{\sigma_{1}}^{I_{1} I_{2} I_{2} \sigma_{3}} \ldots{ }_{\sigma_{q}}^{I_{q}}}{\partial y_{J}^{v}} y_{J}^{v}\right) \circ \chi \cdot s^{q-1} d s \cdot d y_{I_{1}}^{\sigma_{1}} \wedge d y_{I_{2}}^{\sigma_{2}} \wedge \ldots \wedge d y_{I_{q}}^{\sigma_{q}} \\
& \quad=q \int_{0}^{1} \frac{d}{d s}\left(A_{\sigma_{1}}^{I_{1} I_{2} \sigma_{3} I_{3}} \cdots{ }_{\sigma_{q}}^{I_{q}} \circ \chi \cdot \frac{1}{q} s^{q}\right) d s \cdot d y_{I_{1}}^{\sigma_{1}} \wedge d y_{I_{2}}^{\sigma_{2}} \wedge d y_{I_{3}}^{\sigma_{3}} \wedge \ldots \wedge d y_{I_{q}}^{\sigma_{q}} \\
& \quad=A_{\sigma_{1} \sigma_{2} \sigma_{3}}^{I_{1} I_{2} I_{3}} \ldots{ }_{\sigma_{q}}^{I_{q}} d y_{I_{1}}^{\sigma_{1}} \wedge d y_{I_{2}}^{\sigma_{2}} \wedge d y_{I_{3}}^{\sigma_{3}} \wedge \ldots \wedge d y_{I_{q}}^{\sigma_{q}}
\end{aligned}
$$

Consequently,

$$
\begin{align*}
\eta_{0}= & A_{i_{1} i_{2} \ldots i_{q}} d x^{i_{1}} \wedge d x^{i_{2}} \wedge \ldots \wedge d x^{i_{q}} \\
& +\sum_{k=1}^{q-1} A_{\sigma_{1} \sigma_{2}}^{I_{1} I_{2}} \ldots{ }_{\sigma_{k}}^{I_{k} i_{k+1} i_{k+2} \ldots i_{q}} d y_{l_{1}}^{\sigma_{1}} \wedge d y_{I_{2}}^{\sigma_{2}} \wedge \ldots \wedge d y_{I_{k}}^{\sigma_{k}} \wedge d x^{i_{k+1}} \wedge d x^{i_{k+2}} \wedge \ldots \wedge d x^{i_{q}} \\
& +\sum A_{\sigma_{1} \sigma_{2}}^{J_{1} J_{2}} \ldots{ }_{\sigma_{q}}^{J_{q}} d y_{J_{1}}^{\sigma_{1}} \wedge d y_{J_{2}}^{\sigma_{2}} \wedge \ldots \wedge d y_{J_{q}}^{\sigma_{4}} \tag{16}\\
& +d \tau_{1}-d^{\prime} C_{\sigma_{2} \sigma_{3}}^{I_{2} I_{3}} \ldots{ }_{\sigma_{q}}^{I_{q}} \wedge d y_{I_{2}}^{\sigma_{2}} \wedge d y_{I_{3}}^{\sigma_{3}} \wedge \ldots \wedge d y_{I_{q}}^{\sigma_{q}},
\end{align*}
$$

where at least one of the summation multiindices in the sum $\sum A_{\sigma_{1} \sigma_{2}}^{J_{1} J_{2}} \ldots{ }_{\sigma_{4}}^{J_{4}} d y_{J_{1}}^{\sigma_{1}} \wedge d y_{J_{2}}^{\sigma_{2}} \wedge \ldots \wedge$ $d y_{J_{q}}^{\sigma_{q}}$ is of the length lower than r. Now we write (16) in terms of the basis $\left(d x^{i}, \omega_{J}^{\sigma}, d y_{I}^{\sigma}\right)$,
where $0 \leqslant|J| \leqslant r-1,|I|=r$. Using the decompositions

$$
d y_{j}^{\sigma}=\omega_{j}^{\sigma}+y_{j j}^{\sigma} d x^{j}, \quad d^{\prime} C_{\sigma_{2} \sigma_{3}}^{l_{2} I_{3}} \ldots{ }_{\sigma_{q}}^{I_{q}}=h d^{\prime} C_{\sigma_{2} \sigma_{3}}^{I_{2} /_{3}} \ldots{ }_{\sigma_{4}}^{I_{4}}+p d^{\prime} C_{\sigma_{2} \sigma_{3}}^{I_{2} I_{3}} \ldots{ }_{\sigma_{4}}^{I_{4}}
$$

we get for η_{0} the expression $\eta_{0}=\eta_{1}+\nu_{1}+d \tau_{1}$, where

$$
\begin{align*}
\eta_{1}= & \tilde{A}_{i_{1} i_{2} \ldots i_{4}} d x^{i_{1}} \wedge d x^{i_{2}} \wedge \ldots \wedge d x^{i_{q}} \\
& +\sum_{k=1}^{q-1} \tilde{A}_{\sigma_{1} \sigma_{2}}^{I_{1} I_{2}} \ldots{\underset{\sigma_{k}}{\sigma_{k}} i_{k+1}^{i_{k+1} \ldots i_{q}}}^{I_{I_{1}}} y_{I_{1}}^{\sigma_{1}} \wedge d y_{I_{2}}^{\sigma_{2}} \wedge \ldots \wedge d y_{I_{k}}^{\sigma_{k}} \wedge d x^{i_{k+1}} \wedge d x^{i_{k+2}} \wedge \ldots \wedge d x^{i_{q}} \tag{17}
\end{align*}
$$

with proper coefficients, and ν_{1} is a contact form generated by forms $\omega_{J}^{\sigma}, 0 \leqslant|J| \leqslant r-1$. Clearly $h d \eta_{0}=h d \eta_{1}$, which implies that the form $h d \eta_{1}$ is $\pi^{r+1, r}$-projectable.
3. Consider the form η_{1} in (17) written, for simplicity, with the coefficients denoted again as
 can be easily seen, from (17), that $p_{q} \eta_{1}=0$, and thus

$$
\left(\pi^{r+1 . r}\right)^{*} \eta_{1}=h \eta_{1}+\sum_{k=1}^{q-1} p_{k} \eta_{1}
$$

The k-contact components of the form η_{1}, with $0 \leqslant k \leqslant q-1$, have again the form (4) with coefficients $B_{\sigma_{1} \sigma_{2}}^{I_{1} I_{2}} \ldots{ }_{\sigma_{k}}^{l_{k}} i_{k+1} i_{k+2} \ldots i_{q}$ related to $A_{\sigma_{1} \sigma_{2}}^{l_{1} I_{2}} \ldots{ }_{\sigma_{1} i_{4}, i_{1}, \ldots, i_{q}}^{I_{s}}, k \leqslant s \leqslant q-1$, by the expressions (5). Especially, for $k=q-1$ we have

$$
p_{q-1} \eta_{1}=B_{\sigma_{1} \sigma_{2}}^{l_{1} I_{2}} \cdots{ }_{I_{q-1} I_{4}}^{I_{q}-1} \omega_{I_{1}}^{\sigma_{1}} \wedge \omega_{I_{2}}^{\sigma_{2}} \wedge \ldots \wedge \omega_{I_{4-1}-1}^{\sigma_{q-1}} \wedge d x^{i_{q}} .
$$

Using the relation $\left(\pi^{r+2 . r+1}\right)^{*} p_{q} d \eta_{1}=p_{q} d p_{q-1} \eta_{1}$, resulting from the decompositions (9) written for η_{I} and the fact that $p_{q} \eta_{\mathrm{I}}=0$, we can write

$$
\begin{aligned}
& p_{q} d \eta_{1}=p d B_{\sigma_{1} \sigma_{2}}^{I_{1} I_{2}} \cdots{ }_{\sigma_{q} \mid i_{q}}^{I_{q_{2}}} \wedge \omega_{I_{1}}^{\sigma_{1}} \wedge \omega_{I_{2}}^{\sigma_{2}} \wedge \ldots \wedge \omega_{I_{4-1}}^{\sigma_{\psi-1}} \wedge d x^{i_{\psi}} \\
& =p^{\prime} d B_{\sigma_{1} \sigma_{2}}^{I_{1} I_{2}} \cdots{ }_{\sigma_{4-1} i_{q}}^{I_{q-1}} \wedge \omega_{l_{1}}^{\sigma_{1}} \wedge \omega_{l_{2}}^{\sigma_{2}} \wedge \ldots \wedge \omega_{l_{4-1}}^{\sigma_{4-1}} \wedge d x^{i_{4}} \\
& +\frac{\partial B_{\sigma_{1} \sigma_{2}}^{I_{1} I_{2}} \ldots{ }_{l_{4-1}}^{\sigma_{4-1}}}{\partial y_{I_{0}}^{\sigma_{1 木}}} \omega_{I_{0}}^{\sigma_{0}} \wedge \omega_{l_{1}}^{\sigma_{1}} \wedge \omega_{I_{2}}^{\sigma_{2}} \wedge \ldots \wedge \omega_{l_{q-1}}^{\sigma_{4-1}} \wedge d x^{i_{q}} . \quad\left|I_{0}\right|=r .
\end{aligned}
$$

But, by $\pi^{r+1, r}$-projectability, $p_{q} d \eta_{1}$ should be generated by the forms $\omega_{j}^{\sigma}, 0 \leqslant|J| \leqslant r-1$. Taking the terms labelled by multiindices such that $\left|I_{0}\right|,\left|I_{1}\right|,\left|I_{2}\right| \ldots,\left|I_{q-1}\right|=r$ we obtain
 (II-13). The same procedure as in the part 2 of this proof leads to the following decomposition of η_{1}

$$
\begin{equation*}
\eta_{1}=\eta_{2}+v_{2}+d \tau_{2} \tag{18}
\end{equation*}
$$

in which v_{2} is contact and generated by forms $\omega_{J}^{\sigma}, 0 \leqslant|J| \leqslant r-1$, the form τ_{2} is given by

$$
\begin{aligned}
& \tau_{2}=C_{\sigma_{2} \sigma_{3}}^{I_{2} I_{3}} \cdots{ }_{\sigma_{q-1} i_{q}}^{I^{q-1}} d y_{I_{2}}^{\sigma_{2}} \wedge d y_{l_{3}}^{\sigma_{3}} \wedge \ldots \wedge d y_{L_{q-1}}^{\sigma_{q-1}} \wedge d x^{i_{q}} \\
& C_{\sigma_{2} \sigma_{3}}^{I_{2} I_{3}} \cdots{ }_{\sigma_{q-1}}^{I_{q-1}}=(q-1) y_{J}^{\nu} \int_{0}^{1} A_{v \sigma_{2} \sigma_{3}}^{J I_{2} / I_{3}} \cdots{ }_{\sigma_{4-1} \cdot i_{4}}^{I_{4-1}} \circ \chi \cdot s^{q-2} d s
\end{aligned}
$$

and η_{2} is of the form

$$
\begin{align*}
\eta_{2}= & \tilde{A}_{i_{1} i_{2} \ldots i_{q}} d x^{i_{1}} \wedge d x^{i_{2}} \wedge \ldots \wedge d x^{i_{q}} \\
& +\sum_{k=1}^{q-2} \tilde{A}_{\sigma_{1} \sigma_{2}}^{I_{1} I_{2}} \ldots{ }_{\sigma_{k} i_{k+1} i_{k+2} \ldots i_{q}}^{I_{k}} d y_{I_{1}}^{\sigma_{1}} \wedge d y_{I_{2}}^{\sigma_{2}} \wedge \ldots \wedge d y_{I_{k}}^{\sigma_{k}} \wedge d x^{i_{k+1}} \wedge d x^{i_{k+2}} \wedge \ldots \wedge d x^{i_{q}} . \tag{19}
\end{align*}
$$

It holds $h d \eta_{1}=h d \eta_{2}$ and thus $h d \eta_{2}$ is $\pi^{r+1, r}$-projectable.
4. Now, we proceed by induction. As the induction hypothesis, we suppose that

$$
\begin{align*}
& \eta_{q-p}=A_{i_{1} i_{2} \ldots i_{q}} d x^{i_{1}} \wedge d x^{i_{2}} \wedge \ldots \wedge d x^{i_{q}} \\
& \quad+\sum_{k=1}^{p} A_{\sigma_{1} \sigma_{2}}^{I_{1} I_{2}} \ldots{ }_{\sigma_{k} i_{k+1} i_{k+2} \ldots i_{q}}^{I_{q_{2}}} d y_{I_{1}}^{\sigma_{1}} \wedge d y_{I_{2}}^{\sigma_{2}} \wedge \ldots \wedge d y_{I_{k}}^{\sigma_{k}} \wedge d x^{i_{k+1}} \wedge d x^{i_{k+2}} \wedge \ldots \wedge d x^{i_{q}} \tag{20}
\end{align*}
$$

where $0 \leqslant\left|I_{1}\right|,\left|I_{2}\right|, \ldots,\left|I_{p}\right| \leqslant r$, is a form for which $h d \eta_{q-p}$ is $\pi^{r+1, r}$-projectable. We wish to show that η_{q-p} can be written as

$$
\begin{equation*}
\eta_{q-p}=\eta_{q-p+1}+v_{q-p+1}+d \tau_{q-p+1} \tag{21}
\end{equation*}
$$

where τ_{q-p+1} is a q-form, v_{q-p+1} is a contact form generated by the forms $\omega_{J}^{\sigma}, 0 \leqslant|J| \leqslant r-1$, and η_{q-p+1} is given by

$$
\begin{align*}
& \eta_{q-p+1}=\tilde{A}_{i_{1} i_{2} \ldots i_{q}} d x^{i_{1}} \wedge d x^{i_{2}} \wedge \ldots \wedge d x^{i_{q}} \\
& \quad+\sum_{k=1}^{p-1} \tilde{A}_{\sigma_{1} \sigma_{2}}^{I_{1} I_{2}} \ldots{ }_{\sigma_{k}}^{I_{k} i_{k+1} i_{k+2} \ldots i_{q}} d y_{I_{1}}^{\sigma_{1}} \wedge d y_{I_{2}}^{\sigma_{2}} \wedge \ldots \wedge d y_{I_{k}}^{\sigma_{k}} \wedge d x^{i_{k+1}} \wedge d x^{i_{k+2}} \wedge \ldots \wedge d x^{i_{q}} \tag{22}
\end{align*}
$$

For $p=q$ and $p=q-1$ this hypothesis is satisfied (see parts 2 and 3 of this proof). For the form η_{q-p} given by (22) it holds $p_{p+1} \eta_{q-p}=0$, thus

$$
\left(\pi^{r+1, r}\right)^{*} \eta_{q-p}=h \eta_{q-p}+\sum_{k=1}^{p} p_{k} \eta_{q-p}
$$

with components $h \eta_{q-p}, p_{1} \eta_{q-p}, \ldots, p_{p} \eta_{q-p}$ given by (4), the coefficients being expressed by (5). Then, by analogy with (9), we have $\left(\pi^{r+2, r+1}\right)^{*} p_{p+1} d \eta_{q-p}=p_{p+1} d p_{p} \eta_{q-p}$. Thus, the fomin

$$
\begin{array}{rl}
p_{p+1} & d \eta_{q-p} \\
= & p^{\prime} d B_{\sigma_{1} \sigma_{2}}^{I_{1} I_{2}} \ldots{ }_{\sigma_{p} i_{p+1} i_{p+2} \ldots i_{q}}^{I_{p}} \wedge \omega_{I_{1}}^{\sigma_{1}} \wedge \omega_{I_{2}}^{\sigma_{2}} \wedge \ldots \wedge \omega_{I_{p}}^{\sigma_{p}} \wedge d x^{i_{p+1}} \wedge d x^{i_{p+2}} \wedge \ldots \wedge d x^{i_{q}} \\
& +\frac{\partial B_{\sigma_{1} \sigma_{2}}^{I_{1} I_{2}} \ldots{ }_{\sigma_{p} i_{p+1} i_{p+2} \ldots i_{q}}^{I_{q}}}{\partial y_{I_{0}}^{\sigma_{0}}} \omega_{I_{0}}^{\sigma_{0}} \wedge \omega_{I_{1}}^{\sigma_{1}} \wedge \omega_{I_{2}}^{\sigma_{2}} \wedge \ldots \wedge \omega_{I_{p}}^{\sigma_{p}} \wedge d x^{i_{p+1}} \wedge d x^{i_{p+2}} \wedge \ldots \wedge d x^{i_{q}}
\end{array}
$$

where $\left|I_{0}\right|=r$, should be generated by the forms $\omega_{J}^{\sigma}, 0 \leqslant|J| \leqslant r-1$. Taking the terms with $\left|I_{0}\right|,\left|I_{1}\right|, \ldots,\left|I_{q}\right|=r$, we obtain

$$
\frac{\partial B_{\sigma_{1} \sigma_{2}}^{I_{1} I_{2}} \cdots{ }_{\sigma_{p} i_{p+1} i_{p+2} \ldots i_{q}}^{I_{q}}}{\partial y_{I_{0}}^{\sigma_{0}}} \omega_{I_{0}}^{\sigma_{0}} \wedge \omega_{I_{1}}^{\sigma_{1}} \wedge \omega_{I_{2}}^{\sigma_{2}} \wedge \ldots \wedge \omega_{I_{p}}^{\sigma_{p}} \wedge d x^{i_{p+1}} \wedge d x^{i_{p+2}} \wedge \ldots \wedge d x^{i_{q}}=0
$$

This implies, together with (5),

$$
\begin{align*}
& B_{\sigma_{1} \sigma_{2}}^{l_{1} I_{2}} \ldots{ }_{\sigma_{p} i_{p+1} i_{p, 2} \ldots i_{q}}^{I_{p}}=A_{\sigma_{1} \sigma_{2}}^{I_{1} I_{2}} \ldots{ }_{\sigma_{p}}^{I_{p} i_{p+1} i_{p+2} \ldots i_{q}}, \\
& \frac{\partial A_{\sigma_{1} \sigma_{2}}^{I_{2} I_{2}} \cdots{ }_{\sigma_{p}}^{\sigma_{p} i_{p-1} i_{p-2} \ldots i_{q}}}{\partial y_{I_{0}}^{\sigma_{0}}}=0, \quad \operatorname{alt}\left(\binom{\sigma_{1}}{I_{0}}\binom{\sigma_{1}}{I_{1}} \ldots\binom{\sigma_{p}}{i_{p}}, \quad\left|I_{0}\right|,\left|I_{1}\right|, \ldots\left|I_{p}\right|=r .\right. \tag{23}
\end{align*}
$$

Consider the $(q-1)$-form
where

Then

$$
\begin{aligned}
& d \tau_{q-p+1}=d^{\prime} C_{\sigma_{2} \sigma_{2}}^{l_{2} /_{3}} \ldots{ }_{\sigma_{p} i_{p+1} i_{p+2} \ldots i_{q}}^{I_{q}} \wedge d y_{l_{2}}^{\sigma_{2}} \wedge d y_{l_{3}}^{\sigma_{3}} \wedge \ldots \wedge d y_{l_{p}}^{\sigma_{r}} \wedge d x^{i_{p+1}} \wedge d x^{i_{p+2}} \wedge \ldots \wedge d x^{i_{4}} \\
& \quad+\frac{\partial C_{\sigma_{2} \sigma_{3}}^{\sigma_{2} \sigma_{3}} \ldots{ }_{\sigma_{p} i_{p+1} i_{p, 2} \ldots i_{p}}^{I_{q_{1}}}}{\partial y_{I_{1}}^{\sigma_{1}}} d y_{I_{1}}^{\sigma_{1}} \wedge d y_{I_{2}}^{\sigma_{2}} \wedge d y_{l_{3}}^{\sigma_{3}} \wedge \ldots \wedge d y_{I_{p}}^{\sigma_{p}} \wedge d x^{i_{p+1}} \wedge d x^{i_{p+2}} \wedge \ldots \wedge d x^{i_{4}} .
\end{aligned}
$$

where $\left|I_{1}\right|=r$. The second term in $d \tau_{\varphi-\mu+1}$ can be expressed as

$$
\begin{aligned}
& \frac{a C_{\sigma_{2}}^{l_{2} l_{3}} \cdots{ }_{\sigma_{p}}^{\sigma_{p}}{ }_{p} i+p+1 i_{p+2} \ldots i_{q}}{\partial y_{l_{1}}^{\sigma_{1}}} d y_{l_{1}}^{\sigma_{1}} \wedge d y_{I_{2}}^{\sigma_{2}} \wedge d y_{I_{3}}^{\sigma_{3}} \wedge \ldots \wedge d y_{l_{p}}^{\sigma_{p}} \wedge d x^{i_{p+1}} \wedge d x^{i_{p+2}} \wedge \ldots \wedge d x^{i_{4}} \\
& =p \int_{0}^{1}\left(A_{\sigma_{1} \sigma_{2} \sigma_{3}}^{I_{1} I_{3}} \cdots{ }_{\sigma_{p}}^{I_{p}}+\frac{\partial A_{\nu \sigma_{2} \sigma_{3}}^{J_{2} I_{3}} \cdots{ }_{\sigma_{p} i_{p+1} i_{p+2} \ldots i_{q}}^{I_{p}}}{\partial y_{I_{1}}^{\sigma_{1}}} y_{J}^{v}\right) \circ \chi \cdot s^{p-1} d s \\
& \times d y_{l_{1}}^{\sigma_{1}} \wedge d y_{l_{2}}^{\sigma_{2}} \wedge d y_{I_{3}}^{\sigma_{3}} \wedge \ldots \wedge d y_{I_{p}}^{\sigma_{p}} \wedge d x^{i_{p-1}} \wedge d x^{i_{p+2}} \wedge \ldots \wedge d x^{i_{4}} .
\end{aligned}
$$

The expression in parenthesis can be replaced by the antisymmetrized one which has the form

$$
\begin{aligned}
& A_{\sigma_{1} \sigma_{2} \sigma_{3}}^{I_{1} I_{2} I_{3}} \cdots{ }_{\sigma_{p} i_{p}, 1 i_{p+2} \ldots i_{4}}^{I_{p}} \\
& +\frac{1}{p}\left(\frac{\partial A_{\nu \sigma_{2} \sigma_{3}}^{J I_{2} l_{3}} \cdots{ }_{\sigma_{p} i_{p+1} i_{p-2} \ldots i_{q}}^{I_{q}}}{\partial y_{I_{1}}^{\sigma_{1}}}-\frac{\partial A_{v \sigma_{1} \sigma_{3}}^{J I_{1} I_{3}} \cdots{ }_{\sigma_{p}}^{I_{p} i_{p+1} i_{p+2} \ldots i_{q}}}{\partial y_{I_{2}}^{\sigma_{2}}}-\cdots\right. \\
& \left.-\frac{\partial A_{v \sigma_{2} \sigma_{3}}^{J I_{2} I_{3}} \cdots{ }_{I_{p-1} I_{1}}^{I_{p} \sigma_{1} i_{p+1} i_{p+2} \ldots i_{q}}}{\partial y_{I_{p}^{p}}^{\sigma_{p}}}\right) y_{J}^{\nu} .
\end{aligned}
$$

Taking into account (23) and interchanging the multiindices $\binom{I_{1}}{\sigma_{1}},\binom{l}{1}$, we obtain (see the same
procedure in the part 2 of this proof)

$$
\begin{aligned}
& \frac{\partial C_{\sigma_{2} \sigma_{3}}^{I_{2} I_{3}} \cdots{ }_{\sigma_{p} i_{p+1} i_{p+2} \ldots i_{q}}^{I_{q}}}{\partial y_{I_{1}}^{\sigma_{1}}} d y_{I_{1}}^{\sigma_{1}} \wedge d y_{I_{2}}^{\sigma_{2}} \wedge d y_{I_{3}}^{\sigma_{3}} \wedge \ldots \wedge d y_{T_{p}}^{\sigma_{p}} \wedge d x^{i_{p+1}} \wedge d x^{i_{p+2}} \wedge \ldots \wedge d x^{i_{q}}
\end{aligned}
$$

$$
\begin{aligned}
& \times d y_{I_{1}}^{\sigma_{1}} \wedge d y_{I_{2}}^{\sigma_{2}} \wedge d y_{I_{3}}^{\sigma_{3}} \wedge \ldots \wedge d y_{I_{p}}^{\sigma_{p}} \wedge d x^{i_{p+1}} \wedge d x^{i_{p+2}} \wedge \ldots \wedge d x^{i_{q}} \\
& =A_{\sigma_{1} \sigma_{2} \sigma_{3}}^{I_{1} I_{3} I_{3}} \ldots{ }_{\sigma_{p} i_{p+1} i_{p+2} \ldots i_{q}}^{I_{p}} d y_{I_{1}}^{\sigma_{1}} \wedge d y_{I_{2}}^{\sigma_{2}} \wedge d y_{I_{3}}^{\sigma_{3}} \wedge \ldots \wedge d y_{I_{p}}^{\sigma_{p}} \wedge d x^{i_{p+1}} \wedge d x^{i_{p+2}} \wedge \ldots \wedge d x^{i_{q}} .
\end{aligned}
$$

Finally

$$
\begin{align*}
& \eta_{q-p}=A_{i_{1} i_{2} \ldots i_{q}} d x^{i_{1}} \wedge d x^{i_{2}} \wedge \ldots \wedge d x^{i_{q}} \\
& \quad+\sum_{k=1}^{p-1} A_{\sigma_{1} \sigma_{2}}^{I_{1} I_{2}} \ldots{ }_{\sigma_{k} i_{k+1} i_{k+2} \ldots i_{q}}^{I_{k}} d y_{I_{1}}^{\sigma_{1}} \wedge d y_{I_{2}}^{\sigma_{2}} \wedge \ldots \wedge d y_{I_{k}}^{\sigma_{k}} \wedge d x^{i_{k+1}} \wedge d x^{i_{k+2}} \wedge \ldots \wedge d x^{i_{q}} \tag{24}\\
& \quad+\sum A_{\sigma_{1} \sigma_{2}}^{J_{1} J_{2}} \ldots{ }_{\sigma_{q}}^{J_{4}} d y_{J_{1}}^{\sigma_{1}} \wedge d y_{J_{2}}^{\sigma_{2}} \wedge \ldots \wedge d y_{J_{p}}^{\sigma_{p}} \wedge d x^{i_{p+1}} \wedge d x^{i_{p+2}} \wedge \ldots \wedge d x^{i_{q}}+d \tau_{q-p+1} \\
& \quad-d^{i_{0}} C_{\sigma_{2} \sigma_{3}}^{I_{2} l_{3}} \ldots{ }_{\sigma_{p} i_{p+1} i_{p+2} \ldots i_{q}}^{I_{p}} \wedge d y_{I_{2}}^{\sigma_{2}} \wedge d y_{T_{3}}^{\sigma_{3}} \wedge \ldots \wedge d y_{I_{p}}^{\sigma_{p}} \wedge d x^{i_{p+1}} \wedge d x^{i_{p+2}} \wedge \ldots \wedge d x^{i_{q}}
\end{align*}
$$

where at least one of the multiindices in the sum $\sum A_{\sigma_{1} \sigma_{2}}^{J_{1} J_{2}} \ldots{ }_{\sigma_{p} i_{p+1} i_{p+2} \ldots i_{q}}^{J_{p}} d y_{J_{1}}^{\sigma_{1}} \wedge d y_{J_{2}}^{\sigma_{2}} \wedge \ldots \wedge$ $d y_{J_{p}}^{\sigma_{p}} \wedge d x^{i_{p+1}} \wedge d x^{i_{p+2}} \wedge \ldots \wedge d x^{i_{q}}$ is of length lower than r. Now we write (24) in terms of the basis $\left(d x^{i}, \omega_{J}^{\sigma}, d y_{I}^{\sigma}\right)$, where $0 \leqslant|J| \leqslant r-1,|I|=r$. Using the decompositions

$$
d y_{J}^{\sigma}=\omega_{J}^{\sigma}+y_{J j}^{\sigma} d x^{j}
$$

and

$$
d^{\prime} C_{\sigma_{2} \sigma_{3}}^{I_{2} l_{3}} \cdots{ }_{\sigma_{p} i_{p+1} i_{p+2} \ldots i_{q}}^{I_{p}}=h d^{\prime} C_{\sigma_{2} \sigma_{3}}^{I_{2} l_{3}} \cdots{ }_{\sigma_{p} i_{p+1} i_{p+2} \ldots i_{q}}^{I_{p}}+p d^{\prime} C_{\sigma_{2} \sigma_{3}}^{I_{2} I_{3}} \cdots{ }_{\sigma_{p} i_{p+1} i_{p+2} \ldots i_{q}}^{I_{p}}
$$

we get for η_{q-p} the expression (21) in which η_{q-p+1} has the form (22) and v_{q-p+1} is the contact form generated by forms $\omega_{J}^{\sigma}, 0 \leqslant|J| \leqslant r-1$. Clearly $h d \eta_{q-p}=h d \eta_{q-p+1}$, which implies that the form $h d \eta_{q-p+1}$ is $\pi^{r+1, r}$-projectable.
5. For $p=1$, formula (21) gives

$$
\eta_{q-1}=\eta_{q}+v_{q}+d \tau_{q}
$$

in which η_{q} has the form

$$
\eta_{q}=A_{i_{1} i_{2} \ldots i_{q}} d x^{i_{1}} \wedge d x^{i_{2}} \wedge \ldots \wedge d x^{i_{q}}
$$

Since the form

$$
\begin{aligned}
h d \eta_{q} & =d A_{i_{1} i_{2} \ldots i_{q}} \wedge d x^{i_{1}} \wedge d x^{i_{2}} \wedge \ldots \wedge d x^{i_{\varphi}} \\
& =\left(h d^{\prime} A_{i_{1} i_{2} \ldots i_{q}}+\frac{\partial A_{i_{1} i_{2} \ldots i_{q}}}{\partial y_{I}^{\sigma}} y_{I_{i_{\varphi}}}^{\sigma} d x^{i_{\varphi}}\right) \wedge d x^{i_{1}} \wedge d x^{i_{2}} \wedge \ldots \wedge d x^{i_{q}}
\end{aligned}
$$

is again $\pi^{r+1 . r}$-projectable, we obtain

$$
\frac{\partial A_{i} i_{2} \ldots i_{4}}{\partial y_{I}^{\sigma}} \delta_{i_{1}}^{j}=0 \quad \operatorname{alt}\left(i_{0} i_{1} i_{2} \ldots i_{q}\right), \quad \operatorname{sym}(I j), \quad|I|=r
$$

Thus, it is evident that the form η_{q} is $\pi^{r, r-1}$-projectable by Lemma 3. Denoting by χ the form for which $\eta_{\mu}=\left(\pi^{r \cdot r-1}\right)^{*} \chi$ we complete the proof.

4. Variational sequence

In this section, we briefly recall basic concepts of the calculus of variations, related to the Euler-Lagrange mapping (see, e.g., [17]).

Let (Y, π, X) be a fibered manifold, $\operatorname{dim} Y=n+m, \operatorname{dim} X=n$, and $J^{r} Y$ its r-jet prolongation, $\operatorname{dim} J^{r} Y=N, \pi^{r}: J^{r} Y \rightarrow X, \pi^{r .3}: J^{r} Y \rightarrow J^{s} Y$ the canonical projections (see Section 2). Let $\gamma: X \rightarrow Y$ be a section of the manifold (Y, π, X) and $J^{\prime} \gamma: X \rightarrow Y$ its r-jet prolongation. Any π^{r}-horizontal n-form $\lambda \in \Omega_{n}^{r} Y$ is called a lagrangian of the order $r ;(\pi, \lambda)$ is called a Lagrange structure. In a fibered chart (V, ψ) on Y and the associated fibered chart ($V^{r r}, y^{r}$) on $J^{\prime r} Y$ we have

$$
\begin{equation*}
\lambda=\mathcal{L}\left(x^{i}, y^{\sigma}, y_{j_{1}}^{\sigma}, \ldots, y_{j_{1,2} \ldots j_{r}}^{\sigma}\right) d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{n} . \tag{25}
\end{equation*}
$$

For a given λ and any compact, n-dimensional submanifold $\Omega \subset X$ with boundary, we get a real-valued function

$$
\begin{equation*}
\gamma \rightarrow \int_{\Omega} J^{r} \gamma^{*} \lambda \tag{26}
\end{equation*}
$$

defined on the set of sections of (Y, π, X), called the action function associated with λ and Ω. The first variational formula for (26) can be derived in an intrinsic way by means of the Lepage forms. the Lie derivative, and the exterior derivative d. This involves the introducing the global Euler-Lagrange form associated with λ

$$
\begin{align*}
& E_{\lambda}=E_{\sigma}(\mathcal{L}) d y^{\sigma} \wedge d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{n} \tag{27}\\
& E_{\sigma}(\mathcal{L})=\frac{\partial \mathcal{L}}{\partial y^{\sigma}}+\sum_{k=1}^{r}(-1)^{k} d_{i_{1}} d_{i_{2}} \ldots d_{i_{k}}\left(\frac{\partial \mathcal{L}}{\partial y_{i_{1} i_{2} \ldots i_{k}}^{\sigma}}\right) \tag{28}
\end{align*}
$$

$E_{i r}(\mathcal{L})$ being the Euler-Lagrange expressions. The mapping $\lambda \rightarrow E_{\lambda}$ is called the EulerLagrange mapping. The kernel of this mapping describes trivial or null lagrangians. its image describes variational $(n+1)$-forms.

Let us now take into account the notation introduced in Section $2 ; \Omega_{q}^{r}, q \geqslant 0$, is the direct image of the sheaf of smooth q-forms over $J^{r} Y$ by the jet projection $\pi^{r .0}$. For $1 \leqslant q \leqslant n$, resp. for $q \geqslant n+1$, denote by $\Omega_{q, c}^{r}$ the subsheaf of contact, resp, strongly contact, forms ($\Omega_{0, c}^{r}=\{0\}$). Define $\Theta_{q}^{r}=\Omega_{q . c}^{r}+d \Omega_{q-1 . c}^{r}, q \geqslant 1$, where $d \Omega_{q-1 . c}^{r}$ is the image sheaf of $\Omega_{q-1 . c}^{r}$ by d. We get the subsequence

$$
0 \rightarrow \Theta_{1}^{r} \rightarrow \Theta_{2}^{r} \rightarrow \cdots \rightarrow \Theta_{p}^{r} \rightarrow 0, \quad P=m\binom{n+r-1}{r-1}
$$

of the deRham sequence

$$
0 \rightarrow \mathbb{R}_{Y} \rightarrow \Omega_{1}^{r} \rightarrow \Omega_{2}^{r} \rightarrow \cdots \rightarrow \Omega_{N}^{r} \rightarrow 0
$$

and the corresponding quotient sequence

$$
\begin{equation*}
0 \rightarrow \mathbb{R}_{Y} \rightarrow \Omega_{1}^{r} / \Theta_{1}^{r} \rightarrow \Omega_{2}^{r} / \Theta_{2}^{r} \rightarrow \cdots \rightarrow \Omega_{P}^{r} / \Theta_{P}^{r} \rightarrow \Omega_{P+1}^{r} \rightarrow \cdots \rightarrow \Omega_{N}^{r} \rightarrow 0 \tag{29}
\end{equation*}
$$

which is called the variational sequence. The quotient mapping, denoted by E, is defined by putting $E([\rho])=[d \rho]$, where $[\eta]$ denotes the class of the form η. It can be shown that the variational sequence is an acyclic resolution of the constant sheaf \mathbb{R}_{Y}. Consequently, by the abstract deRham theorem, the complex of global sections of the variational sequence has the same cohomology as the manifold Y. Denoting the sequence (29) by $0 \rightarrow \mathbb{R}_{Y} \rightarrow V^{r}$, and the corresponding cochain complex of global sections by $0 \rightarrow \Gamma\left(Y, \mathbb{R}_{Y}\right) \rightarrow \Gamma\left(Y, \Omega_{1}^{r} / \Theta_{1}^{r}\right) \rightarrow$ $\Gamma\left(Y, \Omega_{2}^{r} / \Theta_{2}^{r}\right) \rightarrow \cdots$, or simply by $\Gamma\left(Y, \mathcal{V}^{r}\right)$, we have $H^{k}\left(\Gamma\left(\mathbb{R}_{Y}, \mathcal{V}^{r}\right)\right)=H^{k}(Y, \mathbb{R})$.

A basic observation connecting the variational sequence with the calculus of variations comes from the analysis of the $(n-1)-, n$ - and $(n+1)$-terms in (29), so called variational terms. Describing the sheaf $\Omega_{n}^{r} / \Theta_{n}^{r}$, resp. $\Omega_{n+1}^{r} / \Theta_{n+1}^{r}$, as a certain subsheaf the sheaf of forms Ω_{n}^{r+1}, resp. $\Omega_{n+1}^{2 r+1}$, one can easily see that the corresponding representation of the quotient mapping $E: \Omega_{n}^{r} / \Theta_{n}^{r} \rightarrow \Omega_{n+1}^{r} / \Theta_{n+1}^{r}$ concides with the Euler-Lagrange mapping $\lambda \rightarrow E_{\lambda}$.

5. Trivial lagrangians

Now we are in a position to describe the local structure of trivial lagrangians of order r. Recall that the r th order lagrangian $\lambda \in \Omega_{n}^{r} Y$ over a fibered manifold (Y, π, X) is called trivial if its Euler-Lagrange form is the identically zero, i.e., $E_{\lambda}=0$.

Theorem 2. A lagrangian λ of order r over (Y, π, X) is trivial if and only if to each point $y \in Y$ there exist a fibered chart (V, ψ) on Y and an $(n-1)$-form χ on $V^{r-1} \subset J^{r-1} Y$ such that $\lambda=h d \chi$ on V^{r}.

Proof. It is immediately given by the variational sequence of order r that a lagrangian λ is trivial if and only if it can be locally expressed in the form $\lambda=h d \eta$, up to a projection, where η is an $(n-1)$-form. Thus, only the $\pi^{r, r-1}$-projectability of η needs proof. Assume that $h d \eta=\left(\pi^{r+1, r}\right)^{*} \lambda$. Since $h d \eta$ is $\pi^{r+1, r}$-projectable, it follows from Theorem 1 that η is of the form $\eta=\left(\pi^{r, r-1}\right)^{*} \chi+\nu+d \tau$, where ν is a contact and χ is defined on V^{r-1}. Consequently, $h d \eta=h\left(\pi^{r, r-1}\right)^{*} d \chi=\left(\pi^{r, r-1}\right)^{*} h d \chi$ which completes the proof.

References

[1] S.J. Aldersley, Higher Euler operators and some of their applications, J. Math. Phys. 20 (1979) 522-531.
[2] I.M. Anderson, Introduction to the variational bicomplex, Contemporary Mathematics 132 (1992) 51-73.
[3] I. Anderson, T. Duchamp, On the existence of global variational principles, Am. J. Math. 102 (1980) 781-867.
[4] J.M. Ball, J.C. Curie, and P.J. Olver, Null lagrangians, weak continuity, and variational problems of arbitrary order, Journ. Funct. Anal. 41 (1981) 135-174.
[5] J. Chrastina, Formal Calculus of Variation on Fibered Manifolds (Masaryk University, Brno, 1989).
[6] P. Dedecker and W.M. Tulczyjew, Spectral sequences and the inverse problem of the calculus of variations. in: Differential Geometric Methods in Mathematical Physics, Internat. Coll., Aix en-Provence. 1979. Lecture Notes in Math. 839 (Springer, Berlin, 1980) 498-503.
[7] S. Hojman, Problem of the identicaaly vanishing Euler-Lagrange derivatives in field theory, Phys. Rev. D) 27 (1983) 451-453.

I8 D. Krupka, A geometric theory of ordinary first order variational problems on fibered manifolds. I. Critical sections. J. Math. Anal. Appl. 49 (1975) 180-206.
|9| D. Krupka, On generalized invariant transformations, Rep. Math. Phys. (Torun) 5 (1974) 353--358.
110| D. Krupka, On the local structure of the Euler--Lagrange mapping of the calculus of variations. in: Differential Geometry and its Applications, Proc. Conf. 1990 (Charles University, Prague. 1992) 181-188.
[11| D. Krupka, On the structure of Euler mapping, Arch. Math. (Brno) $\mathbf{1 0}$ (1974) 55-61.
[12| D. Krupka, Some Geometric Aspects of the Calculus of Variations in Fibered Manifolds, Folia Fac. Sci. Nat. UJEP Brunensis 14 (1973).
[13] D. Krupka, The contact ideal, Diff. Geom. Appl. 5 (1995) 257-276.
[1+] D. Krupka, The trace decomposition problem, Beitr. Algebra Geom. 36 (1995) 303-315.
11.1 D. Krupka, Topics in the calculus of variations: Finite order variational sequences, in: Differential Geometry (and its Applications, Proc. Conf., Opava, 1992 (Silesian University, Opava, 1993) 236-354.
|16| D. Krupka, Variational sequences on finite order jet spaces, in: J. Janyška nad D. Krupka, eds, Differontial Gcometry and its Applications, Proc. Conf., Brno, Czechoslovakia 1989 (World Scientific, Singapore, 199()) 236-254.
[17| D. Krupka. The geometry of Lagrange structures, Preprint Series in Global Analysis GA 7/97. Department of Mathematics, Silesian University, Opava (1997).
|18| P. Olver, Hyperjacobians, determinantal ideals and weak solutions to variational problems, Proc: Roval Soc: Edinhurgh A 95 (1893) 317-340.
[19] H. Rund, Integral formulae associated with the Euler-Lagrange operator of multiple integral problems in the calculus of variations. Aequationes Math. 11 (1974) 212-229.
1201 D. Saunders, The Geometry of Jet Bundles, London Math. Soc. Lecture Note Series 142 (Cambridge University Press. New York. 1989)t.
[21] F. Takens. A global version of the inverse problem of the calculus of variations, J. Differential Geometry 14 (1979) 543-562.
[22] A. Trautman, Noether equations and conservation laws. Comm. Math. Phys. 6 (1967) 248-261.
$123 \mid$ W.M. Tulczyjew, The Euler-Lagrange resolution, in: Differential Geometric Methods in Mathematical Physics. Internat. Coll., Aix-en-Provence, 1979, Lecture Notes in Math. 836 (Springer, Berlin. 1980) 22-48.
$[2+1$ A.M. Vinogradov, A spectral sequence associated with a non-linear differential equation, and the algebrogeometric foundations of Lagrangian field theory with constraints. Soviet Math. Dokl. 19 (1978) 790-794.

[^0]: ${ }^{*}$ Research supported by the Grant No.201/98/0853 of the Czech Grant Agency, and Project No.VS 96003 (Global Analysis) ol the Ministry of Education. Youth and Sports of the Czech Republic.

