DISCRETE

MATHEMATICS

The ANTI-order for cacce posets - Part II

Boyu Li ${ }^{1}$
Department of Mathomatics. Northwestem Universit!: Xían, Shatanxi, China

Received 1 July 1994

Abstract

In Part I we defined the ANTI-order, ANTI-good subsets, ANTI-perfect sequences and ANTIcores for cacce posets. In this part we prove the main result: If $\Pi=\left\langle P_{\xi} ; \xi i\right\rangle$ is an ANTIperfect sequence of a connected cacce poset P which does not contain a one-way infinite fence, then $P_{亏}$ is a retract of P for all $\xi \leqslant \lambda$.

Kelvords: Cacec posets; Retracts; ANTI-order

1. Introduction

This is a continuation of [1], where we defined the ANTI-order, ANTI-good subsets, ANTI-perfect sequences and ANTI-cores for cacce posets. We refer the reader to [1] for the definitions of these and other special notation. In this part we prove the main result.

Theorem 1.1. Let $\Pi=\left\langle P_{\xi}: \zeta \leqslant \lambda\right.$ be an ANTI-perfect sequence of a connected cacce poset P which contains no one-way infinite fence. Then $P=$ is a retract of P for every $\xi \leqslant \lambda$; in particular, the ANTI-core $P_{;}$; is a retract of P.

By Theorem 3.4(2) of [1] an ANTI-good subset of a cacce poset is a retract, and so the conclusion of the theorem is obvious if the length λ of Π is finite. Before proving the theorem, we give an example to show that the length of an ANTI-perfect sequence of a connected cacce poset with no one-way infinite fence may be infinite and so it is necessary to consider limit steps when we prove the theorem. (This is different from the case for a PT-perfect sequence in a cc poset with no infinite antichain which is always finite - see (1.4) of [1].)

[^0]The example is a modification of the poset shown in Fig. 5 in [1] which does contain a one-way infinite fence. For $n<\omega$, let $\left(A_{n}, \leqslant_{n}\right)$ be the poset shown in Fig. 1, in which

$$
\left\{a_{n, 0}, a_{n, 1}, a_{n, 2}, \ldots, a_{n, 2 n-2}, a_{n, 2 n-1}, x_{n}, z_{n}\right\}
$$

is a finite fence,

$$
\left\{y_{n, 1}, y_{n, 3}, y_{n, 5}, \ldots, y_{n, 2 n-1}, y_{n}\right\}
$$

is a finite decreasing chain, $a_{n, 2 k-1}<y_{n, 2 k-1}$ for $1 \leqslant k \leqslant n, z_{n}<y_{n}$ and there are no other comparabilities except for those demanded by transitivity.

The poset (P, \leqslant) shown in Fig. 2 is obtained in the following way. Let $P=\cup\left\{A_{n}\right.$: $n<\omega\} \cup\{y\}$ and define the order on P so that \leqslant is the same as \leqslant_{n} on $A_{n}, y_{n}>y_{n+1,1}$

Fig. 1.

Fig. 2. (P, \leqslant).
and y is the smallest clement of P, there are no other comparabilities except for those required for transitivity. Using the same argument for the poset shown in Fig. 5 in [1], we easily see that it is a connected cacce poset with no one-way infinite fence, and that $\Pi=\left\langle P_{\xi}: \xi \leqslant \omega\right\rangle$ is an ANTI-perfect sequence of P, where $P=P_{0}, P_{n}-P_{n+1}=$ $\left\{a_{i, n}:[n / 2]+1 \leqslant i<\omega\right\}(n<\omega)$ and $P_{\omega}=\cap\left\{P_{n}: n<\omega\right\}$. In other words, P_{n+1} is obtained from P_{n}, by removing all a 's having n as the second subscript, and $P_{(1)}=$ $\left\{x_{i}: i<\omega\right\} \cup\left\{y_{i}: i<\omega\right\} \cup\left\{z_{i}: i<\omega\right\}$.

2. Some additional lemmas

In this section we introduce some new definitions and prove two easy lemmas needed for the proof of the main theorem. Let $\Pi=\left\langle P_{\xi}: \xi \leqslant \lambda\right\rangle$ be an ANTI-perfect sequence for a cacce poset P. For each $x \in P$ we define the index of x, denoted by $i(x)$, to be λ if $x \in P_{i}$, and $i(x)=\xi$ if $x \in P_{\xi}-P_{\xi+1}$ for some $\xi<\lambda$. We also define

$$
\begin{aligned}
& I(>x)=\{i(y): y>x \wedge i(y) \geqslant i(x)\}, \\
& I(<x)=\{i(y): y<x \wedge i(y) \geqslant i(x)\}, \\
& I(x)=I(<x) \cup I(>x) .
\end{aligned}
$$

Lemma 2.1. Let $\Pi=\left\langle P_{\xi}: \xi \leqslant \lambda\right\rangle$ be an ANTI-perfect sequence of a caccc-poset $P, X \subseteq P$ and $\alpha=\min \{i(y): y \in X\}$. If $x=\inf X(x=\sup X)$ exists, then $x \in P_{x}$. Furthermore, $x \in P_{x+1}$ if $x \notin X$.

Proof. When $x \in X$, the conclusion is obvious. Suppose that $x \notin X$. We have that $X \subseteq P_{\alpha}$ since $\alpha \leqslant i(y)$ for all $y \in X$. By induction on $\eta \leqslant \alpha+1$, we show that $x \in P_{\eta}$. If η is a limit this is clear since, in this case, $P_{\eta}=\cap_{\zeta<\eta} P_{\zeta}$. If $\eta=\zeta+1$ and $x \in P_{\zeta}$, then $x=\inf _{P_{i}} X$ and therefore, by [1, Lemma 3.2] x belongs to any \lll good subset of P_{ζ}, and in particular to $P_{\zeta+1}$. Hence $x \in P_{x+1}$.

Corollary 2.2. Let $\Pi=\left\langle P_{\xi}: \xi \leqslant \hat{\lambda}\right\rangle$ be an ANTI-perfect sequence of a caccc poset P and let $\xi \leqslant \lambda$. If $X \subseteq P_{\xi}$ and $x=\inf X(\sup X)$ exists, then $x \in P_{\xi}$ and hence $\inf _{P_{i}} X$ $\left(\sup _{P} X\right)$ also exists and is equal to x.

Lemma 2.3. Let $\Pi=\left\langle P_{\xi}: \xi \leqslant \lambda\right\rangle$ be an ANTI-perfect sequence of a cacce poset P, and let $\xi \leqslant \lambda$ be a limit ordinal. If C is a chain and $C \cap P_{\eta}$ is coinitial (cofinal) in C for all $\eta<\xi$, then $x=\inf C \in P_{\xi}\left(x=\sup C \in P_{\xi}\right)$.

Proof. For each $\eta<\xi$, since $C \cap P_{\eta}$ is coinitial in $C, x=\inf C \cap P_{\eta}$ and therefore, by Lemma 2.1, $x \in P_{\eta}$. Thus, $x \in P_{\xi}=\cap_{\eta<{ }_{\zeta}} P_{\eta}$.

3．Proof of the main theorem

Let $\Pi=\left\langle P_{\xi}: \xi \leqslant \lambda\right\rangle$ be an ANTI－perfect sequence of a connected caccc poset P with no one－way infinite fence．Let \mathbb{S}_{ξ} be the ANTI－order on P_{ξ} ，i．e． $\mathbb{K}_{\xi}=\mathbb{K}_{P}$ ，and let $g_{\xi}: P_{\xi} \rightarrow P_{\zeta+1}$ be an ANTI－good retraction for all $\xi \leqslant \lambda$（see［1，Theorem 3．4］）． We shall inductively define maps $f_{\zeta}: P \rightarrow P \xi$ for each $\xi \leqslant \lambda$ so that the conditions （1）$-(19)_{\xi}$ below are satisfied．We start with $f_{0}=\mathrm{id}_{P}$ ，the identity mapping on P ，so that all these conditions are trivially satisfied for $\xi=0$ ．We assume that $\xi>0$ and that f_{η} has been defined for all $\eta<\xi$ so that the corresponding conditions are satisfied．

For any $x \in P$ ，the sequence $\operatorname{orb}_{亏 丶 ⿳ 亠 二 口}^{z}(x)=\left\langle f_{\eta}(x): \eta<\xi\right\rangle$ is called the ξ－orbit of x ； for $A \subseteq \xi$ we also define $\operatorname{Orb}(A, x)=\left\{f_{\eta}(x): \eta \in A\right\}$ ．The ξ－orbit of x is eventually constant，if there is $\alpha<\xi$ such that $f_{\chi}(x)=f_{\eta}(x)$ for $\alpha \leqslant \eta<\xi$ ，and in this case，x is called a ξ－stable point．We say that x and y are ξ－distinct if their ξ－orbits are disjoint， i．e．$f_{\eta}(x) \neq f_{\eta}(y)$ for all $\eta<\xi$ ．We say that $x \in P$ is a ξ－regular point if there exists $y \in P$ which is ξ－distinct from x and such that $y \| f_{x}(x)$ for some $\alpha<\xi$ ．The point $x \in P$ is ξ－bad if it is neither ξ－stable nor ξ－regular．If $\xi=\eta+1$ is a successor，then every $x \in P$ is ζ－stable and so there are no ζ－bad points．

For any $x, y \in P$ and $\xi<\lambda$ ，we define

$$
M_{\xi, x}(y)=\left\{\eta: \eta<\xi \wedge f_{\eta}(x) \geqslant y\right\}
$$

and

$$
N_{\xi, x}(y)=\left\{\eta: \eta<\xi \wedge f_{\eta}(x) \leqslant y\right\} .
$$

If ξ is a limit ordinal，a subset $S \subseteq \xi$ is a CA－，a CI－，or a CD－set for $x \in P$ if S is cofinal in ξ and the set $\operatorname{Orb}(A, x)$ is respectively an antichain，an increasing chain or a decreasing chain in P ．

Let ξ be a limit ordinal，$x \in P$ and let A be a CA－set for x such that $\operatorname{Orb}(A, x)$ is bounded below．Since P is cacce，for any $\alpha \in A$ ，

$$
x_{x}=\inf \left\{f_{\eta}(x): \eta \in A \wedge \eta \geqslant \alpha\right\}
$$

exists and，by Lemma $2.1 x_{\alpha} \in P_{\alpha}$ ．Since $\left\langle x_{\alpha}: x \in A\right\rangle$ is increasing，

$$
z=\sup \left\{x_{\alpha}: x \in A\right\}
$$

exists and belongs to P_{ξ} by Lemma 2．3．We call this supremum the down－up limit of $\operatorname{Orb}(A, x)$ and write

$$
z=\mathrm{du}-\lim \operatorname{Orb}(A, x)
$$

In a similar way，if $\operatorname{Orb}(A, x)$ is bounded above we define the up－down limit ud－limOrb (A, x) ．

3.1. Statements of the 19 conditions

(1) $\boldsymbol{\text { If }} \boldsymbol{\xi}$ is a limit ordinal, $x \in P, i(x)<\xi$, and if $P(>x) \cap P_{\eta} \neq \emptyset(P(<x) \cap$ $\left.P_{\eta} \neq \emptyset\right)$ for all $\eta<\xi$, then $P(>x) \cap P_{\xi} \neq \emptyset\left(P(<x) \cap P_{\xi} \neq \emptyset\right)$.
(2) If ξ is a limit, $i(x)<\xi$, if $I(>x) \neq \emptyset$ and $P(>x) \cap P_{\zeta}=\emptyset(I(<x) \neq \emptyset$ and $\left.P(<x) \cap P_{\zeta}=\emptyset\right)$, then $\max I(>x)(\max I(<x))$ exists and is less than ξ.
(3) $P_{\zeta} \neq \emptyset$, and there is no ξ-bad point.
(4) If ξ is a limit, $x<y$ and x, y are ξ-distinct, then either there exists $\alpha<\xi$ such that $M_{\zeta, y}\left(f_{\alpha}(x)\right)$ is cofinal in ξ or there exists $\beta<\xi$ such that $N_{\xi, x}\left(f_{\beta}(y)\right)$ is cofinal in ξ.
(5) If ξ is a limit, $x \in P$, and A is a cofinal subset of ξ, then A contains either a CA-set, a CD-set or a CI-set for x.
(6) If ξ is a limit ordinal and $x \in P$, then there is a cofinal subset $A \subseteq \xi$ such that $\operatorname{Orb}(A, x)$ is either bounded above or bounded below in P.
(7) If ξ is a limit ordinal and $x \in P$ and if A and B are both CD-sets (CI-sets) in ξ for x, then

$$
\inf \operatorname{Orb}(A, x)=\inf \operatorname{Orb}(B, x) \quad(\sup \operatorname{Orb}(A, x)=\sup \operatorname{Orb}(B, x))
$$

(8) If ξ is a limit ordinal, $x \in P$, and A is a cofinal subset of ξ, then either (i) every maximal subset $B \subseteq A$ such that $\operatorname{Orb}(B, x)$ is an antichain is cofinal in ξ or (ii) no such B is cofinal in ξ.
(9) \because If ξ is a limit ordinal, $x, y \in P$, and if $M_{\zeta}(y)\left(N_{y, x}(y)\right)$ is cofinal in ξ and there is a CA-set in $M_{\xi, x}(y)\left(N_{\xi, x}(y)\right)$ for x, then $M_{\xi, x}(y)\left(N_{\xi, x}(y)\right)$ is a final segment of ξ, i.e. it is a set of form $\{\eta: \alpha \leqslant \eta<\xi\}$ for some $\alpha<\xi$.
(10) If ξ is a limit ordinal, $x \in P$, and if A and B are CA-sets in ξ for x such that $\operatorname{Orb}(A, x)$ and $\operatorname{Orb}(B, x)$ are both bounded below (above), then

$$
\mathrm{du}-\lim \operatorname{Orb}(A, x)=\mathrm{du}-\lim \operatorname{Orb}(B, x) \quad(\operatorname{ud}-\operatorname{Orb}(A, x)=\mathrm{ud}-\lim \operatorname{Orb}(B, x))
$$

(11) If ξ is a limit ordinal, $x \in P$, and if A is a CD-set (CI-set) in ξ for x, and B is a CA-set in ξ for x such that $\operatorname{Orb}(B, x)$ is bounded below (above), then

$$
\inf \operatorname{Orb}(A, x)=\operatorname{du}-\lim \operatorname{Orb}(B, x) \quad(\sup \operatorname{Orb}(A, x)=\mathrm{ud}-\lim \operatorname{Orb}(B, x)) .
$$

If ξ is a limit ordinal, $x \in P$, and if ξ contains either a CD-set (CI-set) A for x or a CA-set B for x such that $\operatorname{Orb}(B, x)$ is bounded below (above), then we define the down-limit (up-limit) of $\operatorname{Orb}(\xi, x)$, which we denote by $s_{\xi}(x)\left(t_{\xi}(x)\right)$ to be either the infimum (supremum) of $\operatorname{Orb}(A, x)$ or the du-limit (ud-limit) of $\operatorname{Orb}(B, x)$. By (7) , $(10)_{\xi}$ and $(11)_{\xi}$, we see that these definitions of $s_{\varepsilon}^{\xi}(x)$ and $t_{\tilde{c}}(x)$, when they exist, do not depend upon the choices of A or B.
(12) ξ If ξ is a limit ordinal and $x \in P$, then
(a) cither $s_{c}(x)$ or $t_{\zeta}(x)$ exists;
(b) if it exists, then $s_{亏}^{\xi}(x)\left(t_{\xi}(x)\right)$ belongs to $P_{亏}$.
(13) $)_{\zeta}$ If ξ is a limit ordinal, $x, y \in P$, and if $M_{\xi, x}(y)\left(N_{\xi, x}(y)\right)$ contains a final segment of ξ, then $y \leqslant s_{\xi}(x)$ and $y \leqslant t_{\zeta}(x)\left(y \geqslant s_{\zeta}(x)\right.$ and $\left.y \geqslant t_{\xi}(x)\right)$, whenever these limits exist.
(14) $)_{\xi}$ If ξ is a limit ordinal and $x \in P$ then $s_{\zeta}(x) \leqslant t_{\xi}(x)$ if both these limits exist.
(15) $)_{\xi}$ If $\xi=\eta+1$ is a successor ordinal, define $f_{\xi}=g_{\eta} \circ f_{\eta}$. If ξ is a limit ordinal and $x \in P$, then we define $f_{\xi}(x)$ as follows: if ξ contains a CD-set for x, then $f_{\xi}(x)=s_{\xi}(x)$ (which exists); if ξ contains no CD-set but contains a CI-set for x, then $f_{\xi}(x)=t_{\xi}(x)$ (which exists); if ξ contains no CD- or CI-set, then we define $f_{\xi}(x)=s_{\xi}(x)$ if $s_{\xi}(x)$ exists, and $f_{\xi}(x)=t_{\xi}(x)$ otherwise (thus $f_{\xi}(x)$ is well defined by (12) $\xi(a))$.
(16) ξ If ξ is a limit ordinal and $x, y \in P$, then
(a) $y \geqslant f_{\xi}(x)$ if $N_{\xi, x}(y)$ is cofinal in ξ;
(b) $y \leqslant f_{\xi}(x)$ if $M_{\xi, x}(y)$ contains a final segment of ξ;
(c) if $M_{\xi, x}(y)$ is cofinal in ξ and $y \not f_{\zeta}(x)$, then there exists a CD-set D in ξ for x such that $t_{\xi}(x)=\inf \operatorname{Orb}(D, x)$ and $M_{\xi, x}(y) \cap M_{\xi, x}\left(f_{\xi}(x)\right)$ is cofinal in ξ.
(17) $)_{\xi} f_{\xi}$ is a retraction and $P_{\xi}=f_{\xi}[P]$ is a retract (and hence P_{ξ} is connected).
(18) ξ_{ξ} For any $x, y \in P$,

$$
\alpha \leqslant \beta \leqslant \xi \wedge f_{\alpha}(x) \leqslant y \wedge y \in P_{\xi} \rightarrow f_{\beta}(x) \leqslant y
$$

and

$$
\alpha \leqslant \beta \leqslant \xi \wedge f_{\alpha}(x) \geqslant y \wedge y \in P_{\xi} \rightarrow f_{\beta}(x) \geqslant y .
$$

$(19)_{\xi} f_{\xi} \circ f_{\eta}=f_{\eta} \circ f_{\xi}=f_{\xi}$ for any $\eta \leqslant \xi$.
When the induction is completed, (17) $)_{\xi}$ implies the desired conclusion that P_{ξ} is a retract of P for all $\xi \leqslant \lambda$.

3.2. Proof of $(1)_{\xi}$

Suppose that $P(>x) \cap P_{\eta} \neq \emptyset$ for all $\eta<\xi$. We want to show that there exists $z \in P_{\zeta}$ with $x<z$. Fix a cofinal increasing sequence $\left\langle\eta_{\chi}: \alpha<\operatorname{cf}(\xi)\right\rangle$ in ξ with $\eta_{0}>i(x)$. For each $\alpha<\operatorname{cf}(\xi)$, since $P_{\eta_{x}}$ is chain complete there is a maximal element y_{α} of $P_{\eta_{x}}$ such that $x<y_{\alpha}$. Then $y_{x} \nless y_{\beta}$ for $\alpha<\beta<\operatorname{cf}(\xi)$. We consider two cases.

Case 1. There is a cofinal subset A of $\operatorname{cf}(\xi)$ such that $\left\{y_{\alpha}: \alpha \in A\right\}$ is an antichain.
Since x is a lower bound of $Y_{\alpha}=\left\{y_{\beta}: \beta \in A \wedge \beta \geqslant \alpha\right\}, z_{\alpha}=\inf Y_{\alpha}$ exists and it belongs to $P_{\eta_{x}}$ by Lemma 2.1. Obviously, $\left\langle z_{\alpha}: \alpha \in A\right\rangle$ is increasing and so $z=\sup \left\{z_{x}\right.$: $\alpha \in A\}$ exists and belongs to P_{ζ} by Lemma 2.3. Note that $z_{0} \in P_{\eta_{0}}$ and $i(x)<\eta_{0}$, hence $x \neq z_{0}$ and so $x<z_{0} \leqslant z$.

Case 2. Whenever $A \subseteq \operatorname{cf}(\xi)$ and $\left\{y_{x}: \alpha \in A\right\}$ is an antichain, then A is not cofinal in ξ.

Let A be a maximal subset of $\operatorname{cf}(\xi)$ such that $\left\{y_{\alpha}: \alpha \in A\right\}$ is an antichain. Then A is not cofinal in $\operatorname{cf}(\xi)$ and so there is $\mu<\operatorname{cf}(\xi)$ such that $\alpha<\mu$ for all $\alpha \in A$. For $\mu \leqslant \beta<\operatorname{cf}(\xi)$, there is $\alpha \in A$ such that $y_{x} \| y_{\beta}$ and hence $y_{\beta} \leqslant y_{\alpha}$. We have

$$
\{\beta: \mu \leqslant \beta<\operatorname{cf}(\xi)\}=\cup\left\{B_{x}: \alpha \in A\right\}
$$

where $B_{\alpha}=\left\{\beta: \mu \leqslant \beta<\operatorname{cf}(\xi) \wedge y_{\beta} \leqslant y_{\alpha}\right\}$. Since $\operatorname{cf}(\xi)$ is a regular cardinal and $|A|$ $<\operatorname{cf}(\xi), B_{\alpha}$ is cofinal in $\operatorname{cf}(\xi)$ for some $\alpha \in A$. For any $\beta \in B_{\alpha}, y_{x} \geqslant y_{\beta} \in P_{\eta_{\beta}}$ and therefore $y_{\beta} \leqslant f_{\eta_{\beta}}\left(y_{\alpha}\right) \in P_{\eta_{\beta}}$ since $f_{\eta_{j}}$ is a retraction by $(17)_{\eta_{\beta}}$. Since y_{β} is a maximal element of $P_{\eta_{\beta}}$ it follows that $y_{\beta}=f_{\eta_{\beta}}\left(y_{\alpha}\right)$. If $\beta, \gamma \in B_{\alpha}$ and $\gamma \leqslant \beta$, then $\eta_{x} \leqslant \eta_{i} \leqslant \eta_{\beta}$, $f_{\eta_{x}}\left(y_{x}\right)=y_{x} \geqslant y_{\beta}$ and $y_{\beta} \in P_{\eta_{\beta}}$, it follows from (18) $\eta_{\eta_{\beta}}$ that $y_{\beta} \leqslant y_{\gamma}=f_{\eta}\left(y_{x}\right)$ $\leqslant y_{\alpha}$. Thus, $\left\langle y_{\beta}: \beta \in B_{\alpha}\right\rangle$ is a decreasing sequence with x as a lower bound. Let $z=$ $\inf \left\{y_{\beta}: \beta \in B_{\alpha}\right\}$. Then $x \leqslant z$ and, by Lemma 2.3, $z \in P_{乡}$. Since $i(x)<\xi$, it follows that $x<z$.

3.3. Proof of $(2)_{\zeta}$

It follows from (1) that $I(>x)$ is not cofinal in ξ so that $\eta=\sup I(>x)<\xi$. If $\eta \notin I(>x)$, then η is a limit ordinal and $P(>x) \cap P_{\zeta} \neq \emptyset$ for all $\zeta<\eta$. Therefore, $P(>x) \cap P_{\eta} \neq \emptyset$ by $(1)_{\eta}$ and hence $\eta \in I(>x)$. This contradiction shows that $\eta \in I(>x)$ and hence that $\max I(>x)=\eta<\xi$.

3.4. Proof of (3) e

We first show $P_{\xi} \neq \emptyset$. If $\xi=\eta+1$ is a successor, then $P_{\eta} \neq \emptyset$ by (3) $)_{\eta}$. Since P_{ζ} is a $<_{\eta}$-good subset of P_{η} it is a retract of P_{η} and therefore non-empty by Theorem 3.4(2) of [1]. Now assume that ξ is a limit and suppose for a contradiction that $P_{\xi}=\emptyset$. We shall inductively define a sequence $\left\langle a_{n}: n<\omega\right\rangle$ in P and a sequence $\left\langle\eta_{n}: n<\omega\right\rangle$ in satisfying conditions (i)-(iv). The conditions (iii) and (iv) immediately give the desired contradiction since these imply that $\left\langle a_{n}: n\langle\omega\rangle\right.$ is a one-way infinite fence in P.
(i) $\eta_{m}<\eta_{n}$ for $m<n<\omega$.
(ii) $I\left(>a_{n}\right) \neq \emptyset$ if n is even; $I\left(<a_{n}\right) \neq \emptyset$ if n is odd.
(iii) $i\left(a_{n}\right)=\eta_{n}$. If $n>0$ is even $\eta_{n}=\max I\left(<a_{n-1}\right)$ and a_{n} is a minimal element of $P_{\eta_{n}}$ such that $a_{n}<a_{n-1}$, and if n is odd $\eta_{n}=\max I\left(>a_{n-1}\right)$ and a_{n} is a maximal element of $P_{\eta_{0}}$ such that $a_{n}>a_{n-1}$.
(iv) $a_{n} \perp a_{m}$ if $m \leqslant n-2$.

To start, choose a_{0} to be a minimal element of P and let $\eta_{0}=i\left(a_{0}\right)$. By assumption, $\eta_{0}<\xi$. Also $P\left(>a_{0}\right) \neq \emptyset$ since $\xi>0$ and P is connected. Suppose that $n>0$ and that the a_{i} and η_{i} have been suitably defined for $i<n$. If n is odd, then by the induction hypothesis $I\left(>a_{n-1}\right) \neq \emptyset$ and so by $(2)_{\xi}, \eta_{n}=\max I\left(>a_{n-1}\right)$ exists and is less than ξ. There is $y>a_{n-1}$ such that $i(y) \geqslant i\left(a_{n-1}\right)=\eta_{n-1}$. By Theorem 3.4(1) in [1], $g_{\eta_{n-1}}(y) \geqslant a_{n-1}$. But since $g_{\eta_{n-1}}(y) \in P_{\eta_{n-1}+1}$ and $a_{n-1} \notin P_{\eta_{n-1}+1}$, it follows that $g_{\eta_{u-1}}(y)>a_{n-1}$. Therefore, $\eta_{n}=\max l\left(>a_{n-1}\right)>\eta_{n-1}$ and (i) holds for n. There
is $z>a_{n-1}$ such that $i(z)=\eta_{n}$ and since $P_{\eta_{n}}$ is chain complete, there is a maximal element a_{n} of $P_{\eta_{n}}$ such that $z \leqslant a_{n}$ and so (iii) also holds for n. Since the ANTIperfect sequence Π is strictly decreasing, the set $P_{\eta_{n}}$ contains elements other than a_{n}, and since it is connected by $(17)_{\eta_{n}}$ and a_{n} is maximal there is an element of $P_{\eta_{n}}$ strictly less than a_{n}. Therefore, $P_{\eta_{n}}\left(<a_{n}\right) \neq \emptyset$ and (ii) holds. Let $m \leqslant n-2$. If m is even, then a_{m} is a minimal element of $P_{\eta_{m}}$ and hence $a_{n} \nless a_{m}$ since $a_{n} \in P_{\eta_{m}} \subseteq P_{\eta_{m}}$. Also, $a_{n} \ngtr a_{m}$ since $i\left(a_{n}\right)=\eta_{n}>\eta_{m+1}=\max I\left(>a_{m}\right)$. Thus (iv) holds in this case since $i\left(a_{n}\right)=\eta_{n}>\eta_{m}=i\left(a_{m}\right)$, and so $a_{n} \neq a_{m}$. Similarly, (iv) holds for odd $m \leqslant n-2$. The inductive step when n is even is similar and we omit the details.

Suppose there is a ξ-bad point $x \in P$. Then ξ is a limit. Since x is not ξ-regular, if $y \in P$ is comparable with x, then it is not ξ-distinct from x, and so y is not ξ-stable. If y is ξ-regular, then there is $z \| y$ such that z is ξ-distinct from y. But, for large enough $\alpha<\xi$, we have that $f_{\alpha}(z) \| f_{\alpha}(y)=f_{\alpha}(x)$ and $f_{\chi}(z)$ is ξ-distinct from x, which is a contradiction. Therefore, y is also ξ-bad. Since P is connected, it follows that every point of P is ξ-bad. But $P_{\xi} \neq \emptyset$ and points of P_{ξ} are ξ-stable. This contradiction shows that there are no ξ-bad points in P.

3.5. Proof of (4)

We assume the hypothesis of (4) $)_{\underline{\xi}}$ and that the conclusion is false; we will obtain the contradiction that P contains a one-way infinite fence. By assumption, for any $\alpha, \beta<\xi$, neither $M_{\xi, y}\left(f_{x}(x)\right)$ nor $N_{\xi, x}\left(f_{\beta}(y)\right)$ is cofinal in ξ. Therefore, there are mappings $u, v: \xi \rightarrow \xi$ where

$$
u(\alpha)=\sup M_{\xi, y}\left(f_{\alpha}(x)\right), \quad v(\beta)=\sup N_{\xi, x}\left(f_{\beta}(y)\right) .
$$

We begin by proving the following five claims.
Claim 1. For any $\alpha, \beta<\xi, f_{\alpha}(x) \nsupseteq f_{\beta}(y)$.
If $f_{\alpha}(x) \geqslant f_{\beta}(y)$, then, by (17), and (19) $)_{\gamma}, f_{\gamma}(x) \geqslant f_{\gamma}(y)$, for $\max \{\alpha, \beta\}<\gamma<\xi$. On the other hand $f_{\gamma}(x) \leqslant f_{\gamma}(y)$ since $x<y$, and so $f_{\gamma}(x)=f_{\gamma}(y)$. This is a contradiction since x and y are ξ-distinct.

Claim 2. $\alpha<u(\alpha)(\beta<v(\beta))$ for all $\alpha<\xi(\beta<\xi)$.

Since x, y are ξ-distinct, it follows from $x<y$ and (17) that $f_{x}(x)<f_{x}(y)$. Then by (15) $)_{\alpha+1}$ and Theorem 3.4(1) in [1], $f_{\chi}(x) \leqslant f_{\alpha+1}(y)$ and so $\alpha+1 \in M_{p, y}\left(f_{\alpha}(x)\right)$. Therefore, $\alpha<\alpha+1 \leqslant u(\alpha)$.

Claim 3. For any $\alpha<\xi, f_{\eta}(x) \perp f_{\zeta}(y)$ for $\eta \leqslant \alpha$ and $u(\alpha)<\zeta$. (For any $\beta<\xi$, $f_{\zeta}(y) \perp f_{\eta}(x)$ for $\zeta \leqslant \beta$ and $v(\beta)<\eta$.)

By Claim $2, \eta \leqslant x<\zeta$, and by Claim 1, if $f_{\eta}(x) \| f_{\zeta}(y)$, then $f_{\eta}(x)<f_{\zeta}(y)$. Therefore, by $(18)_{\zeta}, f_{\chi}(x) \leqslant f_{亏}(y)$ and so $\zeta \in M_{\xi, y}\left(f_{\alpha}(x)\right)$. This implies the contradiction that $\zeta \leqslant u(x)$.

Claim 4. For any $\alpha<\xi, f_{y}(y) \perp f^{\prime}(y)$ whenever $\zeta \in M_{b, v}\left(f_{x}(x)\right)$ and $v \circ u(\alpha)<\zeta_{\zeta}^{\prime}$. (For any $\beta<\xi, f_{\eta}(x) \perp f_{\eta^{\prime}}^{\prime}(x)$ whenever $\eta \in N_{\xi, x}\left(f_{\beta}(y)\right.$) and $u \circ v(\beta)<\eta^{\prime}$.)

By Claim $2, \zeta \leqslant u(\alpha)<v \circ u(\alpha)<\zeta^{\prime}$. Since $f_{\chi}(x) \leqslant f(y)$, and $\zeta^{\prime \prime}>u(\alpha)$ it follows that $f_{亏}(y) \notin f_{3^{\prime}}^{\prime}(y)$. If $f_{3^{\prime}}(y)<f_{\xi}(y)$, then by $(17)_{\xi^{\prime}}, f_{\xi^{\prime}}(x) \leqslant f_{\xi^{\prime}}^{\prime}(y)<f_{\xi}(y)$, and this contradicts Claim 3.

Claim 5. For any $x<\xi$, if $u(x) \notin M_{\xi}\left(f_{\chi}(x)\right)$, then there is $\zeta \in M_{\zeta, y}\left(f_{x}(x)\right)$ such that $x<\zeta$ and $f_{\zeta}(y) \geqslant f_{u(x)}(y)$. For any $\beta<\xi, v(\beta) \in N_{\xi, x}\left(f_{\beta}(y)\right)$.

Since $u(\alpha) \notin M_{\xi, y}\left(f_{\alpha}(x)\right)$, it follows that $u(\alpha)$ is a limit. Therefore, by $(16)_{u(\alpha)}(c)$ $M_{u(x), v}\left(f_{\alpha}(x)\right) \cap M_{u(x), v}\left(f_{u(x)}(y)\right)$ is cofinal in $u(x)$. By Claim 2, $u(\alpha)>\alpha$ and so there is ζ such that $x<\zeta<u(x), f_{\zeta}(y) \geqslant f_{x}(x)$ and $f_{\zeta}(y) \geqslant f_{u(x)}(y)$. For the last part, suppose $\beta<\xi$ and $v(\beta) \notin N_{\xi, x}\left(f_{\beta}(y)\right)$. Then $v(\beta)$ is a limit and $N_{v(\beta) x}\left(f_{\beta}(y)\right)$ is cofinal in $v(\beta)$. Therefore, by $(16)_{t(\beta)}(a), f_{\beta}(y) \geqslant f_{v(\beta)}(x)$, and so $v(\beta) \in N_{e, x}\left(f_{\beta}(y)\right)$ after all.

We now obtain the desired contradiction by constructing a one-way infinite fence in P. Inductively define ordinals $\alpha_{n}, \beta_{n}<\xi$ for $n<\omega$ so that $\alpha_{0}=0, \beta_{0}=u(0)$, $\alpha_{n+1}=v\left(\beta_{n}\right)$, and $\beta_{n+1}=u\left(\alpha_{n+1}\right)$. By Claim 2

$$
\alpha_{0}<\beta_{0}<\cdots<\alpha_{n}<\beta_{n}<\cdots
$$

Define $a_{n}=f_{\alpha_{n}}(x)(n<\omega)$. If $f_{\beta_{n}}(y) \geqslant f_{\gamma_{n}}(x)$, then we define $\gamma_{n}=\beta_{n}$; otherwise, by Claim 5, there is an ordinal ${ }_{i n}$ such that $\alpha_{n}<\gamma_{n}<\beta_{n}$ and

$$
a_{n}=f_{\alpha_{n}}(x) \leqslant f_{i_{n}}(y) \geqslant f_{\beta_{n}}(y) \geqslant f_{x_{j, 1}}(x) .
$$

Now define $b_{n}=f_{i n}(y)$. From these definitions, we have

$$
x_{0}<\gamma_{0} \leqslant \beta_{0}<\cdots<x_{n}<\gamma_{n} \leqslant \beta_{n}<\cdots
$$

and

$$
a_{0} \leqslant b_{0} \geqslant \cdots \geqslant a_{n} \leqslant b_{n} \geqslant a_{n+1} \leqslant \cdots .
$$

Therefore, by Claim 1, it follows that

$$
a_{0}<b_{0}>\cdots>a_{n}<b_{n}>a_{n+1}<\cdots .
$$

For $m<n<\omega$,

$$
x_{m} \leqslant \alpha_{n-1}<\beta_{n-1}=u\left(\alpha_{n-1}\right)<\gamma_{n}
$$

and then by Claim 3,

$$
a_{m}=f_{x_{m}}(x) \perp f_{\gamma_{n}}(y)=b_{n} .
$$

For $m<n-1<\omega$,

$$
\gamma_{m} \leqslant \beta_{n-2}<\alpha_{n-1}=v\left(\beta_{n-2}\right)<\alpha_{n}
$$

and so by Claim 3 ,

$$
b_{m}=f_{\gamma_{m}}(y) \perp f_{\alpha_{n}}(x)=a_{n} .
$$

By Claim 5, for $2 \leqslant n<\omega$,

$$
\alpha_{n-1} \in N_{\xi, x}\left(f_{\beta_{n-2}}(y)\right) \text { and } \alpha_{n}>\beta_{n-1}=u \circ v\left(\beta_{n-2}\right)
$$

and so, by Claim 4,

$$
a_{n-1}=f_{x_{n-1}}(x) \perp f_{x_{n}}(x)=a_{n}
$$

It follows from (18) $)_{x_{n}}$ that $a_{m} \perp a_{n}$ for all $m<n$. In the same way, we have $b_{m} \perp b_{n}$ for $m<n<\omega$. This shows that

$$
\left\langle a_{1}, b_{1}, \ldots, a_{n}, b_{n}, \ldots\right\rangle
$$

is indeed a one-way infinite fence.

3.6. Proof of $(5)_{5}$

Let $B \subseteq A$ be maximal such that $\operatorname{Orb}(B, x)$ is an antichain. If B is cofinal in A, it is a CA-set in A for x. So, we assume that B is not cofinal in A and that there is $\alpha \in A$ such that $\beta<\alpha$ for all $\beta \in B$. By the maximality of B, for $\alpha \leqslant \eta<\xi, f_{\eta}(x) \| f_{\beta}(x)$ for some $\beta \in B$ and then, by $(18)_{\eta}, f_{\eta}(x) \| f_{x}(x)$. Let

$$
D=\left\{\eta: \eta \in A \wedge \eta \geqslant \alpha \wedge f_{\eta}(x) \leqslant f_{x}(x)\right\}
$$

and

$$
I=\left\{\eta: \eta \in A \wedge \eta \geqslant \alpha \wedge f_{\eta}(x)>f_{x}(x)\right\} .
$$

By (18) $)_{\eta}, f_{\eta^{\prime}}(x) \geqslant f_{\eta}(x)$ for $\eta^{\prime}, \eta \in D$ and $\eta^{\prime}<\eta$, and so $\left\langle f_{\eta}(x): \eta \in D\right\rangle$ is decreasing. Similarly, $\left\langle f_{\eta}(x): \eta \in I\right\rangle$ is increasing. Since $D \cup I$ is a final segment of A, either D or I is cofinal in A, and we conclude that A either contains a CD-set or a CI-set for x.

3.7. Proof of (6)

This is obvious when x is a ξ-stable point. So, by (3) ξ, we may assume that x is ξ-regular, in other words there is $y \in P$ such that the ξ-orbits of x and y are ξ-distinct
and $y \| f_{\alpha}(x)$, say $f_{\alpha}(x) \leqslant y$, for some $\alpha<\xi$. Then, by $(17)_{x}, f_{\chi}(x) \leqslant f_{\chi}(y)$; in fact, $f_{x}(x)<f_{\chi}(y)$ since the ξ-orbits of x and y are ξ-distinct. By (4) $)_{\xi}$, either (i) there is $\beta(\alpha \leqslant \beta<\xi)$ such that $M=M_{\xi, y}\left(f_{\beta}(x)\right)$ is cofinal in ξ or (ii) there is $\gamma(x \leqslant \gamma<\xi)$ such that $N=N_{\xi, x}\left(f_{i}(y)\right)$ is cofinal in ξ.

If (ii) holds, then we are done since $\operatorname{Orb}(N, x)$ is bounded above by $f_{7}(y)$. Suppose (i) holds. Then $\operatorname{Orb}(M, y)$ is bounded below by $f_{\beta}(x)$. By (5) it follows that M contains either a CA-set or a CI-set or a CD-set for y. Suppose M contains the CA-set A. Since $f_{\beta}(x)$ is a lower bound of $\operatorname{Orb}(A, y)$ it follows that

$$
z=\mathrm{du}-\lim \operatorname{Orb}(A, y)
$$

exists, $f_{\beta}(x) \leqslant z$ and $z \in P_{\zeta}$. Therefore, if $\beta \leqslant \eta<\zeta$, then $(18)_{\eta}$ implies that $f_{\eta}(x) \leqslant z$ and hence (6) holds. Suppose that M contains the CI-set I. Then $z=\sup \operatorname{Orb}(I, y)$ exists and again (6) ξ holds. Similarly, if M contains a CD-set.

3.8. Proof of (7)

Let $\alpha=\min A$. For each $\zeta \geqslant \alpha$ in B, there is $\gamma \in A$ such that $\gamma \geqslant \zeta$. Since $f_{\alpha}(x) \geqslant$ $f_{\gamma}(x)$, it follows by (18) that $f_{i}(x) \leqslant f_{\zeta}(x)$. Hence

$$
\inf \operatorname{Orb}(A, x) \leqslant f_{\zeta}(x)
$$

for all $\zeta \in B$ with $\zeta \geqslant \alpha$. Therefore,

$$
\inf \operatorname{Orb}(A, x) \leqslant \inf \operatorname{Orb}(B, x)
$$

The opposite inequality holds by symmetry.

3.9. Proof of $(8):$

Suppose that B is a CA-set in A for x. We need to show that, if C is a maximal subset of A such that $\operatorname{Orb}(C, x)$ is an antichain, then C is cofinal in A. Suppose not. Then there is $\alpha \in A$ such that $\gamma<\alpha$ for all $\gamma \in C$. Since B is cofinal in A, there are $\eta, \zeta \subset B$ such that $\alpha<\eta<\zeta$. By the maximality of C there is some $\gamma \subset C$ such that $f_{\zeta}(x) \| f_{i}(x)$ and it follows from $(18)_{\zeta}$ that $f_{\zeta}(x) \| f_{\eta}(x)$. This is a contradiction, since $\operatorname{Orb}(B, x)$ is an antichain.

3.10. Proof of $(9)_{\xi}$

Let $M_{\zeta, x}(y)$ be cofinal in ξ and suppose it contains a CA-set for x. We inductively show that $\beta \in M_{\xi, x}(y)$ for all $\alpha \leqslant \beta<\xi$, where $\alpha=\min M_{\xi, x}(y)$. When β is a limit ordinal, then by the induction hypotheses and $(16)_{\beta}(b), y \leqslant f_{\beta}(x)$ and hence $\beta \in M_{\bar{\zeta}, x}(y)$. Suppose that $\beta=\gamma+1$ is a successor ordinal. In this case, $\gamma \in M_{\xi, x}(y)$. Let A be a maximal subset of $M_{\xi, x}(y)$ which contains γ and is such that $\operatorname{Orb}(A, x)$ is an antichain. By (8) $)_{\xi}, A$ is a cofinal subset of $M_{\xi, x}(y)$ and so $B=\{\eta: \eta \in A \wedge \gamma \leqslant \eta<\xi\}$
is also a CA-set in $M_{\zeta, x}(y)$ for $x . B$ is infinite and since P is $\operatorname{caccc} \operatorname{Orb}(B, x)$ has an infimum $z \geqslant y$. Moreover, Lemma 2.1 implies $z \in P_{\beta}$. By Theorem 3.4(2) in [1], g_{γ} is a retraction from P_{γ}, onto P_{β}. Therefore, since $z \leqslant f_{\gamma}(x)$ it follows that $y \leqslant z=$ $g_{\gamma}(z) \leqslant g_{\gamma}\left(f_{;}(x)\right)=f_{\beta}(x)$, and hence $\beta \in M_{\xi, x}(y)$.

3.11. Proof of $(10)_{\xi}$

Suppose that A, B are cofinal subsets of ξ such that $\operatorname{Orb}(A, x)$ and $\operatorname{Orb}(B, x)$ are both bounded below. Then

$$
a=\mathrm{du}-\lim \operatorname{Orb}(A, x), b=\mathrm{du}-\lim \operatorname{Orb}(B, x),
$$

both exist and $a=\sup \left\{a_{x}: x \in A\right\}$, where $a_{x}=\inf \left\{f_{\eta}(x): \eta \in A \wedge \eta \geqslant x\right\}$, and $b=$ $\sup \left\{b_{\beta}: \beta \in B\right\}$, where $b_{\beta}=\inf \left\{f_{\zeta}(x): \zeta \in B \wedge \zeta \geqslant \beta\right\}$. Let $\alpha \in A, \beta \in B, \alpha \leqslant \beta$. $M_{\zeta, x}\left(a_{\alpha}\right)$ contains $\{\eta: \eta \in A \wedge \alpha \leqslant \eta\}$, which is a CA-set in ξ for x. Therefore, $M_{\bar{\xi}, x}\left(a_{x}\right)$ is a final segment of ξ by (9). It follows that $a_{x} \leqslant f_{\zeta}(x)$ for all $\zeta \in B$ with $\beta \leqslant \zeta$ and hence $a_{\chi} \leqslant b_{\beta} \leqslant b$. Since $\alpha \in A$ was arbitrary, we have that $a \leqslant b$. By symmetry, we also have that $b \leqslant a$.

3.12. Proof of (11)

Suppose that A is a CD-set and B is a CA-set in ξ for x such that $\operatorname{Orb}(B, x)$ is bounded below. Then

$$
a=\inf \operatorname{Orb}(A, x) \quad \text { and } \quad b=\operatorname{du}-\lim \operatorname{Orb}(B, x)
$$

both exist. By definition, $b=\sup \left\{b_{\beta}: \beta \in B\right\}$, where $b_{\beta}=\inf \left\{f_{\xi}(x): \zeta \in B \wedge \beta \leqslant \zeta\right\}$. Let $\alpha=\min A, \beta \in B$ and $\alpha<\beta$. Note that $a \leqslant f_{\alpha}(x)$ and, by Lemma 2.3, $a \in P_{\xi} \subseteq P_{\zeta}$ for all $\zeta<\xi$. Then, $(18)_{\zeta}$ ensures that $a \leqslant f_{\zeta}(x)$ for all $\zeta \in B$ with $\zeta \geqslant \beta$. Hence, $a \leqslant b_{\beta} \leqslant b$. On the other hand, for each $\beta \in B, M_{\zeta, x}\left(b_{\beta}\right)$ contains the CA-set $\{\zeta: \zeta \in B \wedge \beta \leqslant \zeta\}$ for x and so, by $(9)_{\bar{\zeta}}, M_{\zeta, x}\left(b_{\beta}\right)$ is a final segment of ξ. Therefore, $b_{\beta} \leqslant f_{\eta}(x)$ for all $\eta \in A$ with $\beta \leqslant \eta$ and hence $b_{\beta} \leqslant a$. Since this holds for all $\beta \in B$, it follows that $b \leqslant a$.

3.13. Proof of $(12)_{5}$

By (6) $)_{\xi}$, we may assume that there is a cofinal subset $A \subseteq \xi$ such that $\operatorname{Orb}(A, x)$ is bounded below in P. It follows from (5) $)_{\xi}$ that A either contains a CA-set B for x or a CD-set D for x or a CI-set I for x. If such a B exists then $s_{\xi}(x)=\operatorname{du-lim} \operatorname{Orb}(B, x)$ exists; if such a D exists, then again $s_{c}(x)=\inf \operatorname{Orb}(D, x)$ exists; similarly, if such an I exists, then $t_{\xi}(x)=\sup \operatorname{Orb}(I, x)$ exists. This proves (a).

We now show that, if it exists, $s_{\xi}(x) \in P_{\xi}$. If $s_{\xi}(x)=\inf \operatorname{Orb}(D, x)$ for some CD-set D in ξ for x, then $s_{\xi}(x) \in P_{\xi}$ by Lemma 2.3. If $s_{\xi}^{\xi}(x)=\sup \left\{a_{x}: \alpha \in B\right\}$, where B is a CA-set in ξ for x, and $a_{\alpha}=\inf \left\{f_{\eta}(x): \eta \in B \wedge \alpha \leqslant \eta\right\}$ then $a_{\alpha} \in P_{\alpha}$ for all $\alpha \in B$
by Lemma 2．1，and therefore $s_{\zeta}^{\xi}(x) \in P_{\xi}$ by Lemma 2．3．Similarly，$t_{\xi}(x) \in P_{亏}^{\xi}$ if it exists．

3．14．Proof of（13）

Suppose $M_{\zeta, x}(y)$ contains a final segment of ξ and that $s_{z}^{\xi}(x)$ exists．Then there is $\gamma<\xi$ such that $y \leqslant f_{\eta}(x)$ for $\gamma \leqslant \eta<\xi$ ．If there is a CD－set D in ξ for x ，then $s_{\xi}(x)$ is defined as inf $\operatorname{Orb}(D, x)$ ．We can assume that $\eta \geqslant \geqslant$ for $\eta \in D$ and therefore，by（7） $s_{\xi}^{\xi}(x) \geqslant y$ ．Otherwise，$s_{\xi}(x)=\operatorname{du-lim} \operatorname{Orb}(A, x)$ ，where A is a CA－set in ξ for x ．Again we can assume that $\eta \geqslant \gamma$ for $\eta \in A$ ．Then by definition，$s_{z}(x)=\sup \left\{a_{x}: x \in A\right\}$ ，where $a_{y}=\inf \left\{f_{\eta}(x): \eta \in A \wedge \alpha \leqslant \eta\right\}$ and so $y \leqslant a_{\gamma} \leqslant s_{\xi}(x)$ ．Similarly，if $t_{\xi}(x)$ exists，then $y \leqslant t(x)$ ．

3．15．Proof of (14)

Assume that both $s_{z}^{z}(x)$ and $t_{z}(x)$ exist．If there is a CD－set D in ξ for x ，then $s_{z}(x)=$ $\inf \operatorname{Orb}(D, x)$ and so $s_{\ddot{亏}}(x) \leqslant f_{\chi}(x)$ for some $\alpha \in D$ ．By $(12)(b), s_{\xi}(x) \in P_{\xi} \subseteq P_{\eta}$ for all $\eta<\xi$ and then，by $(18)_{\eta}, s_{\zeta}^{\zeta}(x) \leqslant f_{\eta}(x)$ for all $\alpha \leqslant \eta<\xi$ ，and hence $M_{\xi}\left(s_{\xi}(x)\right)$ contains a final segment of ξ ．Then $s_{\xi}(x) \leqslant t_{\xi}(x)$ follows from（13）．Otherwise，

$$
s_{\check{c}}(x)=\mathrm{du}-\lim \operatorname{Orb}(A, x)
$$

for some CA－set A in ξ for x ，and in this case $s_{\xi}(x)=\sup \left\{a_{x}: \alpha \in A\right\}$ ，where $a_{\chi}=\inf \left\{f_{\eta}(x): \eta \in A \wedge \alpha \leqslant \eta\right\}$ ．For fixed $\alpha \in A, M_{\xi, x}\left(a_{\chi}\right)$ contains the CA－set $\{\eta: \eta \in A \wedge x \leqslant \eta\}$ in ξ for x ．Then by（9） it follows that $M_{\xi, x}\left(a_{x}\right)$ contains a final segment of ξ and hence $a_{\alpha} \leqslant t_{z}(x)$ by（13）．Since α is arbitrarily chosen， it follows that $s_{\tilde{\zeta}}(x) \leqslant t_{\xi}^{\tau}(x)$ ．

3．16．Proof of (16) \％

（a）Assume that $N_{e, x}(y)=\left\{\eta<\xi: f_{\eta}(x) \leqslant y\right\}$ is cofinal in ξ ．By $(15)_{c}, f_{z}(x)=$ $s_{亏}^{z}(x)$ or $t_{\xi}(x)$ ．If $N_{\xi, x}(y)$ contains a final segment of ξ ，then $f_{\xi}(x) \leqslant y$ by（13） ． Therefore，by（ 9 ）we can assume that $N_{\bar{\xi}, x}(y)$ contains no CA－set．Therefore，by（ 5$)_{\xi}$ ， $N_{\bar{c},}(y)$ either contains a CD－set，D ，or a CI－set，I ．Then by $(15), f_{\bar{\xi}}(x)$ is either $\inf \operatorname{Orb}(D, x)$ or $\sup \operatorname{Orb}(A, x)$ ．But in either case，$f(x) \leqslant y$ since $D($ or $I)$ is a subset of $N_{b}, x(y)$ ．
（b）This is an immediate consequence of（13）and（15）．
（c）Suppose that $M_{\zeta, r}(y)$ is cofinal in ξ but $y \not f_{\bar{\xi}}(x)$ ．We prove the following two claims．

Claim 1．$M_{e x}(y)$ contains a CI－set I for x ．

$$
y \leqslant \inf \operatorname{Orb}(D, x)=f^{2}(x),
$$

which is a contradiction．If $M_{\xi, x}(y)$ contains a CA－set for x ，then，by $(9)_{\xi}$ ，it is a final segment of ξ and so by $(13)_{\xi}$ we have the same contradiction that $y \leqslant f_{\xi}(x)$ ． Therefore，by（5）$)_{\xi}, M_{\xi, x}(y)$ contains a CI－set I for x ．

Claim 2．ξ contains a CD－set D for x and $f_{\zeta}(x)=\inf \operatorname{Orb}(D, x)$ ．
Assume that no such CD－set exists．Then by（15）${ }_{⿳ 亠 二 口}^{\text {，}}$

$$
f_{\xi}(x)=\sup \operatorname{Orb}(I, x) \geqslant y
$$

since I is a CI－set in ξ for x ，and this is a contradiction．Hence there is a CD－set D and $f_{\xi}(x)=\inf \operatorname{Orb}(D, x)$ by $(15)_{\xi}$ ．

Claim 3．$M_{\xi, x}(y) \cap M_{\xi, x}\left(f_{\zeta}(x)\right)$ is cofinal in ξ ．
Let $\alpha=\min D$ ．For $\alpha \leqslant \eta<\xi$ ，by（15）$)_{\xi}$ and（12）$)_{\xi}$（b）we have that $f_{\xi}(x) \in P_{\xi} \subseteq P_{\eta}$ ． By（18）$)_{\eta}, f_{\xi}(x) \leqslant f_{x}(x)$ implies $f_{\xi}(x) \leqslant f_{\eta}(x)$ ．Therefore，$M_{\xi, x}\left(f_{\xi}(x)\right)$ contains a final segment of ξ and so $M_{\xi, x}(y) \cap M_{\zeta, x}\left(f_{\xi}(x)\right)$ is cofinal in ξ ．

3．17．Proof of $(17)_{\xi}$

If $\xi=\eta+1$ is a successor ordinal then $f_{\xi}=g_{\eta} \circ f_{\eta}$ by $(15)_{\xi} \cdot f_{\eta}$ is a retraction by （17）η_{η} and g_{η} is a retraction by Theorem 3．4（2）in［1］．Hence，f_{ξ} is a retraction．We now assume that ξ is a limit ordinal．

By（12）$)_{\xi}(\mathrm{b})$ and $(15)_{\xi}$ it follows that $f_{\zeta}(x) \in P_{\xi}$ for any $x \in P$ and so it is enough to verify that f_{ξ} is order preserving and that $x=f_{\xi}(x)$ for $x \in P_{\zeta}$ ．If $x \in P_{\xi}$ ，then $x \in P_{\eta}$ for $\eta<\xi$ ，and so $x=f_{\eta}(x)$ by（17）$)_{\eta}$ ．Therefore，ξ itself is a CD－set for x ，so $f_{\xi}(x)=\inf \operatorname{Orb}(\xi, x)=x$ ．

Suppose that $x, y \in P$ and $x<y$ ，we want to show that $f_{\bar{\zeta}}(x) \leqslant f_{\xi}(y)$ ．If the ξ－ orbits of x and y are not ξ－disjoint，then $f_{\xi}(x)=f_{\xi}(y)$ ．Therefore，by（4）$)_{\xi}$ ，we may assume that either（a）there exists $\alpha<\xi$ such that $M_{\xi, y}\left(f_{\alpha}(x)\right)$ is cofinal in ξ or（b） there exists $\beta<\xi$ such that $N_{\xi, x}\left(f_{\beta}(y)\right)$ is cofinal in ξ ．

Suppose（a）holds．If $f_{\alpha}(x) \leqslant f_{\zeta}(y)$ ，by $(18)_{\eta}, f_{\eta}(x) \leqslant f_{\xi}(y)$ for all $\alpha \leqslant \eta<\xi$ ，and so $N_{\xi, x}\left(f_{\xi}(y)\right)$ contains a final segment of ξ ．Then，by $(16)_{\xi}(\mathrm{a}), f_{\xi}(x) \leqslant f_{\xi}(y)$ ．On the other hand，if $f_{x}(x) \nless f_{\xi}(y)$ ，then by $(16)_{\xi}(\mathrm{c})$ ，there is a CD－set D in ξ for y such that $f_{\xi}(y)=\inf \operatorname{Orb}(D, y)$ ．If $\zeta, \eta \in D$ ，and $\zeta \leqslant \eta$ ，then by $(17)_{\eta}, f_{\dot{\zeta}}(y) \geqslant f_{\eta}(y) \geqslant f_{\eta}(x)$ ． Therefore，$N_{\xi, x}\left(f_{\zeta}(y)\right)$ is cofinal in ξ ，and hence $f_{\zeta}(y) \geqslant f_{\xi}(x)$ by（16）(a) ．Thus $f_{\xi}(x)$ is a lower bound of $\operatorname{Orb}(D, y)$ and so $f_{\xi}(x) \leqslant f_{\xi}(y)$ ．

If（b）holds，by（16）$)_{\xi}\left(\text { a），} f_{\xi}(x) \leqslant f_{\beta}(y) \text { and then，by（18）}\right)_{\zeta}, f_{\xi}(x) \leqslant f_{\xi}(y)$ for $\beta \leqslant \zeta<\xi$ ．Therefore，$M_{\xi, y}\left(f_{\xi}(x)\right)$ contains a final segment of ξ and so $f_{\xi}(x) \leqslant f_{\xi}(y)$ by $(16)_{\xi}(\mathrm{b})$ ．
3.18. Proof of $(18)_{5}$

Let $\alpha \leqslant \beta \leqslant \xi, f_{\chi}(x) \leqslant y$ and $y \in P_{\zeta}^{\zeta}$. For $\beta<\xi$, we see that $f_{\beta}(x) \leqslant y$ by $(18)_{\beta}$. So, we need only consider the case when $\alpha<\beta=\xi$. If $\xi=\eta+1$ is a successor ordinal, then $f_{\eta}(x) \leqslant y$ by (18) $)_{\eta}$. Then (15) $)_{\xi}$ and Theorem 3.4(2) of [1] imply $f_{\xi}(x) \leqslant y$. If ξ is a limit ordinal, using (18) , we have $f_{\eta}(x) \leqslant y$ for all $\alpha \leqslant \eta<\xi$. Therefore, $N_{\bar{\varepsilon}, x} x(y)$ contains a final segment of ξ and then, by $(16)_{\bar{\zeta}}($ a $), f_{\xi}(x) \leqslant y$. The second implication of $(18)_{\xi}$ follows in essentially the same way, the only difference is that we use (16) (b) instead of (16) (a).
3.19. Proof of $(19)_{\xi}$

If $\eta \leqslant \xi$ and $x \in P$, then by (17) $)_{\xi} f_{\xi}(x) \in P_{\xi} \subseteq P_{\eta}$, and so by $(17)_{\eta}, f_{\eta}\left(f_{\xi}(x)\right)=$ $f_{\xi}(x)$, i.e. $f_{\eta} \circ f_{\xi}=f_{\xi}$. Suppose $\eta<\xi$. If $\xi=\zeta+1$, then by (19) and (15) $)_{\xi}$,

$$
f_{\xi}\left(f_{\eta}(x)\right)=g_{\zeta}\left(f_{\zeta}\left(f_{\eta}(x)\right)=g_{\underline{\Sigma}}\left(f_{\zeta}(x)\right)=f_{\xi}(x) .\right.
$$

Also, if ξ is a limit and $\eta \leqslant \zeta<\xi$, then by (19),$f_{\zeta}(x)=f_{\zeta}\left(f_{\eta}(x)\right.$) and so the ξ-orbits of x and $f_{\eta}(x)$ are eventually the same, and therefore, $f_{\xi}(x)=f_{\zeta}\left(f_{\eta}(x)\right)$ by (15) $)_{\xi}$. In either case, $f_{\xi} \circ f_{\eta}=f_{\xi}$.

Acknowledgements

The author wishes to thank Professor Eric Milner for the revision of this paper.

References

[1] B. Li, The ANTl-order for cacce posets - Part I, Discrete Math. 158 (this Vol.) (1996) 173-184.

[^0]: ${ }^{1}$ Supported by a grant from The National Natural Science Foundation of China and a grant from The National Education Committee of China for scholars returning from abroad.

