

Discrete Mathematics 158 (1996) 185-199

DISCRETE MATHEMATICS

The ANTI-order for caccc posets - Part II

Boyu Li¹

Department of Mathematics, Northwestern University, Xi'an, Shaanxi, China

Received 1 July 1994

Abstract

In Part I we defined the ANTI-order, ANTI-good subsets, ANTI-perfect sequences and ANTIcores for cacce posets. In this part we prove the main result: If $\Pi = \langle P_{\zeta} : \zeta \leq \lambda \rangle$ is an ANTIperfect sequence of a connected cacce poset P which does not contain a one-way infinite fence, then P_{ζ} is a retract of P for all $\zeta \leq \lambda$.

Keywords: Cacce posets; Retracts; ANTI-order

1. Introduction

This is a continuation of [1], where we defined the ANTI-order, ANTI-good subsets, ANTI-perfect sequences and ANTI-cores for caccc posets. We refer the reader to [1] for the definitions of these and other special notation. In this part we prove the main result.

Theorem 1.1. Let $\Pi = \langle P_{\xi} : \xi \leq \lambda \rangle$ be an ANTI-perfect sequence of a connected caccc poset P which contains no one-way infinite fence. Then P_{ξ} is a retract of P for every $\xi \leq \lambda$; in particular, the ANTI-core P_{λ} is a retract of P.

By Theorem 3.4(2) of [1] an ANTI-good subset of a cacce poset is a retract, and so the conclusion of the theorem is obvious if the length λ of Π is finite. Before proving the theorem, we give an example to show that the length of an ANTI-perfect sequence of a connected cacce poset with no one-way infinite fence may be infinite and so it is necessary to consider limit steps when we prove the theorem. (This is different from the case for a PT-perfect sequence in a cc poset with no infinite antichain which is always finite — see (1.4) of [1].)

¹Supported by a grant from The National Natural Science Foundation of China and a grant from The National Education Committee of China for scholars returning from abroad.

The example is a modification of the poset shown in Fig. 5 in [1] which does contain a one-way infinite fence. For $n < \omega$, let (A_n, \leq_n) be the poset shown in Fig. 1, in which

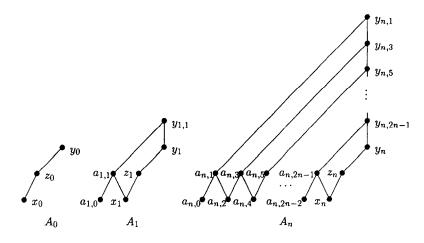
$$\{a_{n,0}, a_{n,1}, a_{n,2}, \ldots, a_{n,2n-2}, a_{n,2n-1}, x_n, z_n\}$$

is a finite fence,

 $\{y_{n,1}, y_{n,3}, y_{n,5}, \ldots, y_{n,2n-1}, y_n\}$

is a finite decreasing chain, $a_{n,2k-1} < y_{n,2k-1}$ for $1 \le k \le n$, $z_n < y_n$ and there are no other comparabilities except for those demanded by transitivity.

The poset (P, \leq) shown in Fig. 2 is obtained in the following way. Let $P = \bigcup \{A_n : n < \omega\} \cup \{y\}$ and define the order on P so that \leq is the same as \leq_n on A_n , $y_n > y_{n+1,1}$



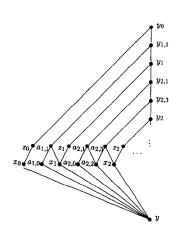


Fig. 2. (P, \leq) .

and y is the smallest element of P, there are no other comparabilities except for those required for transitivity. Using the same argument for the poset shown in Fig. 5 in [1], we easily see that it is a connected cacce poset with no one-way infinite fence, and that $\Pi = \langle P_{\xi} : \xi \leq \omega \rangle$ is an ANTI-perfect sequence of P, where $P = P_0$, $P_n - P_{n+1} =$ $\{a_{i,n} : [n/2] + 1 \leq i < \omega\}$ $(n < \omega)$ and $P_{\omega} = \cap\{P_n : n < \omega\}$. In other words, P_{n+1} is obtained from P_n , by removing all a's having n as the second subscript, and $P_{\omega} =$ $\{x_i : i < \omega\} \cup \{y_i : i < \omega\} \cup \{z_i : i < \omega\}$.

2. Some additional lemmas

In this section we introduce some new definitions and prove two easy lemmas needed for the proof of the main theorem. Let $\Pi = \langle P_{\xi} : \xi \leq \lambda \rangle$ be an ANTI-perfect sequence for a cacce poset *P*. For each $x \in P$ we define the *index of x*, denoted by i(x), to be λ if $x \in P_{\lambda}$, and $i(x) = \xi$ if $x \in P_{\xi} - P_{\xi+1}$ for some $\xi < \lambda$. We also define

$$I(>x) = \{i(y): y > x \land i(y) \ge i(x)\},\$$
$$I(
$$I(x) = I(x).$$$$

Lemma 2.1. Let $\Pi = \langle P_{\xi} : \xi \leq \lambda \rangle$ be an ANTI-perfect sequence of a caccc-poset $P, X \subseteq P$ and $\alpha = \min\{i(y) : y \in X\}$. If $x = \inf X$ ($x = \sup X$) exists, then $x \in P_{\alpha}$. Furthermore, $x \in P_{\alpha+1}$ if $x \notin X$.

Proof. When $x \in X$, the conclusion is obvious. Suppose that $x \notin X$. We have that $X \subseteq P_{\alpha}$ since $\alpha \leq i(y)$ for all $y \in X$. By induction on $\eta \leq \alpha + 1$, we show that $x \in P_{\eta}$. If η is a limit this is clear since, in this case, $P_{\eta} = \bigcap_{\zeta < \eta} P_{\zeta}$. If $\eta = \zeta + 1$ and $x \in P_{\zeta}$, then $x = \inf_{P_{\zeta}} X$ and therefore, by [1, Lemma 3.2] x belongs to any \leq -good subset of P_{ζ} , and in particular to $P_{\zeta+1}$. Hence $x \in P_{\alpha+1}$. \Box

Corollary 2.2. Let $\Pi = \langle P_{\xi} : \xi \leq \lambda \rangle$ be an ANTI-perfect sequence of a caccc poset P and let $\xi \leq \lambda$. If $X \subseteq P_{\xi}$ and $x = \inf X$ (sup X) exists, then $x \in P_{\xi}$ and hence $\inf_{P_{\xi}} X$ (sup_P X) also exists and is equal to x.

Lemma 2.3. Let $\Pi = \langle P_{\xi} : \xi \leq \lambda \rangle$ be an ANTI-perfect sequence of a caccc poset P, and let $\xi \leq \lambda$ be a limit ordinal. If C is a chain and $C \cap P_{\eta}$ is coinitial (cofinal) in C for all $\eta < \xi$, then $x = \inf C \in P_{\xi}$ ($x = \sup C \in P_{\xi}$).

Proof. For each $\eta < \xi$, since $C \cap P_{\eta}$ is coinitial in C, $x = \inf C \cap P_{\eta}$ and therefore, by Lemma 2.1, $x \in P_{\eta}$. Thus, $x \in P_{\xi} = \bigcap_{\eta < \xi} P_{\eta}$. \Box

3. Proof of the main theorem

Let $\Pi = \langle P_{\xi} : \xi \leq \lambda \rangle$ be an ANTI-perfect sequence of a connected cacce poset P with no one-way infinite fence. Let $\underline{\ll}_{\xi}$ be the ANTI-order on P_{ξ} , i.e. $\underline{\ll}_{\xi} = \underline{\ll}_{P_{\xi}}$, and let $g_{\xi} : P_{\xi} \to P_{\xi+1}$ be an ANTI-good retraction for all $\xi \leq \lambda$ (see [1, Theorem 3.4]). We shall inductively define maps $f_{\xi} : P \to P_{\xi}$ for each $\xi \leq \lambda$ so that the conditions $(1)_{\xi} - (19)_{\xi}$ below are satisfied. We start with $f_0 = \mathrm{id}_P$, the identity mapping on P, so that all these conditions are trivially satisfied for $\xi = 0$. We assume that $\xi > 0$ and that f_{η} has been defined for all $\eta < \xi$ so that the corresponding conditions are satisfied.

For any $x \in P$, the sequence $\operatorname{orb}_{\xi}(x) = \langle f_{\eta}(x) : \eta < \xi \rangle$ is called the ξ -orbit of x; for $A \subseteq \xi$ we also define $\operatorname{Orb}(A, x) = \{ f_{\eta}(x) : \eta \in A \}$. The ξ -orbit of x is eventually constant, if there is $\alpha < \xi$ such that $f_{\alpha}(x) = f_{\eta}(x)$ for $\alpha \leq \eta < \xi$, and in this case, x is called a ξ -stable point. We say that x and y are ξ -distinct if their ξ -orbits are disjoint, i.e. $f_{\eta}(x) \neq f_{\eta}(y)$ for all $\eta < \xi$. We say that $x \in P$ is a ξ -regular point if there exists $y \in P$ which is ξ -distinct from x and such that $y || f_{\alpha}(x)$ for some $\alpha < \xi$. The point $x \in P$ is ξ -bad if it is neither ξ -stable nor ξ -regular. If $\xi = \eta + 1$ is a successor, then every $x \in P$ is ξ -stable and so there are no ξ -bad points.

For any $x, y \in P$ and $\xi < \lambda$, we define

$$M_{\xi,x}(y) = \{\eta : \eta < \xi \land f_{\eta}(x) \ge y\}$$

and

$$N_{\xi,x}(y) = \{\eta : \eta < \xi \land f_{\eta}(x) \leqslant y\}.$$

If ξ is a limit ordinal, a subset $S \subseteq \xi$ is a CA-, a CI-, or a CD-set for $x \in P$ if S is cofinal in ξ and the set Orb(A, x) is respectively an antichain, an increasing chain or a decreasing chain in P.

Let ξ be a limit ordinal, $x \in P$ and let A be a CA-set for x such that Orb(A, x) is bounded below. Since P is caccc, for any $\alpha \in A$,

$$x_{\alpha} = \inf \{ f_{\eta}(x) \colon \eta \in A \land \eta \geqslant \alpha \}$$

exists and, by Lemma 2.1 $x_{\alpha} \in P_{\alpha}$. Since $\langle x_{\alpha} : \alpha \in A \rangle$ is increasing,

$$z = \sup\{x_{\alpha} \colon \alpha \in A\}$$

exists and belongs to P_{ξ} by Lemma 2.3. We call this supremum the *down-up limit* of Orb(A, x) and write

$$z = \operatorname{du-lim}\operatorname{Orb}(A, x).$$

In a similar way, if Orb(A, x) is bounded above we define the *up-down limit* ud-limOrb (A, x).

3.1. Statements of the 19 conditions

(1) $_{\xi}$ If ξ is a limit ordinal, $x \in P$, $i(x) < \xi$, and if $P(>x) \cap P_{\eta} \neq \emptyset$ ($P(<x) \cap P_{\eta} \neq \emptyset$) for all $\eta < \xi$, then $P(>x) \cap P_{\xi} \neq \emptyset$ ($P(<x) \cap P_{\xi} \neq \emptyset$).

 $(2)_{\xi}$ If ξ is a limit, $i(x) < \xi$, if $I(>x) \neq \emptyset$ and $P(>x) \cap P_{\xi} = \emptyset$ $(I(<x) \neq \emptyset$ and $P(<x) \cap P_{\xi} = \emptyset$), then max I(>x) (max I(<x)) exists and is less than ξ .

 $(3)_{\xi} P_{\xi} \neq \emptyset$, and there is no ξ -bad point.

 $(4)_{\xi}$ If ξ is a limit, x < y and x, y are ξ -distinct, then either there exists $\alpha < \xi$ such that $M_{\xi,y}(f_{\alpha}(x))$ is cofinal in ξ or there exists $\beta < \xi$ such that $N_{\xi,x}(f_{\beta}(y))$ is cofinal in ξ .

 $(5)_{\xi}$ If ξ is a limit, $x \in P$, and A is a cofinal subset of ξ , then A contains either a CA-set, a CD-set or a CI-set for x.

 $(6)_{\xi}$ If ξ is a limit ordinal and $x \in P$, then there is a cofinal subset $A \subseteq \xi$ such that Orb(A, x) is either bounded above or bounded below in *P*.

 $(7)_{\xi}$ If ξ is a limit ordinal and $x \in P$ and if A and B are both CD-sets (CI-sets) in ξ for x, then

 $\inf \operatorname{Orb}(A, x) = \inf \operatorname{Orb}(B, x) \quad (\sup \operatorname{Orb}(A, x) = \sup \operatorname{Orb}(B, x))$

(8) $_{\xi}$ If ξ is a limit ordinal, $x \in P$, and A is a cofinal subset of ξ , then either (i) every maximal subset $B \subseteq A$ such that Orb(B, x) is an antichain is cofinal in ξ or (ii) no such B is cofinal in ξ .

(9) ξ If ξ is a limit ordinal, $x, y \in P$, and if $M_{\xi,x}(y)$ $(N_{\xi,x}(y))$ is cofinal in ξ and there is a CA-set in $M_{\xi,x}(y)$ $(N_{\xi,x}(y))$ for x, then $M_{\xi,x}(y)$ $(N_{\xi,x}(y))$ is a final segment of ξ , i.e. it is a set of form $\{\eta : \alpha \leq \eta < \xi\}$ for some $\alpha < \xi$.

(10) ξ If ξ is a limit ordinal, $x \in P$, and if A and B are CA-sets in ξ for x such that Orb(A,x) and Orb(B,x) are both bounded below (above), then

du- $\lim \operatorname{Orb}(A, x) = \operatorname{du-} \lim \operatorname{Orb}(B, x)$ (ud- $\operatorname{Orb}(A, x) = \operatorname{ud-} \lim \operatorname{Orb}(B, x)$).

 $(11)_{\xi}$ If ξ is a limit ordinal, $x \in P$, and if A is a CD-set (CI-set) in ξ for x, and B is a CA-set in ξ for x such that Orb(B,x) is bounded below (above), then

 $\inf \operatorname{Orb}(A, x) = \operatorname{du-lim} \operatorname{Orb}(B, x) \quad (\sup \operatorname{Orb}(A, x) = \operatorname{ud-lim} \operatorname{Orb}(B, x)).$

If ξ is a limit ordinal, $x \in P$, and if ξ contains either a CD-set (CI-set) A for x or a CA-set B for x such that Orb(B, x) is bounded below (above), then we define the *down-limit* (*up-limit*) of $Orb(\xi, x)$, which we denote by $s_{\xi}(x)$ ($t_{\xi}(x)$) to be either the infimum (supremum) of Orb(A, x) or the du-limit (ud-limit) of Orb(B, x). By $(7)_{\xi}$, $(10)_{\xi}$ and $(11)_{\xi}$, we see that these definitions of $s_{\xi}(x)$ and $t_{\xi}(x)$, when they exist, do not depend upon the choices of A or B.

 $(12)_{\xi}$ If ξ is a limit ordinal and $x \in P$, then

- (a) either $s_{\zeta}(x)$ or $t_{\zeta}(x)$ exists;
- (b) if it exists, then $s_{\xi}(x)$ ($t_{\xi}(x)$) belongs to P_{ξ} .

(13) ξ If ξ is a limit ordinal, $x, y \in P$, and if $M_{\xi,x}(y)$ $(N_{\xi,x}(y))$ contains a final segment of ξ , then $y \leq s_{\xi}(x)$ and $y \leq t_{\xi}(x)$ $(y \geq s_{\xi}(x)$ and $y \geq t_{\xi}(x))$, whenever these limits exist.

 $(14)_{\xi}$ If ξ is a limit ordinal and $x \in P$ then $s_{\xi}(x) \leq t_{\xi}(x)$ if both these limits exist.

 $(15)_{\xi}$ If $\xi = \eta + 1$ is a successor ordinal, define $f_{\xi} = g_{\eta} \circ f_{\eta}$. If ξ is a limit ordinal and $x \in P$, then we define $f_{\xi}(x)$ as follows: if ξ contains a CD-set for x, then $f_{\xi}(x) = s_{\xi}(x)$ (which exists); if ξ contains no CD-set but contains a CI-set for x, then $f_{\xi}(x) = t_{\xi}(x)$ (which exists); if ξ contains no CD- or CI-set, then we define $f_{\xi}(x) = s_{\xi}(x)$ if $s_{\xi}(x)$ exists, and $f_{\xi}(x) = t_{\xi}(x)$ otherwise (thus $f_{\xi}(x)$ is well defined by $(12)_{\xi}(a)$).

 $(16)_{\xi}$ If ξ is a limit ordinal and $x, y \in P$, then

(a) $y \ge f_{\xi}(x)$ if $N_{\xi,x}(y)$ is cofinal in ξ ;

(b) $y \leq f_{\xi}(x)$ if $M_{\xi,x}(y)$ contains a final segment of ξ ;

(c) if $M_{\xi,x}(y)$ is cofinal in ξ and $y \not\leq f_{\xi}(x)$, then there exists a CD-set D in ξ for x such that $t_{\xi}(x) = \inf \operatorname{Orb}(D, x)$ and $M_{\xi,x}(y) \cap M_{\xi,x}(f_{\xi}(x))$ is cofinal in ξ .

 $(17)_{\xi} f_{\xi}$ is a retraction and $P_{\xi} = f_{\xi}[P]$ is a retract (and hence P_{ξ} is connected). (18)_{ξ} For any $x, y \in P$,

$$\alpha \leq \beta \leq \xi \wedge f_{\alpha}(x) \leq y \wedge y \in P_{\xi} \to f_{\beta}(x) \leq y$$

and

$$\alpha \leqslant \beta \leqslant \xi \land f_{\alpha}(x) \geqslant y \land y \in P_{\xi} \to f_{\beta}(x) \geqslant y.$$

 $(19)_{\xi} f_{\xi} \circ f_{\eta} = f_{\eta} \circ f_{\xi} = f_{\xi} \text{ for any } \eta \leq \xi.$

When the induction is completed, $(17)_{\xi}$ implies the desired conclusion that P_{ξ} is a retract of P for all $\xi \leq \lambda$.

3.2. Proof of $(1)_{\xi}$

Suppose that $P(>x) \cap P_{\eta} \neq \emptyset$ for all $\eta < \xi$. We want to show that there exists $z \in P_{\xi}$ with x < z. Fix a cofinal increasing sequence $\langle \eta_{\alpha} : \alpha < cf(\xi) \rangle$ in ξ with $\eta_0 > i(x)$. For each $\alpha < cf(\xi)$, since P_{η_z} is chain complete there is a maximal element y_{α} of P_{η_z} such that $x < y_{\alpha}$. Then $y_{\alpha} \notin y_{\beta}$ for $\alpha < \beta < cf(\xi)$. We consider two cases.

Case 1. There is a cofinal subset A of $cf(\xi)$ such that $\{y_{\alpha} : \alpha \in A\}$ is an antichain.

Since x is a lower bound of $Y_{\alpha} = \{y_{\beta} : \beta \in A \land \beta \ge \alpha\}$, $z_{\alpha} = \inf Y_{\alpha}$ exists and it belongs to $P_{\eta_{\alpha}}$ by Lemma 2.1. Obviously, $\langle z_{\alpha} : \alpha \in A \rangle$ is increasing and so $z = \sup\{z_{\alpha} : \alpha \in A\}$ exists and belongs to P_{ζ} by Lemma 2.3. Note that $z_0 \in P_{\eta_0}$ and $i(x) < \eta_0$, hence $x \neq z_0$ and so $x < z_0 \le z$.

Case 2. Whenever $A \subseteq cf(\xi)$ and $\{y_{\alpha} : \alpha \in A\}$ is an antichain, then A is not cofinal in ξ .

Let A be a maximal subset of $cf(\xi)$ such that $\{y_{\alpha} : \alpha \in A\}$ is an antichain. Then A is not cofinal in $cf(\xi)$ and so there is $\mu < cf(\xi)$ such that $\alpha < \mu$ for all $\alpha \in A$. For $\mu \leq \beta < cf(\xi)$, there is $\alpha \in A$ such that $y_{\alpha} || y_{\beta}$ and hence $y_{\beta} \leq y_{\alpha}$. We have

$$\{\beta: \mu \leq \beta < \operatorname{cf}(\xi)\} = \cup \{B_{\alpha}: \alpha \in A\},\$$

where $B_{\alpha} = \{\beta \colon \mu \leq \beta < \operatorname{cf}(\xi) \land y_{\beta} \leq y_{\alpha}\}$. Since $\operatorname{cf}(\xi)$ is a regular cardinal and $|A| < \operatorname{cf}(\xi)$, B_{α} is cofinal in $\operatorname{cf}(\xi)$ for some $\alpha \in A$. For any $\beta \in B_{\alpha}$, $y_{\alpha} \geq y_{\beta} \in P_{\eta_{\beta}}$ and therefore $y_{\beta} \leq f_{\eta_{\beta}}(y_{\alpha}) \in P_{\eta_{\beta}}$ since $f_{\eta_{\beta}}$ is a retraction by $(17)_{\eta_{\beta}}$. Since y_{β} is a maximal element of $P_{\eta_{\beta}}$ it follows that $y_{\beta} = f_{\eta_{\beta}}(y_{\alpha})$. If $\beta, \gamma \in B_{\alpha}$ and $\gamma \leq \beta$, then $\eta_{\alpha} \leq \eta_{\gamma} \leq \eta_{\beta}$, $f_{\eta_{\gamma}}(y_{\alpha}) = y_{\alpha} \geq y_{\beta}$ and $y_{\beta} \in P_{\eta_{\beta}}$, it follows from $(18)_{\eta_{\beta}}$ that $y_{\beta} \leq y_{\gamma} = f_{\eta_{\gamma}}(y_{\alpha}) \leq y_{\alpha}$. Thus, $\langle y_{\beta} \colon \beta \in B_{\alpha} \rangle$ is a decreasing sequence with x as a lower bound. Let $z = \inf\{y_{\beta} \colon \beta \in B_{\alpha}\}$. Then $x \leq z$ and, by Lemma 2.3, $z \in P_{\xi}$. Since $i(x) < \xi$, it follows that x < z. \Box

3.3. Proof of $(2)_{\xi}$

It follows from $(1)_{\xi}$ that I(>x) is not cofinal in ξ so that $\eta = \sup I(>x) < \xi$. If $\eta \notin I(>x)$, then η is a limit ordinal and $P(>x) \cap P_{\xi} \neq \emptyset$ for all $\zeta < \eta$. Therefore, $P(>x) \cap P_{\eta} \neq \emptyset$ by $(1)_{\eta}$ and hence $\eta \in I(>x)$. This contradiction shows that $\eta \in I(>x)$ and hence that $\max I(>x) = \eta < \xi$. \Box

3.4. Proof of $(3)_{\xi}$

We first show $P_{\xi} \neq \emptyset$. If $\xi = \eta + 1$ is a successor, then $P_{\eta} \neq \emptyset$ by $(3)_{\eta}$. Since P_{ξ} is a \leq_{η} -good subset of P_{η} it is a retract of P_{η} and therefore non-empty by Theorem 3.4(2) of [1]. Now assume that ξ is a limit and suppose for a contradiction that $P_{\xi} = \emptyset$. We shall inductively define a sequence $\langle a_n : n < \omega \rangle$ in P and a sequence $\langle \eta_n : n < \omega \rangle$ in ξ satisfying conditions (i)–(iv). The conditions (iii) and (iv) immediately give the desired contradiction since these imply that $\langle a_n : n < \omega \rangle$ is a one-way infinite fence in P.

- (i) $\eta_m < \eta_n$ for $m < n < \omega$.
- (ii) $I(>a_n) \neq \emptyset$ if n is even; $I(<a_n) \neq \emptyset$ if n is odd.
- (iii) $i(a_n) = \eta_n$. If n > 0 is even $\eta_n = \max I(< a_{n-1})$ and a_n is a minimal element of P_{η_n} such that $a_n < a_{n-1}$, and if n is odd $\eta_n = \max I(> a_{n-1})$ and a_n is a maximal element of P_{η_n} such that $a_n > a_{n-1}$.
- (iv) $a_n \perp a_m$ if $m \leq n-2$.

To start, choose a_0 to be a minimal element of P and let $\eta_0 = i(a_0)$. By assumption, $\eta_0 < \xi$. Also $P(>a_0) \neq \emptyset$ since $\xi > 0$ and P is connected. Suppose that n > 0 and that the a_i and η_i have been suitably defined for i < n. If n is odd, then by the induction hypothesis $I(>a_{n-1}) \neq \emptyset$ and so by $(2)_{\xi}$, $\eta_n = \max I(>a_{n-1})$ exists and is less than ξ . There is $y > a_{n-1}$ such that $i(y) \ge i(a_{n-1}) = \eta_{n-1}$. By Theorem 3.4(1) in [1], $g_{\eta_{n-1}}(y) \ge a_{n-1}$. But since $g_{\eta_{n-1}}(y) \in P_{\eta_{n-1}+1}$ and $a_{n-1} \notin P_{\eta_{n-1}+1}$, it follows that $g_{\eta_{n-1}}(y) > a_{n-1}$. Therefore, $\eta_n = \max I(>a_{n-1}) > \eta_{n-1}$ and (i) holds for n. There is $z > a_{n-1}$ such that $i(z) = \eta_n$ and since P_{η_n} is chain complete, there is a maximal element a_n of P_{η_n} such that $z \le a_n$ and so (iii) also holds for n. Since the ANTIperfect sequence Π is strictly decreasing, the set P_{η_n} contains elements other than a_n , and since it is connected by $(17)_{\eta_n}$ and a_n is maximal there is an element of P_{η_n} strictly less than a_n . Therefore, $P_{\eta_n}(< a_n) \ne \emptyset$ and (ii) holds. Let $m \le n - 2$. If m is even, then a_m is a minimal element of P_{η_m} and hence $a_n \ne a_m$ since $a_n \in P_{\eta_n} \subseteq P_{\eta_m}$. Also, $a_n \ne a_m$ since $i(a_n) = \eta_n > \eta_{m+1} = \max I(> a_m)$. Thus (iv) holds in this case since $i(a_n) = \eta_n > \eta_m = i(a_m)$, and so $a_n \ne a_m$. Similarly, (iv) holds for odd $m \le n - 2$. The inductive step when n is even is similar and we omit the details.

Suppose there is a ξ -bad point $x \in P$. Then ξ is a limit. Since x is not ξ -regular, if $y \in P$ is comparable with x, then it is not ξ -distinct from x, and so y is not ξ -stable. If y is ξ -regular, then there is $z \parallel y$ such that z is ξ -distinct from y. But, for large enough $\alpha < \xi$, we have that $f_{\alpha}(z) \parallel f_{\alpha}(y) = f_{\alpha}(x)$ and $f_{\alpha}(z)$ is ξ -distinct from x, which is a contradiction. Therefore, y is also ξ -bad. Since P is connected, it follows that every point of P is ξ -bad. But $P_{\xi} \neq \emptyset$ and points of P_{ξ} are ξ -stable. This contradiction shows that there are no ξ -bad points in P. \Box

3.5. Proof of $(4)_{\tilde{z}}$

We assume the hypothesis of $(4)_{\xi}$ and that the conclusion is false; we will obtain the contradiction that *P* contains a one-way infinite fence. By assumption, for any $\alpha, \beta < \xi$, neither $M_{\xi,y}(f_{\alpha}(x))$ nor $N_{\xi,x}(f_{\beta}(y))$ is cofinal in ξ . Therefore, there are mappings $u, v: \xi \to \xi$ where

$$u(\alpha) = \sup M_{\xi, y}(f_{\alpha}(x)), \qquad v(\beta) = \sup N_{\xi, x}(f_{\beta}(y)).$$

We begin by proving the following five claims.

Claim 1. For any $\alpha, \beta < \xi$, $f_{\alpha}(x) \geq f_{\beta}(y)$.

If $f_{\alpha}(x) \ge f_{\beta}(y)$, then, by (17)_{γ} and (19)_{γ}, $f_{\gamma}(x) \ge f_{\gamma}(y)$, for max{ α, β } < $\gamma < \xi$. On the other hand $f_{\gamma}(x) \le f_{\gamma}(y)$ since x < y, and so $f_{\gamma}(x) = f_{\gamma}(y)$. This is a contradiction since x and y are ξ -distinct.

Claim 2. $\alpha < u(\alpha)$ ($\beta < v(\beta)$) for all $\alpha < \xi$ ($\beta < \xi$).

Since x, y are ξ -distinct, it follows from x < y and $(17)_{\alpha}$ that $f_{\alpha}(x) < f_{\alpha}(y)$. Then by $(15)_{\alpha+1}$ and Theorem 3.4(1) in [1], $f_{\alpha}(x) \leq f_{\alpha+1}(y)$ and so $\alpha + 1 \in M_{\xi,y}(f_{\alpha}(x))$. Therefore, $\alpha < \alpha + 1 \leq u(\alpha)$.

Claim 3. For any $\alpha < \xi$, $f_{\eta}(x) \perp f_{\zeta}(y)$ for $\eta \leq \alpha$ and $u(\alpha) < \zeta$. (For any $\beta < \xi$, $f_{\zeta}(y) \perp f_{\eta}(x)$ for $\zeta \leq \beta$ and $v(\beta) < \eta$.)

By Claim 2, $\eta \leq \alpha < \zeta$, and by Claim 1, if $f_{\eta}(x) || f_{\zeta}(y)$, then $f_{\eta}(x) < f_{\zeta}(y)$. Therefore, by (18)_{ζ}, $f_{\alpha}(x) \leq f_{\zeta}(y)$ and so $\zeta \in M_{\zeta,y}(f_{\alpha}(x))$. This implies the contradiction that $\zeta \leq u(\alpha)$.

Claim 4. For any $\alpha < \xi$, $f_{\zeta}(y) \perp f_{\zeta'}(y)$ whenever $\zeta \in M_{\xi,y}(f_{\alpha}(x))$ and $v \circ u(\alpha) < \zeta'$. (For any $\beta < \xi$, $f_{\eta}(x) \perp f_{\eta'}(x)$ whenever $\eta \in N_{\xi,x}(f_{\beta}(y))$ and $u \circ v(\beta) < \eta'$.)

By Claim 2, $\zeta \leq u(\alpha) < v \circ u(\alpha) < \zeta'$. Since $f_{\alpha}(x) \leq f_{\zeta}(y)$, and $\zeta' > u(\alpha)$ it follows that $f_{\zeta}(y) \leq f_{\zeta'}(y)$. If $f_{\zeta'}(y) < f_{\zeta}(y)$, then by $(17)_{\zeta'}$, $f_{\zeta'}(x) \leq f_{\zeta'}(y) < f_{\zeta}(y)$, and this contradicts Claim 3.

Claim 5. For any $\alpha < \xi$, if $u(\alpha) \notin M_{\xi,y}(f_{\alpha}(x))$, then there is $\zeta \in M_{\xi,y}(f_{\alpha}(x))$ such that $\alpha < \zeta$ and $f_{\zeta}(y) \ge f_{u(\alpha)}(y)$. For any $\beta < \xi$, $v(\beta) \in N_{\xi,x}(f_{\beta}(y))$.

Since $u(\alpha) \notin M_{\xi,y}(f_{\alpha}(x))$, it follows that $u(\alpha)$ is a limit. Therefore, by $(16)_{u(\alpha)}(c)$ $M_{u(\alpha),y}(f_{\alpha}(x)) \cap M_{u(\alpha),y}(f_{u(\alpha)}(y))$ is cofinal in $u(\alpha)$. By Claim 2, $u(\alpha) > \alpha$ and so there is ζ such that $\alpha < \zeta < u(\alpha)$, $f_{\zeta}(y) \ge f_{\alpha}(x)$ and $f_{\zeta}(y) \ge f_{u(\alpha)}(y)$. For the last part, suppose $\beta < \zeta$ and $v(\beta) \notin N_{\xi,x}(f_{\beta}(y))$. Then $v(\beta)$ is a limit and $N_{v(\beta),x}(f_{\beta}(y))$ is cofinal in $v(\beta)$. Therefore, by $(16)_{v(\beta)}(\alpha)$, $f_{\beta}(y) \ge f_{v(\beta)}(x)$, and so $v(\beta) \in N_{\xi,x}(f_{\beta}(y))$ after all.

We now obtain the desired contradiction by constructing a one-way infinite fence in *P*. Inductively define ordinals $\alpha_n, \beta_n < \xi$ for $n < \omega$ so that $\alpha_0 = 0$, $\beta_0 = u(0)$, $\alpha_{n+1} = v(\beta_n)$, and $\beta_{n+1} = u(\alpha_{n+1})$. By Claim 2

$$\alpha_0 < \beta_0 < \cdots < \alpha_n < \beta_n < \cdots$$

Define $a_n = f_{\alpha_n}(x)$ $(n < \omega)$. If $f_{\beta_n}(y) \ge f_{\alpha_n}(x)$, then we define $\gamma_n = \beta_n$; otherwise, by Claim 5, there is an ordinal γ_n such that $\alpha_n < \gamma_n < \beta_n$ and

$$a_n = f_{\alpha_n}(x) \leq f_{\gamma_n}(y) \geq f_{\beta_n}(y) \geq f_{\alpha_{n+1}}(x).$$

Now define $b_n = f_{in}(y)$. From these definitions, we have

$$\alpha_0 < \gamma_0 \leq \beta_0 < \cdots < \alpha_n < \gamma_n \leq \beta_n < \cdots$$

and

 $a_0 \leq b_0 \geq \cdots \geq a_n \leq b_n \geq a_{n+1} \leq \cdots$

Therefore, by Claim 1, it follows that

$$a_0 < b_0 > \cdots > a_n < b_n > a_{n+1} < \cdots$$

For $m < n < \omega$,

$$\alpha_m \leq \alpha_{n-1} < \beta_{n-1} = u(\alpha_{n-1}) < \gamma_n,$$

and then by Claim 3,

$$a_m = f_{\alpha_m}(x) \perp f_{\gamma_n}(y) = b_n.$$

For $m < n - 1 < \omega$,

$$\gamma_m \leqslant \beta_{n-2} < \alpha_{n-1} = v(\beta_{n-2}) < \alpha_n,$$

and so by Claim 3,

$$b_m = f_{\gamma_m}(y) \perp f_{\alpha_n}(x) = a_n.$$

By Claim 5, for $2 \le n < \omega$,

$$\alpha_{n-1} \in N_{\xi,x}(f_{\beta_{n-2}}(y))$$
 and $\alpha_n > \beta_{n-1} = u \circ v(\beta_{n-2})$

and so, by Claim 4,

$$a_{n-1}=f_{\alpha_{n-1}}(x)\perp f_{\alpha_n}(x)=a_n.$$

It follows from $(18)_{\alpha_n}$ that $a_m \perp a_n$ for all m < n. In the same way, we have $b_m \perp b_n$ for $m < n < \omega$. This shows that

 $\langle a_1, b_1, \ldots, a_n, b_n, \ldots \rangle$

is indeed a one-way infinite fence. \Box

3.6. Proof of
$$(5)_{\xi}$$

Let $B \subseteq A$ be maximal such that Orb(B, x) is an antichain. If B is cofinal in A, it is a CA-set in A for x. So, we assume that B is not cofinal in A and that there is $\alpha \in A$ such that $\beta < \alpha$ for all $\beta \in B$. By the maximality of B, for $\alpha \leq \eta < \xi$, $f_{\eta}(x) || f_{\beta}(x)$ for some $\beta \in B$ and then, by $(18)_{\eta}$, $f_{\eta}(x) || f_{\alpha}(x)$. Let

$$D = \{\eta : \eta \in A \land \eta \ge \alpha \land f_{\eta}(x) \le f_{\alpha}(x)\}$$

and

$$I = \{\eta : \eta \in A \land \eta \ge \alpha \land f_{\eta}(x) > f_{\alpha}(x)\}.$$

By $(18)_{\eta}$, $f_{\eta'}(x) \ge f_{\eta}(x)$ for $\eta', \eta \in D$ and $\eta' < \eta$, and so $\langle f_{\eta}(x) : \eta \in D \rangle$ is decreasing. Similarly, $\langle f_{\eta}(x) : \eta \in I \rangle$ is increasing. Since $D \cup I$ is a final segment of A, either D or I is cofinal in A, and we conclude that A either contains a CD-set or a CI-set for x. \Box

3.7. Proof of (6);

This is obvious when x is a ξ -stable point. So, by $(3)_{\xi}$, we may assume that x is ξ -regular, in other words there is $y \in P$ such that the ξ -orbits of x and y are ξ -distinct

194

and $y || f_{\alpha}(x)$, say $f_{\alpha}(x) \leq y$, for some $\alpha < \xi$. Then, by $(17)_{\alpha}$, $f_{\alpha}(x) \leq f_{\alpha}(y)$; in fact, $f_{\alpha}(x) < f_{\alpha}(y)$ since the ξ -orbits of x and y are ξ -distinct. By $(4)_{\xi}$, either (i) there is β ($\alpha \leq \beta < \xi$) such that $M = M_{\xi,y}(f_{\beta}(x))$ is cofinal in ξ or (ii) there is γ ($\alpha \leq \gamma < \xi$) such that $N = N_{\xi,x}(f_{\gamma}(y))$ is cofinal in ξ .

If (ii) holds, then we are done since Orb(N,x) is bounded above by $f_{\gamma}(y)$. Suppose (i) holds. Then Orb(M, y) is bounded below by $f_{\beta}(x)$. By $(5)_{\xi}$ it follows that M contains either a CA-set or a CI-set or a CD-set for y. Suppose M contains the CA-set A. Since $f_{\beta}(x)$ is a lower bound of Orb(A, y) it follows that

 $z = du - \lim Orb(A, y)$

exists, $f_{\beta}(x) \leq z$ and $z \in P_{\xi}$. Therefore, if $\beta \leq \eta < \xi$, then $(18)_{\eta}$ implies that $f_{\eta}(x) \leq z$ and hence $(6)_{\xi}$ holds. Suppose that M contains the CI-set I. Then $z = \sup \operatorname{Orb}(I, y)$ exists and again $(6)_{\xi}$ holds. Similarly, if M contains a CD-set. \Box

3.8. Proof of $(7)_{z}$

Let $\alpha = \min A$. For each $\zeta \ge \alpha$ in *B*, there is $\gamma \in A$ such that $\gamma \ge \zeta$. Since $f_{\alpha}(x) \ge f_{\gamma}(x)$, it follows by (18)₇ that $f_{\gamma}(x) \le f_{\zeta}(x)$. Hence

 $\inf \operatorname{Orb}(A, x) \leq f_{\zeta}(x),$

for all $\zeta \in B$ with $\zeta \ge \alpha$. Therefore,

 $\inf \operatorname{Orb}(A, x) \leq \inf \operatorname{Orb}(B, x).$

The opposite inequality holds by symmetry. \Box

3.9. Proof of $(8)_{z}$

Suppose that B is a CA-set in A for x. We need to show that, if C is a maximal subset of A such that Orb(C,x) is an antichain, then C is cofinal in A. Suppose not. Then there is $\alpha \in A$ such that $\gamma < \alpha$ for all $\gamma \in C$. Since B is cofinal in A, there are $\eta, \zeta \in B$ such that $\alpha < \eta < \zeta$. By the maximality of C there is some $\gamma \in C$ such that $f_{\zeta}(x) || f_{\gamma}(x)$ and it follows from $(18)_{\zeta}$ that $f_{\zeta}(x) || f_{\eta}(x)$. This is a contradiction, since Orb(B,x) is an antichain. \Box

3.10. Proof of $(9)_{z}$

Let $M_{\xi,x}(y)$ be cofinal in ξ and suppose it contains a CA-set for x. We inductively show that $\beta \in M_{\xi,x}(y)$ for all $\alpha \leq \beta < \xi$, where $\alpha = \min M_{\xi,x}(y)$. When β is a limit ordinal, then by the induction hypotheses and $(16)_{\beta}(b)$, $y \leq f_{\beta}(x)$ and hence $\beta \in M_{\xi,x}(y)$. Suppose that $\beta = \gamma + 1$ is a successor ordinal. In this case, $\gamma \in M_{\xi,x}(y)$. Let A be a maximal subset of $M_{\xi,x}(y)$ which contains γ and is such that Orb(A, x) is an antichain. By $(8)_{\xi}$, A is a cofinal subset of $M_{\xi,x}(y)$ and so $B = \{\eta : \eta \in A \land \gamma \leq \eta < \xi\}$

is also a CA-set in $M_{\xi,x}(y)$ for x. B is infinite and since P is cacce $\operatorname{Orb}(B,x)$ has an infimum $z \ge y$. Moreover, Lemma 2.1 implies $z \in P_{\beta}$. By Theorem 3.4(2) in [1], g_{γ} is a retraction from P_{γ} onto P_{β} . Therefore, since $z \le f_{\gamma}(x)$ it follows that $y \le z = g_{\gamma}(z) \le g_{\gamma}(f_{\gamma}(x)) = f_{\beta}(x)$, and hence $\beta \in M_{\xi,x}(y)$. \Box

3.11. Proof of $(10)_{\check{c}}$

Suppose that A, B are cofinal subsets of ξ such that Orb(A, x) and Orb(B, x) are both bounded below. Then

$$a = du - \lim Orb(A, x), b = du - \lim Orb(B, x),$$

both exist and $a = \sup\{a_{\alpha} : \alpha \in A\}$, where $a_{\alpha} = \inf\{f_{\eta}(x) : \eta \in A \land \eta \ge \alpha\}$, and $b = \sup\{b_{\beta} : \beta \in B\}$, where $b_{\beta} = \inf\{f_{\zeta}(x) : \zeta \in B \land \zeta \ge \beta\}$. Let $\alpha \in A, \beta \in B, \alpha \le \beta$. $M_{\xi,x}(a_{\alpha})$ contains $\{\eta : \eta \in A \land \alpha \le \eta\}$, which is a CA-set in ζ for x. Therefore, $M_{\xi,x}(a_{\alpha})$ is a final segment of ζ by $(9)_{\zeta}$. It follows that $a_{\alpha} \le f_{\zeta}(x)$ for all $\zeta \in B$ with $\beta \le \zeta$ and hence $a_{\alpha} \le b_{\beta} \le b$. Since $\alpha \in A$ was arbitrary, we have that $a \le b$. By symmetry, we also have that $b \le a$. \Box

3.12. Proof of $(11)_{\xi}$

Suppose that A is a CD-set and B is a CA-set in ξ for x such that Orb(B,x) is bounded below. Then

$$a = \inf \operatorname{Orb}(A, x)$$
 and $b = \operatorname{du-lim} \operatorname{Orb}(B, x)$

both exist. By definition, $b = \sup\{b_{\beta} : \beta \in B\}$, where $b_{\beta} = \inf\{f_{\zeta}(x) : \zeta \in B \land \beta \leqslant \zeta\}$. Let $\alpha = \min A$, $\beta \in B$ and $\alpha < \beta$. Note that $a \leqslant f_{\alpha}(x)$ and, by Lemma 2.3, $a \in P_{\zeta} \subseteq P_{\zeta}$ for all $\zeta < \zeta$. Then, $(18)_{\zeta}$ ensures that $a \leqslant f_{\zeta}(x)$ for all $\zeta \in B$ with $\zeta \geqslant \beta$. Hence, $a \leqslant b_{\beta} \leqslant b$. On the other hand, for each $\beta \in B$, $M_{\zeta,x}(b_{\beta})$ contains the CA-set $\{\zeta : \zeta \in B \land \beta \leqslant \zeta\}$ for x and so, by $(9)_{\zeta}$, $M_{\zeta,x}(b_{\beta})$ is a final segment of ζ . Therefore, $b_{\beta} \leqslant f_{\eta}(x)$ for all $\eta \in A$ with $\beta \leqslant \eta$ and hence $b_{\beta} \leqslant a$. Since this holds for all $\beta \in B$, it follows that $b \leqslant a$. \Box

3.13. Proof of $(12)_{\ddot{c}}$

By $(6)_{\xi}$, we may assume that there is a cofinal subset $A \subseteq \xi$ such that Orb(A, x) is bounded below in P. It follows from $(5)_{\xi}$ that A either contains a CA-set B for x or a CD-set D for x or a CI-set I for x. If such a B exists then $s_{\xi}(x) = du-lim Orb(B, x)$ exists; if such a D exists, then again $s_{\xi}(x) = inf Orb(D, x)$ exists; similarly, if such an I exists, then $t_{\xi}(x) = \sup Orb(I, x)$ exists. This proves (a).

We now show that, if it exists, $s_{\xi}(x) \in P_{\xi}$. If $s_{\xi}(x) = \inf \operatorname{Orb}(D, x)$ for some CD-set D in ξ for x, then $s_{\xi}(x) \in P_{\xi}$ by Lemma 2.3. If $s_{\xi}(x) = \sup\{a_x : x \in B\}$, where B is a CA-set in ξ for x, and $a_x = \inf\{f_{\eta}(x) : \eta \in B \land \alpha \leq \eta\}$ then $a_x \in P_x$ for all $\alpha \in B$

by Lemma 2.1, and therefore $s_{\xi}(x) \in P_{\xi}$ by Lemma 2.3. Similarly, $t_{\xi}(x) \in P_{\xi}$ if it exists. \Box

3.14. Proof of $(13)_{\tilde{e}}$

Suppose $M_{\xi,x}(y)$ contains a final segment of ξ and that $s_{\xi}(x)$ exists. Then there is $\gamma < \xi$ such that $y \leq f_{\eta}(x)$ for $\gamma \leq \eta < \xi$. If there is a CD-set *D* in ξ for *x*, then $s_{\xi}(x)$ is defined as inf Orb(*D*, *x*). We can assume that $\eta \geq \gamma$ for $\eta \in D$ and therefore, by $(7)_{\xi}$, $s_{\xi}(x) \geq y$. Otherwise, $s_{\xi}(x) =$ du-lim Orb(*A*, *x*), where *A* is a CA-set in ξ for *x*. Again we can assume that $\eta \geq \gamma$ for $\eta \in A$. Then by definition, $s_{\xi}(x) = \sup\{a_{\chi} : \chi \in A\}$, where $a_{\chi} = \inf\{f_{\eta}(x) : \eta \in A \land \alpha \leq \eta\}$ and so $y \leq a_{\chi} \leq s_{\xi}(x)$. Similarly, if $t_{\xi}(x)$ exists, then $y \leq t_{\xi}(x)$.

3.15. Proof of $(14)_{\xi}$

Assume that both $s_{\xi}(x)$ and $t_{\xi}(x)$ exist. If there is a CD-set D in ξ for x, then $s_{\xi}(x) = \inf \operatorname{Orb}(D, x)$ and so $s_{\xi}(x) \leq f_{x}(x)$ for some $\alpha \in D$. By $(12)_{\xi}(b)$, $s_{\xi}(x) \in P_{\xi} \subseteq P_{\eta}$ for all $\eta < \xi$ and then, by $(18)_{\eta}$, $s_{\xi}(x) \leq f_{\eta}(x)$ for all $\alpha \leq \eta < \xi$, and hence $M_{\xi,x}(s_{\xi}(x))$ contains a final segment of ξ . Then $s_{\xi}(x) \leq t_{\xi}(x)$ follows from $(13)_{\xi}$. Otherwise,

 $s_{\xi}(x) = \operatorname{du-lim}\operatorname{Orb}(A, x)$

for some CA-set A in ξ for x, and in this case $s_{\xi}(x) = \sup\{a_{\alpha} : \alpha \in A\}$, where $a_{\alpha} = \inf\{f_{\eta}(x) : \eta \in A \land \alpha \leq \eta\}$. For fixed $\alpha \in A$, $M_{\xi,x}(a_{\alpha})$ contains the CA-set $\{\eta : \eta \in A \land \alpha \leq \eta\}$ in ξ for x. Then by $(9)_{\xi}$ it follows that $M_{\xi,x}(a_{\alpha})$ contains a final segment of ξ and hence $a_{\alpha} \leq t_{\xi}(x)$ by $(13)_{\xi}$. Since α is arbitrarily chosen, it follows that $s_{\xi}(x) \leq t_{\xi}(x)$. \Box

3.16. Proof of $(16)_{\xi}$

(a) Assume that $N_{\xi,x}(y) = \{\eta < \xi : f_{\eta}(x) \le y\}$ is cofinal in ξ . By $(15)_{\xi}$, $f_{\xi}(x) = s_{\xi}(x)$ or $t_{\xi}(x)$. If $N_{\xi,x}(y)$ contains a final segment of ξ , then $f_{\xi}(x) \le y$ by $(13)_{\xi}$. Therefore, by $(9)_{\xi}$ we can assume that $N_{\xi,x}(y)$ contains no CA-set. Therefore, by $(5)_{\xi}$, $N_{\xi,x}(y)$ either contains a CD-set, D, or a CI-set, I. Then by $(15)_{\xi}$, $f_{\xi}(x)$ is either inf Orb(D,x) or sup Orb(A,x). But in either case, $f_{\xi}(x) \le y$ since D (or I) is a subset of $N_{\xi,x}(y)$.

(b) This is an immediate consequence of $(13)_{\xi}$ and $(15)_{\xi}$.

(c) Suppose that $M_{\xi,x}(y)$ is cofinal in ξ but $y \notin f_{\xi}(x)$. We prove the following two claims.

Claim 1. $M_{\xi,x}(y)$ contains a CI-set I for x.

If $M_{\xi,x}(y)$ contains a CD-set D for x, then, by $(7)_{\xi}$, $(11)_{\xi}$ and $(15)_{\xi}$,

 $y \leq \inf \operatorname{Orb}(D, x) = f_{\xi}(x),$

which is a contradiction. If $M_{\xi,x}(y)$ contains a CA-set for x, then, by $(9)_{\xi}$, it is a final segment of ξ and so by $(13)_{\xi}$ we have the same contradiction that $y \leq f_{\xi}(x)$. Therefore, by $(5)_{\xi}$, $M_{\xi,x}(y)$ contains a CI-set I for x.

Claim 2. ξ contains a CD-set D for x and $f_{\xi}(x) = \inf \operatorname{Orb}(D, x)$.

Assume that no such CD-set exists. Then by $(15)_{\zeta}$,

$$f_{\zeta}(x) = \sup \operatorname{Orb}(I, x) \ge y$$

since I is a CI-set in ξ for x, and this is a contradiction. Hence there is a CD-set D and $f_{\xi}(x) = \inf \operatorname{Orb}(D, x)$ by $(15)_{\xi}$.

Claim 3. $M_{\xi,x}(y) \cap M_{\xi,x}(f_{\xi}(x))$ is cofinal in ξ .

Let $\alpha = \min D$. For $\alpha \leq \eta < \xi$, by (15) $_{\xi}$ and (12) $_{\xi}$ (b) we have that $f_{\xi}(x) \in P_{\xi} \subseteq P_{\eta}$. By (18) $_{\eta}$, $f_{\xi}(x) \leq f_{x}(x)$ implies $f_{\xi}(x) \leq f_{\eta}(x)$. Therefore, $M_{\xi,x}(f_{\xi}(x))$ contains a final segment of ξ and so $M_{\xi,x}(y) \cap M_{\xi,x}(f_{\xi}(x))$ is cofinal in ξ . \Box

3.17. Proof of $(17)_{\xi}$

If $\xi = \eta + 1$ is a successor ordinal then $f_{\xi} = g_{\eta} \circ f_{\eta}$ by $(15)_{\xi}$. f_{η} is a retraction by $(17)_{\eta}$ and g_{η} is a retraction by Theorem 3.4(2) in [1]. Hence, f_{ξ} is a retraction. We now assume that ξ is a limit ordinal.

By $(12)_{\xi}(b)$ and $(15)_{\xi}$ it follows that $f_{\xi}(x) \in P_{\xi}$ for any $x \in P$ and so it is enough to verify that f_{ξ} is order preserving and that $x = f_{\xi}(x)$ for $x \in P_{\xi}$. If $x \in P_{\xi}$, then $x \in P_{\eta}$ for $\eta < \xi$, and so $x = f_{\eta}(x)$ by $(17)_{\eta}$. Therefore, ξ itself is a CD-set for x, so $f_{\xi}(x) = \inf \operatorname{Orb}(\xi, x) = x$.

Suppose that $x, y \in P$ and x < y, we want to show that $f_{\xi}(x) \leq f_{\xi}(y)$. If the ξ -orbits of x and y are not ξ -disjoint, then $f_{\xi}(x) = f_{\xi}(y)$. Therefore, by $(4)_{\xi}$, we may assume that either (a) there exists $\alpha < \xi$ such that $M_{\xi,y}(f_{\alpha}(x))$ is cofinal in ξ or (b) there exists $\beta < \xi$ such that $N_{\xi,x}(f_{\beta}(y))$ is cofinal in ξ .

Suppose (a) holds. If $f_{\alpha}(x) \leq f_{\xi}(y)$, by $(18)_{\eta}$, $f_{\eta}(x) \leq f_{\xi}(y)$ for all $\alpha \leq \eta < \xi$, and so $N_{\xi,x}(f_{\xi}(y))$ contains a final segment of ξ . Then, by $(16)_{\xi}(a)$, $f_{\xi}(x) \leq f_{\xi}(y)$. On the other hand, if $f_{\alpha}(x) \leq f_{\xi}(y)$, then by $(16)_{\xi}(c)$, there is a CD-set *D* in ξ for *y* such that $f_{\xi}(y) = \inf \operatorname{Orb}(D, y)$. If $\zeta, \eta \in D$, and $\zeta \leq \eta$, then by $(17)_{\eta}$, $f_{\zeta}(y) \geq f_{\eta}(y) \geq f_{\eta}(x)$. Therefore, $N_{\xi,x}(f_{\zeta}(y))$ is cofinal in ξ , and hence $f_{\zeta}(y) \geq f_{\xi}(x)$ by $(16)_{\xi}(a)$. Thus $f_{\xi}(x)$ is a lower bound of $\operatorname{Orb}(D, y)$ and so $f_{\xi}(x) \leq f_{\xi}(y)$.

If (b) holds, by $(16)_{\xi}(a)$, $f_{\xi}(x) \leq f_{\beta}(y)$ and then, by $(18)_{\zeta}$, $f_{\xi}(x) \leq f_{\zeta}(y)$ for $\beta \leq \zeta < \xi$. Therefore, $M_{\zeta,y}(f_{\zeta}(x))$ contains a final segment of ξ and so $f_{\zeta}(x) \leq f_{\xi}(y)$ by $(16)_{\xi}(b)$.

3.18. Proof of $(18)_{z}$

Let $\alpha \leq \beta \leq \xi$, $f_{\alpha}(x) \leq y$ and $y \in P_{\xi}$. For $\beta < \xi$, we see that $f_{\beta}(x) \leq y$ by $(18)_{\beta}$. So, we need only consider the case when $\alpha < \beta = \xi$. If $\xi = \eta + 1$ is a successor ordinal, then $f_{\eta}(x) \leq y$ by $(18)_{\eta}$. Then $(15)_{\xi}$ and Theorem 3.4(2) of [1] imply $f_{\xi}(x) \leq y$. If ξ is a limit ordinal, using $(18)_{\eta}$, we have $f_{\eta}(x) \leq y$ for all $\alpha \leq \eta < \xi$. Therefore, $N_{\xi,x}(y)$ contains a final segment of ξ and then, by $(16)_{\xi}(a)$, $f_{\xi}(x) \leq y$. The second implication of $(18)_{\xi}$ follows in essentially the same way, the only difference is that we use $(16)_{\xi}(b)$ instead of $(16)_{\xi}(a)$. \Box

3.19. Proof of (19);

If $\eta \leq \xi$ and $x \in P$, then by $(17)_{\xi} f_{\xi}(x) \in P_{\xi} \subseteq P_{\eta}$, and so by $(17)_{\eta}$, $f_{\eta}(f_{\xi}(x)) = f_{\xi}(x)$, i.e. $f_{\eta} \circ f_{\xi} = f_{\xi}$. Suppose $\eta < \xi$. If $\xi = \zeta + 1$, then by $(19)_{\zeta}$ and $(15)_{\xi}$,

$$f_{\xi}(f_{\eta}(x)) = g_{\xi}(f_{\zeta}(f_{\eta}(x))) = g_{\xi}(f_{\zeta}(x)) = f_{\xi}(x).$$

Also, if ξ is a limit and $\eta \leq \zeta < \xi$, then by $(19)_{\zeta}$, $f_{\zeta}(x) = f_{\zeta}(f_{\eta}(x))$ and so the ξ -orbits of x and $f_{\eta}(x)$ are eventually the same, and therefore, $f_{\xi}(x) = f_{\xi}(f_{\eta}(x))$ by $(15)_{\xi}$. In either case, $f_{\xi} \circ f_{\eta} = f_{\xi}$. \Box

Acknowledgements

The author wishes to thank Professor Eric Milner for the revision of this paper.

References

[1] B. Li, The ANTI-order for cacce posets - Part I, Discrete Math. 158 (this Vol.) (1996) 173-184.