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Abstract 

In Part I we defined the ANTI-order, ANTI-good subsets, ANTI-perfect sequences and ANTI- 
cores for caccc posets. In this part we prove the main result: If n = (P. : < < 2.) is an ANTI- 
perfect sequence of a connected caccc poset P which dots not contain a one-way infinite fence, 
then PC is a retract of P for all < 8 i. 

KC?YI OIY~Y: Caccc pose&; Retracts; ANTI-order 

I. Introduction 

This is a continuation of [l], where we defined the ANTI-order, ANTI-good subsets, 
ANTI-perfect sequences and ANTI-cores for caccc posets. We refer the reader to [I] 
for the definitions of these and other special notation. In this part we prove the main 
result. 

By Theorem 3.4(2) of [l] an ANTI-good subset of a caccc poset is a retract, and so 
the conclusion of the theorem is obvious if the length iL of n is finite. Before proving 
the theorem, we give an example to show that the length of an ANTI-perfect sequence 
of a connected caccc poset with no one-way infinite fence may be infinite and so it is 
necessary to consider limit steps when we prove the theorem. (This is different from 
the case for a PT-perfect sequence in a cc poset with no infinite antichain which is 
always finite -- see (I .4) of [I].) 
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The example is a modification of the poset shown in Fig. 5 in [I] which does 
contain a one-way infinite fence. For n < co, let (A,, <,,) be the poset shown in 
Fig. 1, in which 

(4.0, a,,~, an,2, . . . , an,2n-2,an,2n--,xn,zn 1 
is a finite fence, 

{Yd? Yn,39 Yn,5,. . , Yn,Sn-1, Yn) 

is a finite decreasing chain, a@-1 < y,,J-, for 1 6 k < n, z, < y,, and there are no 
other comparabilities except for those demanded by transitivity. 

The poset (P, d ) shown in Fig. 2 is obtained in the following way. Let P = U{A, : 
n < o}U{y} and define the order on P so that < is the same as 6, on&, yn > Y~+~,I 
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Fig. 2. (P, < ). 
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and y is the smallest element of P, there are no other comparabilities except for those 
required for transitivity. Using the same argument for the poset shown in Fig. 5 in [I], 
we easily see that it is a connected caccc poset with no one-way infinite fence, and 
that II = (Pi, : < < o) is an ANTI- perfect sequence of P, where P = PO, P,, - P,,+l = 

{a,, : [n/2] + 1 < i < 0) ( n < w) and P,, = n{P, : n < co}. In other words, P,+l is 

obtained from P,, by removing all a’s having 12 as the second subscript, and P,,, = 
{xi: i < 0) U {yi: i < (0) U {Z,: i < (0). 

2. Some additional lemmas 

In this section we introduce some new definitions and prove two easy lemmas needed 
for the proof of the main theorem. Let 17 = (Pe : < 6 A) be an ANTI-perfect sequence 
for a caccc poset P. For each x E P we define the index of x, denoted by i(x), to be 
i. if x E P;., and i(x) = 5 if x E P; - PI+, for some 5 < i,. We also define 

I( > x) = {i(y): y > x A i(y) 3 i(x)}, 

I( < x) = {i(y): y <x A i(y) 3 i(x)}, 

I(x) = I( < x) u Z( > x). 

Lemma 2.1. Let ll = (P; : ( d 2) be an ANTI-perfect sequence of a caccc-poset 
P, X C P and x = min{i(y) : y EX}. If x = infX (x = supX) exists, then x E P,. 
Furthermore, x E P,+l if x $ X. 

Proof. When x EX, the conclusion is obvious. Suppose that x @ X. We have that 
X C P, since a 6 i(y) for all y E X. By induction on ye d 3 + 1, we show that x E P,. 
If y is a limit this is clear since, in this case, P, = rl~<~Pc. If 9 = [ + 1 and x E P;, 
then x = infp.X and therefore, by [l, Lemma 3.21 x belongs to any <<-good subset of 
P;, and in particular to P;+, . Hence x E P,+ ,. 0 

Corollary 2.2. Let 17 = (P,; : 5 < A) be an ANTI-perjkct sequence of a caccc poset P 
and let 5 < 2. If X c Py und x = inf X (supX) exists, then x E P; und hence infp x 
(sup, X) also exists and is equal to x. 

Lemma 2.3. Let Il = (Pt : 5 < 3.) be an ANTI-perfect sequence of a caccc poset P, 
and let t < A be a limit ordinal. If C is a chain and C n P, is coinitial (cojinal) in 
Cforally<& thenx=infCEPt (x=supC~Pt). 

Proof. For each v] < 5, since C n P, is coinitial in C, x = inf C n P, and therefore, 
by Lemma 2.1, x E P,. Thus, x E Pg = n,,,P,. ??



3. Proof of the main theorem 

Let ll = (Pt : 5 < 2) be an ANTI-perfect sequence of a connected caccc poset P 
with no one-way infinite fence. Let <<( be the ANTI-order on PI, i.e. <<: = gP , and 
let g< : PS + Py+l be an ANTI-good retraction for all < < /z (see [ 1, Theorem -3.41). 
We shall inductively define maps f’t : P + P: for each < < i. so that the conditions 
(1 )6-( 19)~ below are satisfied. We start with J‘o = idp, the identity mapping on P, so 
that all these conditions are trivially satisfied for t = 0. We assume that < > 0 and that 
f,, has been defined for all q < r so that the corresponding conditions are satisfied. 

For any x E P, the sequence orb;(x) = (f,(x): q < [) is called the t-orbit of’ x; 
for A C ( we also define Orb(A,x) = {f,/(x): n E A}. The r-orbit of x is eventually 
constunt, if there is c( < < such that ,f?(x) = ,f‘,l(x) for LX 6 rl < t, and in this case, x is 
called a <-stable point. We say that x and y are (-distinct if their t-orbits are disjoint, 

i.e. .f,(x) # .f,,(y) for all q < <. We say that x E P is a (-regubr point if there exists 
y E P which is {-distinct from x and such that y]],fz(x) for some x < 4. The point 
x E P is (-bud if it is neither t-stable nor t-regular. If < = q + 1 is a successor, then 
every x E P is l-stable and so there are no t-bad points. 

For any x, y E P and [ i i., we define 

JQf<,.x(Y) = {v:rl < 4 A f,/(X) 3 Y> 

and 

If t is a limit ordinal, a subset SC r is a CA-, a CI-, or a CD-set for x E P if S is 
cofinal in < and the set Orb(A,x) is respectively an antichain, an increasing chain or 
a decreasing chain in P. 

Let 5 be a limit ordinal, x E P and let A be a CA-set for x such that Orb(A.x) is 
bounded below. Since P is caccc, for any CI E A, 

.xX = inf{ft7(x): tf EA A fl 3 z} 

exists and, by Lemma 2.1 x, E P,. Since (x, : 2 E A) is increasing, 

z = sup{x, : x E A} 

exists and belongs to PC by Lemma 2.3. We call this supremum the down-up limit of 
Orb(A,x) and write 

z = du-lim Orb(A,x). 

In a similar way, if Orb(A,x) is bounded above we define the up-down limit 
ud-1imOrb (A,x). 
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3.1. Statements of’ the 19 conditiom 

(1 )- If < is a limit ordinal, x E P, i(x) < <, and if P( > x) n P,, # 8 (P( < x) n 
P,, # 8) for ail v < [, then P( > x) f’ P; # 0 (P( < x) n Pi # II). 

(2), If < is a limit, i(x) < <, if I( > x) # 0 and P( > x) n P; = 8 (I( < x) # 8 and 
P( < x) n PC = 0), then maxZ( > x) (maxI( < x)) exists and is less than <. 

(3): P, # 0, and there is no <-bad point. 
(4); If < is a limit, x < y and x, y are <-distinct, then either there exists x < 5 such 

that A4;,,,(f’T(x)) is cofinal in < or there exists fi < < such that N:,,(f,j(y)) is cofinal 
in <. 

(5); If ; is a limit, x E P, and A is a cofinal subset of t, then A contains either a 
CA-set, a CD-set or a CI-set for x. 

(6); If 5 is a limit ordinal and x E P, then there is a cofinal subset A C 5 such that 
Orb(A,x) is either bounded above or bounded below in P. 

(7): If 5 is a limit ordinal and x E P and if A and B are both CD-sets (CI-sets) in 
t for x, then 

inf Orb(A,x) = inf Orb(B.x) (supOrb(A,x) = supOrb(B.x)) 

(8); If t is a limit ordinal, x E P, and A is a cofinal subset of {, then either 
(i) every maximal subset B C: A such that Orb(B..u) is an antichain is cofinal in < or 
(ii) no such B is cofinal in <. 

(9); If < is a limit ordinal, x, y E P, and if Mu,, (N;,,(y)) is cofinal in 5 and 
there is a CA-set in M&Y) (N<,,(y)) for x, then M,I..~(~) (N:.,(y)) is a final segment 
of 4, i.e. it is a set of form {q: U d ‘1 < <} for some r < t. 

(IO)? If 5 is a limit ordinal, x E P, and if A and B are CA-sets in < for x such that 
Orb(A.x) and Orb(B,x) are both bounded below (above), then 

du- lim Orb(A,x) = du- lim Orb(B.x) (ud-Orb(A,x) = ud- lim Orb(B,x)). 

(I 1)~ If [ is a limit ordinal, x E P, and if A is a CD-set (CI-set) in r for x, and B 
is a CA-set in 5 for x such that Orb(B,x) is bounded below (above), then 

inf Orb(,4,x) = du- lim Orb(B,x) (sup Orb(A,x) = ud- lim Orb(B,x)). 

If < is a limit ordinal, x E P, and if 5 contains either a CD-set (CI-set) A for x 
or a CA-set B for x such that Orb(B,x) is bounded below (above), then we define 
the down-limi? (up-limit) of Orb(<,x), which we denote by s:(x) (L<(X)) to be either 
the infimum (supremum) of Orb(A,x) or the du-limit (ud-limit) of Orb(B,x). By (7)~, 
(lo)< and (ll)~, we see that these definitions of s?(x) and t:(x), when they exist, do 
not depend upon the choices of A or B. 

(12): If 4 is a limit ordinal and x E P, then 
(a) either s<(x) or t;(x) exists; 
(b) if it exists, then s:(x) (t;(x)) belongs to Pi. 
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(13)r If 4 is a limit ordinal, x,y E P, and if Mt%,(y) (N<,,(y)) contains a final 
segment of t, then y < se(n) and y < Q(X) (y > s<(x) and y 3 Q(X)), whenever these 
limits exist. 

(14)5 If t is a limit ordinal and x E P then SC(X) < t<(x) if both these limits exist. 
(15)l If < = v + 1 is a successor ordinal, define f t = gu o f 'l. If 5 is a limit 

ordinal and x E P, then we define f c(x) as follows: if i” contains a CD-set for x, then 
f;(x) = se(x) (which exists); if r contains no CD-set but contains a CI-set for x, 
then f?(x) = t&x) (which exists); if 5 contains no CD- or CI-set, then we define 
f t(x) = s<(x) if SE(X) exists, and f t(x) = Q(X) otherwise (thus f r(x) is well defined 

by (12&(a)). 
( 16)5 If 4 is a limit ordinal and x, y E P, then 
(a) y 3 f&c) if Ng,X(y) is cofinal in t; 
(b) y < ft(x) if A4gex(y) contains a final segment of t; 
(c) if MC,,(Y) is cofinal in 5 and y $ St(x), then there exists a CD-set D in < for 

x such that Q(X) = inf Orb(D,x) and MC,,(Y) nM~,,(f~(x)) is cofinal in 5. 
(17)t fc is a retraction and PC = fc[P] is a retract (and hence Pg is connected). 
(18)t For any x,YEP, 

and 

(19& fr 0 fs = fv 0 fs = fr for any vl6 5. 
When the induction is completed, (17)t implies the desired conclusion that Pg is a 

retract of P for all 5 d 3,. 

3.2. Proof of (1)5 

Suppose that P( > x)nP, # 0 for all rl < 5. We want to show that there exists z E Pt 
with x < z. Fix a cofinal increasing sequence (rc(: CI < cf(t)) in 5 with ~0 > i(x). For 
each CI < cf(<), since P,7 is chain complete there is a maximal element yX of P,,% such 
that x < ya. Then y, f yb for u < j? < cf([). We consider two cases. 

Case 1. There is a cofinal subset A of cf(<) such that { yr : CI E A} is an antichain. 

Since x is a lower bound of Y, = {yp : p E A A ,!3 3 a}, z, = inf Y, exists and it 
belongs to P,7 by Lemma 2.1. Obviously, (zl : a E A) is increasing and so z = sup{z, : 
SI EA} exists and belongs to PC by Lemma 2.3. Note that za E P,, and i(x) < vo, hence 
x # zo and so x < zo < z. 

Case 2. Whenever A C cf(t) and {y, : c( E A} is an antichain, then A is not cofinal 
in g. 
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Let A be a maximal subset of cf( l) such that { y, : x E A} is an antichain. Then A 
is not cofinal in cf(i”) and so there is ZI < cf(5) such that a < p for all x E A. For 
~1 d fl < cf([), there is CI E A such that y1 llyZ1 and hence y/f d yr. We have 

{/I:/J < fi < cf(<)} = u{B,:cc~A}, 

where B, = {fi: ZJ < p < cf([) A yg < yz}. Since cf( <) is a regular cardinal and 1 A 1 
< cf([), B, is cofinal in cf(<) for some x E A. For any /I E B,, yl > yp E P,,,, and 
therefore y/j < .f,,j(y,) E P,,i since ffI,; is a retraction by (17),,,. Since yg is a maximal 
element of P,,!, it follows that y/i = j’,I,j(yz). If /I,;) E B, and 3’ d fl, then qX f nY d y/j, 

f ,,(Y?) = .Y% 2 yp and Y/I E P,,>, it follows from (18),,,, that yb 6 y; = J’,, (yl) 
< yX. Thus, (VP : fi E B3) is a decreasing sequence with x as a lower bound. Let z = 
inf{y,l : ,O E B,}. Then x 6 z and, by Lemma 2.3, z E P;. Since i(x) < <, it follows 
that x < z. Cl 

3.3. Proof qf’ (2)< 

It follows from (l)< that I( > x) is not cofinal in < so that q = sup I( > x) < <. If 
q @ I( > x), then y is a limit ordinal and P( > x) n Pi # 0 for all [ < q. Therefore, 
P( > .x)nP, # 8 by ( l)U and hence v E I( > x). This contradiction shows that y E I( > X) 
and hence that maxZ( > x) = q < t. 0 

3.4. Proof of (3): 

We first show PC # 8. If 5 = q+ 1 is a successor, then P, # 8 by (3),. Since P; is a 
<<,-good subset of P, it is a retract of P,l and therefore non-empty by Theorem 3.4(2) 
of [l]. Now assume that 5 is a limit and suppose for a contradiction that Pg = 0. We 
shall inductively define a sequence (u ,, : n < co) in P and a sequence (n,! : n < to) 
in 2 satisfying conditions (i)-(iv). The conditions (iii) and (iv) immediately give 
the desired contradiction since these imply that (a,, : n < o) is a one-way infinite 
fence in P. 

(i) q, < II,, for m < n < LC). 
(ii) Z( > a,,) # 0 if n is even; I( <: a,) # 0 if n is odd. 

(iii) i(u,) = )I~. If n > 0 is even n,, = maxZ( < a,_~) and a, is a minimal element 
of P,, such that a,, < u,_r, and if n is odd )I~ = max I( > a,_, ) and a,, is a 
maximal element of P,, such that a, > a,_,. 

(iv) a, I u, if m < n - 2. 
To start, choose a0 to be a minimal element of P and let FZO = i(uo). By assumption, 

~0 < 5. Also P( > uo) # 8 since < > 0 and P is connected. Suppose that n > 0 and that 
the a, and YZ~ have been suitably defined for i < n. If n is odd, then by the induction 
hypothesis Z( > a,_~ ) # 0 and so by (2)5, qn = maxZ( > a,_,) exists and is less 
than <. There is y > a,_] such that i(y) 2 i(u,_1) = ~~-1. By Theorem 3.4( 1) in 

[II, Ye,,-, 3 an-l. But since gm,-,(y)EP,Ig,_,+~ and a,-1 $4 Pq,,_,+l, it follows that 
g,,,,_, (y) > G-I. Therefore, vn = maxZ(> a,_~) > vn_r and (i) holds for n. There 
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is .a > a,_, such that i(z) = qn and since P,, is chain complete, there is a maximal 
element a,, of P,!,, such that z < a, and so (iii) also holds for n. Since the ANTI- 
perfect sequence I7 is strictly decreasing, the set P,,,, contains elements other than a,,, 
and since it is connected by (17),, and CZ,~ is maximal there is an element of P,, strictly 
less than a,. Therefore, P,,,,( < a,,) # 0 and (ii) holds. Let m d II - 2. If m is even, 
then a, is a minimal element of P,, and hence a, # a, since a, E Pv,, C P,,,, . Also, 
a,, 3 a, since i(u,) = qn > q,+t = max I( > a, ). Thus (iv) holds in this case since 

i(Gz) = YI, > Ym = i(a, ), and so a, # a,. Similarly, (iv) holds for odd m < n - 2. 
The inductive step when n is even is similar and we omit the details. 

Suppose there is a l-bad point x E P. Then < is a limit. Since x is not r-regular, if 
y E P is comparable with x, then it is not <-distinct from x, and so y is not r-stable. If 
y is r-regular, then there is z((y such that z is t-distinct from y. But, for large enough 
a < r, we have that ,fl(z)llJ‘l(y) = fz(x) and f%(z) is <-distinct from x, which is a 
contradiction. Therefore, y is also t-bad. Since P is connected, it follows that every 
point of P is t-bad. But Pt # 0 and points of Pg are <-stable. This contradiction shows 
that there are no <-bad points in P. 0 

3.5. Prooj’ of (4)< 

We assume the hypothesis of (4)~ and that the conclusion is false; we will obtain the 
contradiction that P contains a one-way infinite fence. By assumption, for any CX, /Y < 5, 
neither M~-,Jfl(x)) nor iV~.,(f~~(y)) is cofinal in 5. Therefore, there are mappings 
u, D : 5 -+ ( where 

4x) = sup&#&))> n(B) = suPN,,,(J’&v)). 

We begin by proving the following five claims. 

Claim 1. For any x,B < 4, .fdx> 2 fg(y). 

If f%(x) 2 flc(y), then, by (17):. and (19);., f?(x) 3 &(y), for max{cc,B} < Y < i”. 

On the other hand jJx> < f:.(y) since x < y, and so ,f,(x) = ,fJy). This is a con- 
tradiction since x and y are [-distinct. 

Claim 2. x < 24((x) (/I < u(b)) ji)r all ix < 5 (/I < 0. 

Since x, y are l-distinct, it follows from x < y and (17)% that fl(x) < f.Jy). Then 

by (15),+1 and Theorem 3.4(l) in [l], .fr(x) d fY+t(y) and so cx + 1 ??M~,_~(f~(x)). 
Therefore, CI < x + 1 < U(X). 

Claim 3. Fur any LX < 5, fJx> i f;(y) jbr y < x and u(c() < i. (For any fi < 4, 

f;(v) I .f&) _fbfbr i d B and NP) < 17. > 
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By Claim 2, t7 d x < i, and by Claim 1, if ,f’,i(x)il,f’;(_~), then ,f’,,(x) < ,f’;(~s). There- 
fore, by (IS):, ,fy(x) < .f’:(_r,) and so < E ML,,.(,f’,(s)). This implies the contradiction 
that r < U(X). 

By’ Claim 2, i d U(Z) < cou(a) < <‘. Since .f’l(.u) < j’:(y), and l’ > U(X) it follows 

that .f’:(u) fi .f’:f(.~). If .f’:l(~) < .f’c(x), then by (17);,, ./‘Y(.Y) 6 ,f’:f(~j) < j’;(y), and 
this contradicts Claim 3. 

Since ~(a) G M,~,~(f’~(x)), it follows that U(Y) is a limit. Therefore, by (16),,,,,(c) 

M,,,,,,,,(j’l(x))nM,,(1)..,. U(1) . ( f (I))) is cofinal in u(x). By Claim 2, u(x) > x and so there 
is i such that x < c < u(x), .j’;(,v> 3 .fz(x) and ,f’;(v) 3 ,f’ll(lj(y). For the last part, 
suppose [I’ < 5 and v(p) $! N,,,(f,j(.~)). Then c(p) is a limit and N,(,~,,x(,f‘,~(~)) is 

cohnal in c(B). Therefore, by (16),.(/n(a), .f’ii(v) 3 .f,.,li,(x), and so r(p) t N,,r(.f’~4~~)) 
after all. 

We now obtain the desired contradiction by constructing a one-way infinite fence 
in I’. Inductively define ordinals 8x,I,/j,, < 5 for II < (!I so that x0 = 0, /I0 = u(O), 
x,~..I = L:(B,~), and /I,,+, = u(q+r). By Claim 2 

Define 0, = .fZ,,(x) (n < (0). If f/j,,(~) 3 .fl,,(x), then we define y,, = p,,; otherwise, 
by Claim 5, there is an ordinal ;1,, such that x,) < ;‘,) < /I,! and 

ati = .f’%, (xl d f’,~,,b~) 3 .f’/~,.(.v) 3 .f‘7,,. , (1) 

Now define b,, = ,&,,(.v). From these definitions, we have 

and 

a0 < bo 3 . 3a, db,, >a,+~ <.... 

Therefore, by Claim 1, it follows that 

u. <ho > ... > urr <b,, > a,,_I < ... 

For m < n -c co, 
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and then by Claim 3, 

am = f x,,, (~1 -L fx,(~) = bn. 

For m < II - 1 < w, 

Ym d b-2 < h-1 = @n-2) < %I, 

and so by Claim 3, 

bi,i = f?,,,(y) 1 fa,,(x) = a,. 

By Claim 5, for 2 6 n < o, 

@,-I EN~,,(~B,,_,(_Y)) and an > Pn-l = u 0 u(k) 

and so, by Claim 4, 

4-l = fr,,_,(X> -L fr,,(X) = 4. 

It follows from (1 S), that a, I a, for all m < n. In the same way, we have 6, I b, 
for m < n < CO. This shows that 

(ai,h,... ,an,bn,...i 

is indeed a one-way infinite fence. 0 

3.6. Proof of (5){ 

Let B &A be maximal such that Orb(B,x) is an antichain. If B is cofinal in A, it is 
a CA-set in A for x. So, we assume that B is not cofinal in A and that there is c( E A 
such that p < CI for all p E B. By the maximality of B, for a d n < 5, fs(x)/lf~(x) for 
some j3 E B and then, by (18),, fV(x>llfl(x>. Let 

and 

I = {yl: q~AArj 2ar\f~(x> >fdx>}. 

By (18),, fat(x) B f,Jx) for )I’, q ED and q’ < q, and so (ftl(x) : q ED) is decreasing. 
Similarly, (Sq(x) : q E I) IS increasing. Since D U I is a final segment of A, either D 
or I is cofinal in A, and we conclude that A either contains a CD-set or a CI-set 
for x. 0 

3.7. Proof of (6), 

This is obvious when x is a t-stable point. So, by (3)5, we may assume that x is 
<-regular, in other words there is y E P such that the t-orbits of x and y are t-distinct 
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and y[lJ’&>, say .f,&) < y, for some 8% < 5. Then, by (17),, .f&) d f,(y); in fact, 
fZ(x) < f&) since the r-orbits of x and ,v are <-distinct. By (4)t, either (i) there is 
fi (X < fl < 5) such that M = M,,,(f/r(x)) 1s cofinal in < or (ii) there is 7 (r < 7 < 4) 
such that N = Nt,,(fJy)) is cofinal in 5. 

If (ii) holds, then we are done since Orb(N,x) is bounded above by f;.(y). Suppose 
(i) holds. Then Orb(A4,y) is bounded below by ,fa(x). By (5)~ it follows that M 
contains either a CA-set or a CI-set or a CD-set for y. Suppose A4 contains the CA-set 
A. Since fg(x) is a lower bound of Orb(A, y) it follows that 

z = du- lim Orb(A, y) 

exists, fir(x) d z and z E Pt. Therefore, if /? < v < t, then (1X), implies that .f,(x) < z 
and hence (6); holds. Suppose that M contains the CI-set I. Then z = sup Orb(Z, y) 
exists and again (6)t holds. Similarly, if M contains a CD-set. 0 

3.8. Proof of (7); 

Let x = min A. For each < > CI in B, there is y E A such that 7 3 {. Since f,(x) > 

,fJx), it follows by (18);. that ,fJx) d f(x). Hence 

inf Orb(A,x) < f<(x), 

for all [ E B with [ > x. Therefore, 

inf Orb(A,x) d inf Orb( B, x). 

The opposite inequality holds by symmetry. 0 

3.9. Proof of (8): 

Suppose that B is a CA-set in A for x. We need to show that, if C is a maximal 
subset of A such that Orb(C,x) is an antichain, then C is cofinal in A. Suppose not. 
Then there is CI E A such that ;j < E for all y E C. Since B is cofinal in A, there are 
q, i E B such that CI < 9 < i. By the maximality of C there is some y E C such that 
f;(x)l(,f;.(x) and it follows from (18); that j”~(x)il,fa(x). This is a contradiction, since 
Orb(B,x) is an antichain. ??

3.10. Proof of (9)[ 

Let Mi,,(y) be cofinal in < and suppose it contains a CA-set for x. We induc- 
tively show that p ~Mt,~(y) for all c1 6 p < t, where r = minMg,x(y). When fi is 
a limit ordinal, then by the induction hypotheses and (16)b(b), y < fp(x) and hence 
fi E Mc,,~(~). Suppose that fi = ‘/ + 1 is a successor ordinal. In this case, ‘/ EM&~). 
Let A be a maximal subset of M&y) which contains y and is such that Orb(A,x) is an 
antichain. By (8)5, A is a cofinal subset of Mt&v) and so B = {q: 9 E A A?/ d 9 < (} 
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is also a CA-set in M&y) for x. B is infinite and since P is caccc Orb(B,x) has an 
infimum z 3 y. Moreover, Lemma 2.1 implies z E Pg. By Theorem 3.4(2) in [I], q;, 
is a retraction from P;. onto Pp. Therefore, since z < ,fJx) it follows that y d z = 

DYE 6 g,(f,(x)) = .f&), and hence P E%~~(Y). 0 

3.11. Proof c?f’ (IO)? 

Suppose that A,B are cofinal subsets of i_’ such that Orb(A,x) and Orb(B,x) are both 
bounded below. Then 

a = du- lim Orb(A,x), b = du- lim Orb(B,x), 

both exist and a = sup{a,: x E A}, where a, = inf{fa(x) : ye E A A y 3 x}, and b = 
sup{hp: p E B}, where bp = inf{f;(x): i E BA< 3 /3}. Let a E A, fl E B, a < p. M<3._v(a,) 
contains {n: ye EA A x < n}, which is a CA-set in 4 for x. Therefore, Mt,,(a,) is a 
final segment of s’ by (9)~. It follows that a, 6 ,f$x) for all [E B with fl ,< [ and 
hence a, ,< bp d b. Since CI E A was arbitrary, we have that a < 6. By symmetry, we 
also have that b < a. 0 

3.12. Pvoqf of (II): 

Suppose that A is a CD-set and B is a CA-set in < for x such that Orb(B,x) is 
bounded below. Then 

a = inf Orb(A,x) and b = du- lim Orb(B,x) 

both exist. By definition, b = sup{bp : /I E B}, where bp = inf{f‘;(x): [E B A fl 6 i}. 
Let c( = min A, b E B and SI < p. Note that a 6 fl(x) and, by Lemma 2.3, a E PC C P; 
for all [ < l. Then, (18); ensures that a < ,f(x) for all i E B with [ > jj’. Hence, 
a < bg < 6. On the other hand, for each p E B, M<,,(bp) contains the CA-set 
{i: <EB A fi d i} f or x and so, by (9)?, Mu,, is a final segment of <. There- 
fore, bp < fs(x) for all q E A with fi < q and hence b/j < a. Since this holds for all 
BE B, it follows that b < a. 0 

3.13. Proof of’ (12); 

By (6);, we may assume that there is a cofinal subset A Cr < such that Orb(A,x) is 
bounded below in P. It follows from (5): that A either contains a CA-set B for x or 
a CD-set D for x or a U-set I for x. If such a B exists then s&.x) = du-lim Orb(B,x) 
exists; if such a D exists, then again SE(X) = inf Orb(D,x) exists; similarly, if such an 
I exists, then Q(X) = supOrb(l,x) exists, This proves (a). 

We now show that, if it exists, sg(x) E PC. If s:(x) = inf Orb(D,x) for some CD-set 
D in l for x, then s:(x) E Py by Lemma 2.3. If s<(x) = sup{a, : 2 E B}, where B is 
a CA-set in c’ for x, and a, = inf{fa(x) : q E B A c( < q} then a, E P, for all x E B 



by Lemma 2.1, and therefore s:(x) E Pz by Lemma 2.3. Similarly, t:(x) E PI if it 
exists. 0 

Suppose M;-,,(y) contains a final segment of < and that s<(x) exists. Then there is 
;’ < < such that y < f,!(x) for ;’ 6 17 < 5. If there is a CD-set D in t for x, then S:(X) 
is defined as inf Orb(D,x). We can assume that ye 3 ;’ for 11 ED and therefore, by (7);, 
s:(x) > y. Otherwise, s&x) = du-limOrb(A,x), where A is a CA-set in < for x. Again 
we can assume that q > ;’ for ‘1 E A. Then by definition, s:(x) = sup{a, : x E A}, where 
a, = inf{,fll(x): ‘1 E A A a ,< rl} and so ~2 < a 7 ,< sc(_r). Similarly, if t<(s) exists, then 
JJ d r;(x). 

3.15. Plmf cf (14): 

Assume that both s:(x) and t:(x) exist. If there is a CD-set D in < for x, then .sg(x) = 
inf Orb(D,x) and so s:(x) d ,fl(x) for some Y ED. By (12):(b), s:(x) E P; C P,, for 
all 17 < < and then, by (18),,, s<(x) < j”,/(x) for all a < ‘1 < [, and hence Mt_r(s;(s)) 
contains a final segment of <. Then .7;(x) < t;(x) follows from (13):. Otherwise, 

s;(x) = du- lim Orb(A,x) 

for some CA-set A in < for x, and in this case s<(x) = sup{a, : YEA}, where 
a, = inf{f’,!(x) : rl EA A m < q}. For fixed x E A, hf:,,(a,) contains the CA-set 
{y: 11 E A A x < a} in < for x. Then by (9); it follows that M<.l(a,) contains a 
final segment of 4 and hence a, < t:(x) by (13)~. Since ‘X is arbitrarily chosen, 
it follows that s:(x) d t<(x). 0 

(a) Assume that N:,,(.v) = (11 < <: .fll(x) < y} is cofinal in <. By (15):, .f’c(x) = 
s:(x) or t:(x). If N&JI) contains a final segment of i, then .f‘:(x) < _r by (13):. 
Therefore, by (9)c we can assume that N:,,(y) contains no CA-set. Therefore, by (.5)<, 
N,..,(y) either contains a CD-set, D, or a U-set, I. Then by (15):, f:(x) is either 
inf Orb(D.x) or supOrb(A,x). But in either case, j”;(x) d .r since D (or 1) is a subset 

of l~<..Y(Y). 
(b) This is an immediate consequence of (13); and (IS);. 
(c) Suppose that M,.,~(_Y) is cofinal in 5 but .r fi ,f’;(x). We prove the following two 

claims. 

Claim 1. IV:, I(_v) contains N CI-set I ,fiw x. 

If M,,,(y) contains a CD-set D for x, then, by (7):, ( 1 1); and (15)~, 

J‘ < inf Orb(D,x) = ,f’Jx), 
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which is a contradiction. If Mg,.Jy) contains a CA-set for x, then, by (9),~, it is a 
final segment of t and so by (13)~ we have the same contradiction that y 6 ,ft(x). 
Therefore, by (5)6, M<,,(y) contains a CI-set I for x. 

Claim 2. i” contains a CD-set D for x and ft(x) = inf Orb(D,x). 

Assume that no such CD-set exists. Then by (IS):, 

fi(x) = sup Orb(Z,x) 3 y 

since I is a Cl-set in 5 for x, and this is a contradiction. Hence there is a CD-set D 
and f&x) = inf Orb(D,x) by (15)t. 

Claim 3. MgJy) n M~Jf&x)) is cojinal in l. 

Let x = minD. For a < y < r, by (15)t and (12)5(b) we have that fl(x) EP~ 2 P,. 
By (18),, ft(x) < fX(x) implies fr(x) 6 fs(x). Therefore, Mt,,(ft(x)) contains a 
final segment of 5 and so My,,(y) n Mt,x(fc(x)) is cofinal in 4. 0 

3.17. Proof of (17), 

If < = q + 1 is a successor ordinal then fc = gq o f ,, by ( 15)5. f q is a retraction by 
(17), and gq is a retraction by Theorem 3.4(2) in [l]. Hence, f r is a retraction. We 
now assume that 5 is a limit ordinal. 

By (12)((b) and (15)~ it follows that f t(x) E Pg for any x E P and so it is enough 
to verify that f e is order preserving and that x = f g(x) for x E Pt. If x E Pg, then 
x E P, for y < l, and so x = f il(x) by (17),. Therefore, 5 itself is a CD-set for x, so 
f s(x) = inf Orb(<,x) = x. 

Suppose that x, y E P and x < y, we want to show that f<(x) 6 f<(y). If the 5- 
orbits of x and y are not t-disjoint, then f c(x) = f t(y). Therefore, by (4)<, we may 
assume that either (a) there exists cc < C: such that Mg,Jfa(x)) is cofinal in 5 or (b) 
there exists p < 4 such that Ng,_Jf p(y)) is cofinal in 4. 

Suppose (a) holds. If fa(x) d f<(y), by (18),, f,+) d ft(y) for all ct < ~1 < i’, and 
so Nc,,( f t(y)) contains a final segment of 5. Then, by (16)<(a), f c(x) < f t(y). On the 
other hand, if f I(x) $ f t(y), then by (16)5(c), there is a CD-set D in 5 for y such that 

fc(v) = infOrW,y). If i,u~D, and i d YI, then by (17),, f:(y) 3 fv(v> 3 fJx>. 
Therefore, Ng,Jfc(y)) is cofinal in t, and hence fc(y) 3 f&x) by (16)<(a). Thus 
f r(x) is a lower bound of Orb(D, y) and so f s(x) d f c(y). 

If (b) holds, by (16)da), f<(x) d fdy) and then, by (18);, ft(x) < f I( y) for 
p < c < t. Therefore, Mt,J f t(x)) contains a final segment of 5 and so ,f&x) < f&) 

by (16),-(b). 
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3.18. Proof of (18)< 

Let x d j < 5, fr(x) 6 y and y E Pg. For /I < 4, we see that fa(x) d y by (18)/j. 
So, we need only consider the case when c( < p = [. If 5 = q+ 1 is a successor ordinal, 
then ,f,(x) < y by (18),. Then (15); and Theorem 3.4(2) of [l] imply f:(x) 6 y. If 
< is a limit ordinal, using (18),, we have fo(x) d _v for all a < ye < [. Therefore, 
N,,,(y) contains a final segment of [ and then, by (16)((a), f<(x) 6 y. The second 
implication of (18),- follows in essentially the same way, the only difference is that we 
use (16);(b) instead of (16&(a). 0 

3.19. Proof of (19ir 

If q < < and x E P, then by (17)~ f<(x) E Ps C_P,!, and so by (17),, fJft(x>> = 
f<(x), i.e. fs 0 fi; = ft. S uppose y < 5. If 5 = [ + 1, then by (19)~ and (15)t, 

f t(f t,(x)) = sc(f s(f q(x)) = &(f i(X)) = f:(x). 

Also, if 4 is a limit and v d < < 5, then by (19);, fc(x) = fc(fJx)) and so the 
t-orbits of x and ,f,(x) are eventually the same, and therefore, ,f&x) = fr(f,(x)) by 
(15):. In either case, f,r o fll = fr. 0 
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