THE GROUP OF UNITS IN A COMPACT RING

Jo-Ann COHEN and Kwangil KOH

Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, U.S.A.

Communicated by J.D. Stasheff
Received 18 December 1986
Revised 5 April 1987

If A is a ring with identity and G is the group of units of A, then G acts naturally on the additive group \(A^+ \) of A by left multiplication (the regular action) and by conjugation (the conjugate action). If X is the set of nonzero, nonunits of A, then X is invariant under both actions. It is shown that if A is a compact ring with identity and X is the union of finitely many orbits by the regular action or the conjugate action, then A is finite. Moreover, a characterization of those compact rings with identity for which either action is transitive on X is given.

In a compact ring A with identity, the structure of A is reflected by that of the group of units of A. It is shown that if 2 is a unit in A, then A is finite if and only if G is finite and A is commutative if and only if G is abelian. Moreover, if the conjugate action on X is trivial, then A is a commutative ring.

1. Introduction

Let A be a ring with identity, let G be the group of units of A and let X denote the set of nonzero, nonunits in A. We consider two natural group actions on \(A^+ \), the additive group of A, by G. We call the action, \((g, a) \mapsto g \cdot a\) from \(G \times A \) to A, the regular action and the action, \((g, a) \mapsto gag^{-1}\), the conjugate action. It is easy to see that X is invariant under both actions.

In Section 2, we prove that if A is a compact ring with identity such that X is the union of finitely many orbits under the regular action or the conjugate action, then A is a finite ring. Furthermore, the regular action is transitive on X if and only if A is a finite local ring such that its Jacobson radical J is square zero and J is a one-dimensional vector space over \(A/J \). It is also shown that the conjugate action of G on X is transitive if and only if A is a finite field, A is isomorphic to \(\mathbb{Z}_p \) or to \(\mathbb{Z}_2[x]/(x^2) \) or A is a finite local ring such that \(J^2 = (0) \), J is a one-dimensional vector space over \(A/J \) and for \(g \in G \setminus (1 + J) \) and \(x \in X \), \(gx \neq xg \).

In a compact ring A with identity, the structure of A is reflected by that of the group of units of A. In Section 3, we prove that if A is a compact ring with identity and G is finite, then \(\text{char} \ A \neq 0 \). Furthermore, if \(\text{char} \ A \) is odd, then G is finite if and only if A is finite. In particular, if A is a compact ring with identity such that
2 is a unit in A, then G is finite if and only if A is finite. We show as well that if 2 is a unit in a compact ring A with identity, then G is abelian if and only if A is a commutative ring. Finally, in Section 4, we prove that if A is a compact ring with identity, then A is a commutative ring if every orbit in X by the conjugate action is trivial, that is, if $gxg^{-1} = x$ for all $g \in G$, $x \in X$.

Throughout this paper, unless stated otherwise, A is a ring with identity, G is the group of units of A and X is the set of nonzero, nonunits in A.

2. Regular and conjugate actions in a compact ring

We begin with some definitions.

A ring A is a local ring provided that the set of nonunits in A is an ideal of A, that is, $X \cup \{0\}$ is an ideal of A. In particular, if A is a local ring, then $X \cup \{0\}$ is the unique maximal (right, left or two-sided) ideal of A.

If A is a ring, let $J(A)$ denote the Jacobson radical of A. In case the ring involved is understood, we write J in place of $J(A)$.

A ring A is a topological ring if A is a topological space and the mappings $(x, y) \to x - y$ and $(x, y) \to xy$ are continuous mappings from $A \times A$ to A. We will assume that each compact or locally compact topological ring is Hausdorff.

If A is a topological ring, then A is left bounded if, given any neighborhood U of zero, there exists a neighborhood V of zero such that $AV \subseteq U$. The definition of right bounded is analogous. A is bounded if A is both right and left bounded. Each compact ring is bounded [7, p. 161] but a bounded ring is not necessarily compact. Indeed, if p is a prime, then the ring of integers equipped with the p-adic topology is a bounded ring that is not compact.

Lemma 2.1. If A is a compact ring with identity and G is the group of units in A, then G is a compact topological group.

Proof. By [1, Exercise 12h, p. 119], G is a closed subset of A and hence is compact. By [2, Theorem], the mapping $g \to g^{-1}$ is continuous on G. Therefore G is a topological group. ∎

Corollary. If A is a compact ring with identity, then $X \cup \{0\}$ is an open subset of A where X is the set of nonzero, nonunits in A. ∎

If $f : G \times X \to X$ is a group action on X, for each x in X we define the orbit $O(x)$ of x by $O(x) = \{ f(g, x) : g \in G \}$. If there exists an x in X such that $O(x) = X$, we say that the group action is transitive. For each x in X, we define the stabilizer of x by $\text{Stab}(x) = \{ g \in G : f(g, x) = x \}$.

Theorem 2.2. Let A be a compact ring with identity, let G be the group of units
in A and let X be the set of nonzero, nonunits in A. Suppose $f : G \times A \rightarrow A$ is a continuous group action. If X is invariant under f and X is the union of finitely many orbits of X, then A is a finite ring.

Proof. If $X = \emptyset$, then A is a bounded division ring and hence discrete [7, Theorem 10]. Thus A is finite. So we assume $X \neq \emptyset$. As G is compact and f is continuous, for each x in X, $O(x)$ is a closed subset of A. Hence X is a closed subset of A and so $G \cup \{0\}$ is an open subset of A. But $X \cup \{0\}$ is open as well and thus $\{0\}$ is an open set. Therefore A is a discrete compact space. Consequently, A is a finite ring. □

Corollary. If A is a compact ring with identity and X is a finite union of orbits under the regular action or the conjugate action, then A is a finite ring.

Proof. As A is a topological ring, the mapping $(g, x) \mapsto gx$ is continuous from $G \times A$ to A. Moreover, by Lemma 2.1, $g \mapsto g^{-1}$ is continuous from G to G. Hence the mapping $(g, x) \mapsto gxg^{-1}$ from $G \times A$ to A is continuous as well. The corollary then follows from Theorem 2.2. □

Theorem 2.3. Let A be a locally compact, bounded ring with identity such that X is a finite union of orbits determined by the conjugate action. Then A is discrete.

Proof. Once again, if $X = \emptyset$, then A is discrete. Suppose $X \neq \emptyset$. As A is both left and right bounded, for each neighborhood U of zero, there exists a neighborhood V of zero such that $AVA \subseteq U$.

Case 1. There exists a compact neighborhood U of zero and a neighborhood V of zero such that $AVA \subseteq U$ and $V \cap G \neq \emptyset$.

Then $A - A \cap U \subseteq U \subseteq A$. Hence A is compact. Therefore by the preceding corollary, A is discrete.

Case 2. For all compact neighborhoods U of zero and for all neighborhoods V of zero such that $AVA \subseteq U$, $V \cap G = 0$.

Let $x_1, x_2, \ldots, x_n \in X$ be such that $X = O(x_1) \cup O(x_2) \cup \cdots \cup O(x_n)$. Suppose A is not discrete. Let U' be any neighborhood of zero, let U be a compact neighborhood of zero contained in U' and let V be a neighborhood of zero such that $AVA \subseteq U$. As $V \subseteq X \cup \{0\}$ and A is not discrete, there exists an x in $V \cap X$. Now, $x = gx_i g^{-1}$ for some $g \in G$, $i \in [1, n]$. Hence $x_i = g^{-1}xg \in A \cap U \subseteq U'$, Thus $0 \in \{x_1, x_2, \ldots, x_n\} = \{x_1, x_2, \ldots, x_n\}$, a contradiction. □

Theorem 2.4. Let A be a ring with identity such that $X \neq \emptyset$. Then G acts transitively on X by the regular action if and only if A is a local ring, $J^2 = \{0\}$ and J is a one-dimensional left vector space over A/J.

Proof. Assume that G acts transitively on X by the regular action. Then there exists
x in X such that Gx = X. Note that for g_1 and g_2 in G, g_1 x g_2 x \in X \cup \{0\}. Now, let x_1, x_2 \in X. Let g_1, g_2 \in G be such that x_i = g_i x for i = 1, 2. Then x_1 + x_2 = (g_1 + g_2)x. If g_1 + g_2 \in G, then x_1 + x_2 \in X. If g_1 + g_2 \in X, let g_3 \in G be such that g_1 + g_2 = g_3 x. Then x_1 + x_2 = g_3 x^2 \in X \cup \{0\}. Hence X \cup \{0\} is closed under addition. By the above observation, AX and XA are subsets of X \cup \{0\}. Thus X \cup \{0\} is an ideal of A, that is, A is a local ring. Observe that x^2 = 0. Indeed, if x^2 \neq 0, then x^2 \in X and so there exists g in G with x^2 = gx. Consequently, (x - g)x = 0. But x - g \in G as A is a local ring and hence x = 0, a contradiction. Thus J \setminus \{0\} = X = Gx where x^2 = 0.

We next show that J^2 = \{0\}. Let a \in J. If a \neq 0, then a = gx for some g \in G. Consequently, ax = gx^2 = 0. Thus Jx = \{0\}. Since J is an ideal of A, JGx \subseteq Jx = \{0\}. Thus J^2 = \{0\}.

We finally note that if u \in A, then u is a unit in A if and only if u + J is a unit in A/J. Since A/J is a division ring, J is therefore a one-dimensional left vector space over A/J. The converse is obvious. □

Corollary. Let A be a compact ring with identity such that X \neq 0. Then G acts transitively on X by the regular action if and only if A is a finite local ring such that J^2 = \{0\} and J is a one-dimensional vector space over A/J.

Proof. The corollary follows from Theorem 2.4 and the corollary to Theorem 2.2. □

Theorem 2.5. Let A be a ring with identity such that the characteristic of A is p and |A| = p^2 for some prime p. Then A is commutative and A is isomorphic to Z_p \times Z_p, Z_p[x]/(x^2) or GF(p^2) where GF(p^2) is a finite field having p^2 elements.

Proof. By [9, Theorem 13], as A has an identity, A is commutative. If J = \{0\}, then A is isomorphic to Z_p \times Z_p or to GF(p^2) by [6, Theorem, p. 203; and 5, Theorem, p. 431]. If J \neq \{0\}, then |J| = p and so A is a local ring. Moreover, J^2 = \{0\} by Nakayama’s Lemma [6, Theorem, p. 412]. Since char A = p, A/J = \{1_A + J, \ldots, (p - 1) \cdot 1_A + J\} where 1_A is the identity of A. Let x_0 \in J \setminus \{0\}. By the above, Ax_0 = \{0, x_0, 2 \cdot 1_A x_0, \ldots, (p - 1) \cdot 1_A x_0\} = J. So if x \in A, then there exist unique integers m and n such that 0 \leq m, n \leq p - 1 and x = m \cdot 1_A + n \cdot 1_A x_0. Define \phi : Z_p[x]/(x^2) \to A by \phi(a + bx + (x^2)) = a \cdot 1_A + b \cdot 1_A x_0 where for a \in Z, a is the residue class of a modulo p. It is easy to verify that \phi is an isomorphism from Z_p[x]/(x^2) onto A. □

Corollary. Let A be a compact ring with identity such that X \neq 0 and the regular action on X by G is transitive. If |A/J| = p for some prime p, then A is isomorphic to Z_p[x]/(x^2) or to Z_p^2.

Proof. By the corollary to Theorem 2.4, A is a finite local ring such that |A/J| =
The group of units in a compact ring

Let A be a compact ring with identity such that $X \neq 0$. If the conjugate action on X by G is transitive, then A is a finite local ring such that $J^2 = (0)$ and J is a one-dimensional vector space over A/J.

Proof. By the corollary to Theorem 2.2, A is a finite ring. By [8, Proposition 1.3], every element of X is a left and right zero divisor and $AX, AX \subseteq X \cup \{0\}$. Let x' and y' be elements of X such that $x'y' = 0$. As $O(x') = X$, there exists $g \in G$ with $y' = gx'g^{-1}$. Then $0 = x'y' = x'gx'g^{-1}$ and hence $(gx')(gx') = 0$. Denote gx' by x_0. Then $x_0 \in X$ and $x_0^2 = 0$. Now if a is any element of X, then there exists $g_0 \in G$ with $a = g_0x_0g_0^{-1}$. So $a^2 = g_0x_0^2g_0^{-1} = 0$. Consequently for any a and b in X, $(a + b)^2 = 0$. So $X \cup \{0\}$ is closed under addition. Thus A is a local ring and $J = X \cup \{0\}$.

To show that $J^2 = (0)$, let x and y be arbitrary elements of J. Then there exist $g_1, g_2 \in G$ such that $x = g_1x_0g_1^{-1}$ and $y = g_2x_0g_2^{-1}$. If $xy \neq 0$, then $x_0g_1^{-1}g_2x_0 \neq 0$. Hence $(g_1^{-1}g_2x_0)(g_1^{-1}g_2x_0) \neq 0$, a contradiction. Thus $J^2 = (0)$.

Since A/J is a finite field [7, Theorem 16; 5, Theorem, p. 431; and 6, Theorem, p. 171], there exists $g \in G$ such that $A/J = \{j, 1 + J, g + J, \ldots, g^k + J\}$ where $k + 1$ is the order of $g + J$ in the multiplicative group of A/J. Observe that $J = \{0, x_0, gx_0g^{-1}, x_0g^{-1}, \ldots, g^kx_0g^{-1}\}$ and $|J| = |A/J|$. Therefore, J is a one-dimensional vector space over A/J.

Corollary. If A is a compact ring with identity such that $X \neq 0$ and the conjugate action on X by G is transitive, then the regular action on X by G is transitive.

Proof. This is an immediate consequence of Theorems 2.4 and 2.6.

Theorem 2.7. Let A be a ring with identity. The following are equivalent:

(i) A is a compact ring such that the conjugate action of G on X is transitive;
(ii) A is a finite field, A is isomorphic to \mathbb{Z}_4 or to $\mathbb{Z}_2[x]/(x^2)$ or A is a finite local ring such that $J^2 = (0)$, J is a one-dimensional vector space over A/J and if $g \in G \setminus (1 + J)$ and $x \in X$, then $gx \neq xg$.

Proof. (i) \Rightarrow (ii). If $X = 0$, then A is a division ring and hence is discrete by [7, Theorem 10]. As A is compact, A is finite and therefore a field by Wedderburn’s Theorem [5, Theorem, p. 43]. If $X \neq 0$, then by Theorem 2.6, A is a finite local ring such that $J^2 = (0)$ and J is a one-dimensional vector space over A/J. Hence if A is commutative, then $J = \{0, x\}$ for some $x \in X$. Furthermore, as $|A/J| = |J|$, $|A| = 4$. The Corollary to Theorem 2.5 yields immediately that A is isomorphic to $\mathbb{Z}_2[x]/(x^2)$ or \mathbb{Z}_4.

Suppose that A is not commutative. If $x, y \in J$, then $(1 + y)x(1 + y)^{-1} = x$ as $J^2 = (0)$. So for all $g \in 1 + J$, $x \in J$, $gx = xg$. Thus there exists g_0 in $G \setminus (1 + J)$ and $x \neq 0$.
in X such that $g_0 x \neq x g_0$. By hypothesis, $O(x) = J \setminus \{0\}$. Define $\text{Stab}(x)$ for the conjugate action by $\text{Stab}(x) = \{g \in G : g x g^{-1} = x\}$. As A/J is a finite field, $|A/J| = p^m$ for some prime p and some positive integer m. As $|J| = |A/J|$, $|A| = p^{2m}$ and $|G| = p^{2m} - p^m$. Now, $|O(x)| = |G/\text{Stab}(x)|$ by [5, Theorem 1.10, p. 74]. Thus $|\text{Stab}(x)| = (p^{2m} - p^m)/(p^m - 1) = p^m$. As $1 + J \subseteq \text{Stab}(x)$, $\text{Stab}(x) = 1 + J$ for all x in X. Thus for any $x \in X$, $g \in G \setminus (1 + J)$, $g x \neq x g$.

(ii) \Rightarrow (i). Clearly, if A is isomorphic to Z_4 or to $Z_2[x]/(x^2)$ or if A is a finite field, then A is compact for the discrete topology and the conjugate action of G on X is transitive. Suppose A is a finite local ring such that $J^2 = (0)$, J is a one-dimensional vector space over A/J and for $g \in G \setminus (1 + J)$ and $x \in X$, $g x \neq x g$. Then A is compact for the discrete topology. Moreover, if $x \in X$, then as in the above, $|G| = p^{2m} - p^m$, $|O(x)| = |G/\text{Stab}(x)|$ and $1 + J \subseteq \text{Stab}(x)$. As $g x \neq x g$ for $g \in G \setminus (1 + J)$, $\text{Stab}(x) = 1 + J$. Thus $|O(x)| = p^m - 1$ and hence $X = O(x)$.

Theorem 2.8. Let A be a compact ring with identity such that the regular action or the conjugate action on X by G is transitive. The following statements are equivalent:

(i) G is simple;

(ii) A is a finite field of characteristic 2 such that $|A| = 2^m$ for some positive integer m and $2^m - 1$ is prime or A is isomorphic to Z_4, $Z_2[x]/(x^2)$ or to Z_3.

Proof. (ii) implies (i) is obvious. Assume (i) holds. If $X = \emptyset$, then $A \setminus \{0\}$ is a group under multiplication and so A is a division ring. By Corollary 2.1, A is discrete, and so finite. Thus A is a finite field. So $|A| = p^m$ for some prime p and some positive integer m. If p is odd, then as G is simple, $p = 3$ and $m = 1$, that is, A is isomorphic to Z_3. If $p = 2$, then as G is simple, $2^m - 1$ is prime.

If $X \neq \emptyset$, by Theorems 2.4 and 2.6, A is a finite local ring, $J^2 = (0)$ and $|A/J| = |J|$. As $1 + J$ is a normal subgroup of G and as $X \neq \emptyset$, $G = 1 + J$. As $J^2 = (0)$, for any x in X, $G x = \{x\}$ and $\{g x g^{-1} : g \in G\} = \{x\}$. Thus for either group action, if $x \in X$, then $O(x) = \{x\}$. So $J = \{0, x\}$ for some x in A and $|A/J| = 2$. Thus A is a 4 element local ring with identity. Consequently, A is isomorphic to Z_4 or to $Z_2[x]/(x^2)$. (The proof is the same as that used to establish Theorem 2.7.)

Theorem 2.9. Let A be a compact ring with identity. For each x in X, define the stabilizer of x for the regular action by $\text{Stab}(x) = \{g \in G : g x = x\}$. The following are equivalent:

(i) For each x in X, $\text{Stab}(x)$ is a trivial subgroup of G;

(ii) A has no divisors of zero or A is isomorphic to $\prod_{a \in A} Z_2$ for some index set A.

Proof. Clearly (ii) implies (i). Suppose (i) holds. If A has a divisor of zero, then there exist x and y in X with $xy = 0$. We first show that $J = (0)$. Indeed, if $J \neq (0)$, then $J x \neq (0)$ since otherwise $\text{Stab}(x) \supseteq 1 + J$. But then $1 + J x$ is a nontrivial subgroup
of G and $\text{Stab}(y) \supseteq 1 + Jx$, a contradiction. So $J = (0)$. Hence by [7, Theorem 16; 6, Theorem, p. 171; and 5, Theorem, p. 431], A is isomorphic to $\prod_{\alpha \in A} M_{\alpha}$ where each M_{α} is the set of $n_{\alpha} \times n_{\alpha}$ matrices over a finite field F_{α}. As A contains divisors of zero, $|A| \geq 2$ or A is isomorphic to the set of $n \times n$ matrices over a finite field F for some $n \geq 2$. In the latter case, there exists $x \in X$ with $x^{2} = 0$. As $(1 + x)(1 - x) = 1$, $1 + x \in G \setminus \{1\}$. So $\text{Stab}(x) \supseteq \{1, 1 + x\}$, a contradiction. In the former case, the above argument yields that each M_{α} is a finite field F_{α}. If there exists an α in A such that $|F_{\alpha}| \neq 2$, then the stabilizer of the element $\prod_{\beta \in A} x_{\beta}$ where $x_{\beta} = 1_{\beta}$ for $\beta \neq \alpha$ and $x_{\alpha} = 0_{\alpha}$ contains the set $\prod_{\beta \in A} H_{\beta}$ where $H_{\beta} = \{1_{\beta}\}$ for $\beta \neq \alpha$ and $H_{\alpha} = F_{\alpha}^{*}$, the set of nonzero elements of F_{α}, a contradiction. So A is isomorphic to $\prod_{\alpha \in A} Z_{2}$. □

3. Properties of A when G is finite or abelian

We first observe that if A is a ring with identity and ϕ is the canonical homomorphism of A onto A/J, then the group of units of A/J is the image under ϕ of the group of units of A. Indeed, if $x, y \in A$ are such that $xy - 1, yx - 1 \in J$, then $x, y \in 1 + J \subseteq G$, i.e., x has both a right and a left inverse in A. Hence $x \in G$. So each unit in A/J is the image of some element in G. The converse is obvious.

Theorem 3.1. Let A be a compact ring with identity.

(i) G is finite if and only if J is finite and there exists a nonnegative integer n and an index set Λ such that A/J is isomorphic to $\prod_{i=1}^{n} M_{i} \times \prod_{\alpha \in A} Z_{2}$, where for each $i \in [1, n]$, M_{i} is the set of all $n_{i} \times n_{i}$ matrices over a finite field F_{i}.

(ii) If G is cyclic, then J is finite and there exists a nonnegative integer n and an index set Λ such that A/J is isomorphic to $\prod_{i=1}^{n} F_{i} \times \prod_{\alpha \in A} Z_{2}$ where each F_{i} is a finite field and for $i \neq j$,

$$|F_{i}| - 1, |F_{j}| - 1 = 1.$$

(iii) X is finite if and only if A is finite.

Proof. (i) If G is finite, then J is finite as $1 + J \subseteq G$ and by the previous observation, the group of units of A/J is finite. By [7, Theorem 16; 5, Theorem, p. 431; and 6, Theorem, p. 171], A/J is isomorphic to $\prod_{\alpha \in A} A_{\alpha}$ where each A_{α} is the ring of $n_{\alpha} \times n_{\alpha}$ matrices over a finite field F_{α}. As the group of units of A/J is finite, A_{α} is isomorphic to Z_{2} for all but finitely many $\alpha \in A$. To prove the converse, we note that the group G' of units of A/J is finite and by the previous observation, $g \in G$ if and only if $g + J \in G'$.

Since J and G' are finite, G is therefore finite.

(ii) By Lemma 2.1, G is a compact topological group. Thus if G is cyclic, then G is finite [3, Lemma 5.28, p. 42]. So the group G' of units of A/J is a finite cyclic group as $G' = \phi(G)$ where ϕ is the canonical homomorphism of A onto A/J. By (i), J is finite and A/J is isomorphic to $\prod_{i=1}^{n} M_{i} \times \prod_{\alpha} Z_{2}$ for some nonnegative integer n. As G' is abelian, each M_{i} is a finite field F_{i} and since G' is cyclic, for $i \neq j$,

$$|F_{i}| - 1, |F_{j}| - 1 = 1.$$
For each subgroup H of G, define A^H by $A^H = \{ x \in A : gx = x \text{ for all } g \in H \}$.

Theorem 3.2. Let A be a compact ring with identity and let $H = 1 + J$. If $A^H = \{0\}$ or $A^H = A$, then G is abelian if and only if A is commutative.

Proof. Suppose G is abelian. If $x, y \in J$, then $(1 + x)(1 + y) = (1 + y)(1 + x)$; so $xy = yx$. Now, if $J = (0)$, then A is isomorphic to a product of finite fields [7, Theorem 16; 5, Theorem, p. 431; and 6, Theorem, p. 171]. Hence A is commutative. Suppose $J \neq (0)$. Then there exists g in $(1 + J) \setminus \{1\}$. So $g^2 \neq g$. Hence $A^H = \{0\}$. Let $a, b \in A$. Suppose $x, y \in J$. Then $axyb = a(xy)(yb) = a(yb)x = a(y)(bx) = a(bx)y = abxy$ and so $x(ab - ba)y = xaby - xbay = abyx - ayx - abxy - abyx = 0$. Thus $J(ab - ba)J = \{0\}$. Since $A^H = \{0\}$, $(ab - ba)J = \{0\}$. If $ab - ba \neq 0$, then $J(ab - ba) \neq \{0\}$ since $A^H = \{0\}$. But if $g \in G, x \in J$, then $gx = xg$. Indeed, let $u = g + x \in G$. Then $gx = g(u - g) = gu - g^2 = ug - g^2 = (u - g)g = xg$. Thus $(1 + J)(ab - ba) = J(ab - ba)(1 + J) = J(ab - ba)$. Hence $J(ab - ba) \subseteq A^H = \{0\}$, a contradiction. So $ab - ba$ for all $a, b \in A$. \qed

Recall that a ring A is prime if whenever $xAy = \{0\}$, x or y is 0.

Corollary 1. Let A be a compact prime ring with identity. Then G is abelian if and only if A is an integral domain.

Proof. $A^H = \{ x \in A : (1 + J)x = \{x\} \} = \{ x \in A : Jx = \{0\} \}$. If $J = (0)$, then $A^H = A$. If $J \neq (0)$ and $x \in A^H$, then $JAx = \{0\}$ and so $x = 0$. The corollary then follows from Theorem 3.2. \qed

Corollary 2. Let A be a compact prime ring with identity. Then A is a finite field if and only if G is a finite abelian group.

Proof. If G is finite, then J is finite by Theorem 3.1. Hence by [6, Theorem, p. 412], there exists a positive integer n such that $J^n = (0)$. Now, if G is abelian, then A/J is an integral domain. Indeed, if $(x + J)(y + J) = J$, then $(xy)^n = 0$ and hence x or y is zero by Corollary 1. Consequently, A/J is a finite field by Theorem 3.1. Thus A is finite as well. So A is a finite integral domain and hence a field. \qed

Theorem 3.3. If A is a compact ring with identity such that G is finite, then the characteristic of A is nonzero.

Proof. By Theorem 3.1, the characteristic of A/J is nonzero. Hence there exists a positive integer m such that $m \cdot 1 \in J$. By a previous argument, $J' = (0)$ for some positive integer l. So char $A \neq 0$. \qed
The group of units in a compact ring

Theorem 3.4. Suppose A is a compact ring with identity such that the characteristic of A is odd. Then G is finite if and only if A is finite.

Proof. If G is finite and the characteristic of A is odd, then A/J is isomorphic to $\prod_{i=1}^{n} M_i$ where each M_i is the ring of $n_i \times n_i$ matrices over a finite field F_i of odd characteristic by Theorem 3.1. Thus A/J is finite. But J is finite as well. Consequently, A is a finite ring. □

Corollary. Let A be a compact ring with identity such that 2 is a unit in A. The following statements are equivalent:

(i) G has a finite number of conjugate classes;
(ii) There are a finite number of orbits in X by the conjugate action of G on X;
(iii) A is a finite ring.

Proof. If (i) holds, then as G is a compact topological group (Lemma 2.1), each conjugate class of G is a closed subset of G. Since G has a finite number of conjugate classes, $\{1\}$ is open in G. Thus G is a finite group. As 2 is a unit in A, Theorems 3.3 and 3.4 yield that A is a finite ring. Consequently, (i) and (iii) are equivalent. Obviously (iii) implies (ii). By the corollary to Theorem 2.2, (ii) implies (iii). □

Recall that an element a in A is quasi-regular if there exists b in A such that $a + b + ab - a + ba = 0$. If A has an identity, then a is a quasi-regular if and only if $1 + a$ is a unit in A. In particular, if A is a division ring, then every element a of $A \setminus \{-1\}$ is quasi-regular. Moreover, $a + J$ is quasi-regular in A/J if and only if a is quasi-regular in A since $g + x$ is a unit in A for each $g \in G$ and $x \in J$, and each unit in A/J is of the form $g + J$ for some g in G.

If A is compact and G is abelian, then A/J is isomorphic to $\prod_{\alpha \in A} F_\alpha$ where each F_α is a finite field by Theorem 3.1. For simplicity we assume that $A/J = \prod_{\alpha \in A} F_\alpha$. Let $\phi : A \to A/J$ denote the canonical epimorphism and for each α, let $A_\alpha = \phi^{-1}(H_\beta)$ where $H_\beta = \{0\}$ for $\beta \neq \alpha$ and $H_\alpha = F_\alpha$. Let $\phi_\alpha = \phi | A_\alpha$. Then $\ker \phi_\alpha = \{x \in A : \text{proj}_\alpha(\phi_\alpha(x)) = 0_{\alpha}\}$ where proj_α is the projection of $\prod_{\beta \in A} F_\beta$ to F_α. Therefore, $\ker \phi_\alpha = J$ for each α in A. Note also that each A_α is an ideal of A. If 1_α is the identity of F_α, let $\bar{1}_\alpha$ denote the identity of $\prod_{\beta \in A} H_\beta$, that is $\bar{1}_\alpha = \prod_{\beta \in A} x_\beta$ where $x_\beta = 0_{\beta}$ for $\beta \neq \alpha$ and $x_\alpha = 1_\alpha$. Observe that $\phi_\alpha^{-1}(\{\bar{1}_\alpha\})$ is contained in the center of A_α if and only if $\phi_\alpha^{-1}(\{-\bar{1}_\alpha\})$ is contained in the center of A_α.

Lemma 3.5. Let A be a ring with identity such that G is abelian. If x and y are quasi-regular elements of A, then $xy = yx$. In particular, the radical of A is commutative.

Proof. As G is abelian, $(1 + x)(1 + y) = (1 + y)(1 + x)$. Hence $xy = yx$. Since each element of J is quasi-regular, J is commutative. □
Lemma 3.6. Let A be a ring with identity such that G is abelian and $A/J = \prod_{a \in A} F_a$ where each F_a is a finite field. If $\phi_a^{-1}({\overline{1}_a})$ is contained in the center of A_a, then A_a is commutative. Consequently, if $\phi_a^{-1}({\overline{1}_a})$ is contained in the center of A_a for each a in A, then J is contained in the center of $\Sigma_{a \in A} A_a$.

Proof. First observe that if B is any ring, I an ideal of B and $x \in I$, then x is a quasi-regular element of the ring I if and only if x is a quasi-regular element of the ring B. Indeed, if $b \in B$ is such that $b + x \mid bx = b + x - xb = 0$, then $b \in I$ as I is an ideal of B. In particular, by the preceding comments, if $x \in A_a$, then x is quasi-regular if and only if $\phi(x)$ is quasi-regular in A/J, that is, $\phi_a(x)$ is quasi-regular in $\overline{F}_a = \prod_{\beta \in A} H_{\beta}$ where $H_{\beta} = \{0,\}$ for $\beta \neq a$ and $H_a = F_a$. Thus for $x \in A_a$, x is quasi-regular if and only if $\text{proj}_a(\phi_a(x)) + 1_a \neq 0_a$.

Now let $x, y \in A_a$. If x and y are quasi-regular, then $xy = yx$ by Lemma 3.5. If x is not quasi-regular, then $\text{proj}_a(\phi_a(x)) + 1_a = 0_a$, that is, $x \in \phi_a^{-1}({\overline{1}_a})$. Thus x is in the center of A_a, and so $xy = yx$. Similarly, if y is not quasi-regular, then $yx = xy$.

The last statement of the lemma follows from the above and the observation that $J \subseteq A_a$ for each $a \in A$.

Lemma 3.7. Let A be a ring with identity such that G is abelian and $A/J = \prod_{a \in A} F_a$ where each F_a is a finite field. If $\phi_a^{-1}({\overline{1}_a})$ is contained in the center of A_a for all a in A, then $\Sigma_{a \in A} A_a$ is commutative.

Proof. Let $a, \beta \in A$, $a \neq \beta$ and let $x \in A_a$, $y \in A_\beta$. By Lemma 3.6, it suffices to show that $xy = yx$. By Lemma 3.5, we may assume that not both x and y are quasi-regular. Without loss of generality, assume that x is not quasi-regular. Then $\text{proj}_a(\phi_a(x)) = -1_a$. As $xy - yx$ if and only if $(-x)y - y(-x)$, we may assume that $\text{proj}_a(\phi_a(x)) = 1_a$. Now xy and yx are in $A_a \cap A_\beta$ as A_a and A_β are ideals of A. But for $a \neq \beta$, $A_a \cap A_\beta = J$. So $xy, yx \in J$. By Lemma 3.6, xy and yx are in the center of A_a for each a. Hence $x(xy) = (xy)x = x^2y = (yx)x$, that is, $x^2y = yx^2$. Moreover, as $\text{proj}_a(\phi_a(x^2 - x)) = 0_a$, $x^2 - x \in J$. So $(x^2 - x)y = y(x^2 - x)$. Hence $-xy = -yx$, that is, $xy = yx$.

Lemma 3.8. Let A be a ring with identity such that G is abelian and $A/J = \prod_{a \in A} F_a$ where each F_a is a finite field. If $|F_a| \geq 3$ for some $a \in A$, then $\phi_a^{-1}({\overline{1}_a})$ is contained in the center of A_a.

Proof. Let $u_a \in F_a \setminus \{0_a, -1_a\}$. Then there exists w_a in F_a such that $u_a w_a = 1_a$. If $w_a = -1_a$, then $u_a = -1_a$, a contradiction. So $w_a + 1_a \neq 0_a$ and hence u_a and w_a are quasi-regular elements of F_a. Let $u - \prod_{\beta \in A} x_\beta$ where $x_\beta = 0_\beta$ for $\beta \neq a$ and $x_a = u_a$. Let $w = \prod_{\beta \in A} y_\beta$ where $y_\beta = 0_\beta$ for $\beta \neq a$ and $y_a = w_a$. Then u and w are quasi-regular elements of \overline{F}_a where \overline{F}_a is defined as in Lemma 3.6. Let $x, y, e \in A_a$ be such that $\phi_a(x) = u$, $\phi_a(y) = w$ and $\phi_a(e) = \overline{1}_a$. Then $\text{proj}_a(\phi_a(e - xy)) = 0_a$. So $e - xy \in \text{Ker} \phi_a = J$. As $\phi(x)$ and $\phi(y)$ are quasi-regular elements of A/J, x and y are quasi-regular elements of A.

Let \(a \in A \). We will show that \(ae = ea \). If \(a \) is quasi-regular, then \(a(e-xy) = (e-xy)a \) as \(e-xy \) is quasi-regular. Hence \(ae - axy = ea - xya \). But \(x \) and \(y \) are quasi-regular as well and so \(axy = xya \). Thus \(ae = ea \). If \(a \) is not quasi-regular, then \(\text{proj}_a(\phi_a(a)) = 1_a \). Thus \(a + e \in \text{Ker} \phi_a = J \). So \(a = -e + z \) for some \(z \in J \). By the above, as \(z \) is quasi-regular in \(A_a \), \(ze = ez \). So \(ae = -e^2 + ze = -e^2 + ez = ea \). Thus \(\phi_a^{-1}(\{1_a\}) \) is contained in the center of \(A_a \).

Lemma 3.9. Let \(A \) be a ring with identity such that \(G \) is abelian and \(A/J = \prod_{a \in A} F_a \) where each \(F_a \) is a finite field. If \(\phi_a^{-1}(\{1_a\}) \) is contained in the center of \(A_a \) for each \(a \in A \), then \(A \) is commutative.

Proof. We first show that \(\sum_{a \in A} \overline{A_a} = A \). Suppose that there exists \(x \) in \(A \setminus \sum_{a \in A} A_a \). Then there exists a neighborhood \(U \) of \(x \) such that \(U \cap \sum_{a \in A} A_a \) is empty. As \(x \notin \sum_{a \in A} A_a \), \(\text{proj}_a(\phi(x)) \neq 0_a \) for infinitely many \(a \in A \). Now, \(\phi(U) \) is a neighborhood of \(\phi(x) \) in \(A/J \). As the topology on \(\prod_{a \in A} F_a \) is the product topology, \(\phi(U) \cap \prod_{a \in A} U_a \) where each \(U_a \) is a neighborhood of \(\text{proj}_a(\phi(x)) \) and \(U_a = F_a \) for all but finitely many \(a \in A \). Let \(A' = \{a \in A: U_a \neq F_a\} \). Then \(U \cap \sum_{a \in A} A_a \) is nonempty, a contradiction. Thus \(\sum_{a \in A} A_a = A \). As the continuous mappings \((x, y) \to xy \) and \((x, y) \to yx \) agree on \(\sum_{a \in A} A_a \) by Lemma 3.7, they agree on \(A \). Thus \(A \) is commutative.

Theorem 3.10. Let \(A \) be a compact ring with identity such that 2 is a unit in \(A \). Then \(G \) is abelian if and only if \(A \) is a commutative ring.

Proof. If \(A \) is a compact ring with identity such that \(G \) is abelian, then \(A/J \) is isomorphic to \(\prod_{a \in A} F_a \) where each \(F_a \) is a finite field. Without loss of generality, we may assume that \(A/J = \prod_{a \in A} F_a \). Since 2 is a unit in \(A \), \(2 + J \) is a unit in \(A/J \). Hence \(\text{char} F_a \neq 2 \) for \(a \in A \). Thus \(|F_a| \geq 3 \) for each \(a \in A \). The theorem then follows from Lemmas 3.7, 3.8 and 3.9.

Corollary. If \(A \) is a compact ring with identity such that 2 is a unit in \(A \) and \(G \) is cyclic, then \(A \) is a finite commutative ring.

Proof. As \(G \) is cyclic, \(G \) is abelian. Moreover, as in the proof of Theorem 3.1, \(G \) is finite. Thus by Theorems 3.3, 3.4 and 3.10, \(A \) is a finite commutative ring.

Remark. If \(A = \{(x, y, z) \in \mathbb{Z}^3: x, y, z \in \mathbb{Z}_2\} \), then \(A \) is a compact ring under the discrete topology and \(G \) is abelian. However, \(A \) is not commutative.

Theorem 3.11. Let \(A \) be a compact ring with identity such that 2 is a unit in \(A \). Then \(G \) is finite if and only if \(A \) is finite.

Proof. As 2 is a unit, the characteristic of \(A \) is odd. Hence the assertion follows from Theorem 3.4.
We note that $\prod_{i=1}^{\infty} Z_2$ is an infinite ring, compact for the product topology when Z_2 is given the discrete topology, and the group of units of A is finite.

4. Trivial conjugate action on X

Lemma 4.1. Let A be a compact ring with identity. If the conjugate action on X by G is trivial, that is, if $gxg^{-1} = x$ for all x in X and g in G, then G is abelian.

Proof. Suppose G is not abelian. Then there exist a and b in G such that $1-aba^{-1}b^{-1} \neq 0$. Let $x \in X$. Then $(1-aba^{-1}b^{-1})x = x - aba^{-1}(b^{-1}x) = x - ab(b^{-1}x)a^{-1} = x - axa^{-1} = 0$. Thus $X \cup \{0\} = \{y \in A : (1-aba^{-1}b^{-1})y = 0\}$. Therefore, $X \cup \{0\}$ is closed under addition and multiplication. Moreover, for all g in G, $g(X \cup \{0\}) \subset X \cup \{0\}$. So $X \cup \{0\}$ is an ideal of A, that is, A is a local ring. Since A is a compact ring, A/J is therefore a finite field [7, Theorem 16; 5, Theorem, p. 431; and 6, Theorem p. 171]. Let $g \in G$ be such that $g + J$ is the cyclic generator of the multiplicative group of A/J. Let $(A/J)^*$ denote $A/J \setminus \{0\}$. Then $G = (1+J) \cup (g+J) \cup \cdots \cup (g^k+J)$ where $k+1$ is the order of $g+J$ in $(A/J)^*$. If $x, y \in J$, then $(1+x)y = y(1+x)$ as $1+x \in G$. So $xy = yx$ for all x and y in J. Thus G is abelian.

Theorem 4.2. Let A be a compact ring with identity such that $gxg^{-1}=x$ for all x in X and g in G. Then A is a commutative ring.

Proof. As G is abelian, we may assume that $A/J = \prod_{a \in A} F_a$ where each F_a is a finite field. Using the terminology in Section 3, it suffices to show that $\phi_a^{-1}(\bar{1}_a)$ is contained in the center of A_a for each a in A by Lemma 3.9. By our remarks preceding Lemma 3.5, we need only show that $\phi_a^{-1}(\bar{-1}_a)$ is contained in the center of A_a.

Let $a, b \in A_a$ be such that $\phi_a(a) = -\bar{1}_a$. Then proj$_a(\phi_a(a)) = -1_a$. As in the proof of Lemma 3.6, if $x \in A_a$, then x is quasi-regular if and only if proj$_a(\phi_a(a)) \neq -1_a$. So a is not quasi-regular and hence $1+a \in X \cup \{0\}$. If b is quasi-regular, then $1+b \in G$. So $(1+b)(1+a) = (1+a)(1+b)$ by hypothesis. Thus $ba = ab$. Suppose b is not quasi-regular. Then proj$_a(\phi_a(b)) = -1_a$. Let $e_a \in A_a$ be such that $\phi_a(e_a) = -\bar{1}_a$. Then proj$_a(\phi_a(a-e_a)) = 0_a$ and so $a-e_a \in \text{Ker} \phi_a - J$. Similarly, $b-e_a \in J$. Let $x, y \in J$ be such that $a = e_a + x$ and $b = e_a + y$. Note that $x+1, y+1 \in G$ and $e_a + 1 \in X \cup \{0\}$ as e_a is not quasi-regular. So $(x+1)(e_a+1) = (e_a+1)(x+1)$ and consequently $xe_a = e_x x$. A similar argument establishes that $ye_a = e_y y$. By the above and Lemma 3.5, $ab = e_a^2 + e_a y + xe_a + xy = e_a^2 + ye_a + e_x x + yx = ba$. Hence A is a commutative ring. \[
\]

The group of units in a compact ring

References