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For every central embedding problem three numerical invariants which give
information about its solvability are defined. Furthermore, in the number field case
universal estimates for these invariants are given. ¢ 1995 Academic Press, Inc.

1. THE REDUCTION INDEX, THE GENUS INDEX, AND THE EMBEDDING INDEX
OF A CENTRAL EMBEDDING PROBLEM

Let %4 be a profinite group, let p be a prime number and for every
natural number »n put C,:=(1/p")Z,/Z,. Let G be a finite quotient group
of 4 which acts trivially on C, and for a cocycle class (¢)e H*G, C,)
denote by G(e) the central group extension of G with kernel C, which
corresponds to ¢ The central embedding problem E,= E(G, C,, &) for 4
corresponding to G, C, and ¢ is said to be solvable if there is a
homomorphism ¢: % — G(¢) such that ¢ composed with the natural projec-
tion G(¢)— G is the given epimorphism % — G; every such ¢ is called a
solution of E,. Let J be another quotient group of % and let (c)e H(J, C,).
The central embedding problem E(J, C,,¢) for ¥ is said to be a cyclic
reduction of E(G, C,, €) if J is cyclic and if inf(¢) = inf(c) in H*(%, C,). So
E(G, C,, ¢) is solvable if and only if E(J, C,, C) is solvable, see (1.3). The
reduction index of the central embedding problem E, = E(G, C,, ¢) for 4 is
the smallest natural number r=r (G)—if it exists—such that E, has a
cyclic reduction E(J, C,, ¢) with the property |J}{ < p"; if such a natural
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8 NGUYEN QUANG DO AND OPOLKA

number r does not exist then the reduction index is said to be infinite. The
genus index of E, = E(G, C,, ¢) 1s the smallest natural number s =s,(G)-—if
it exists—such that the central embedding problem E :=E(G, C, ., &)
for 4, where (&,) is the image of (¢) under the homomorphism

jn,n+.\: H:( G’ C‘n) - Hz( G' Cu+x)

induced by the canonical injection C, g C, , , is solvable; if such a natural
number does not exist then the genus index of £, is said to be infinite. The
embedding index of E(G, C,.¢) is the smallest natural number 1=1¢,(G)
such that the embedding problem E(G, C,, p'-¢) is solvable. Obviously,
t,{G) exists and is always <n.

{1.1) PROPOSITION. Assume that H*(%, @I,/Zl,)=0; then the reduction
index r,(G) and the genus index s,(G) of every central embedding problem
E,=FE(G, C,,¢) for 4 exist, ie., are finite, and are equal. The embedding
index t,(G) satisfies t,(G) < r (G).

Proof of (1.1). The exact sequence
0—> C,— Q,/Z,- Q,/7,— 0
yields the exact sequence of cohomology groups
. — Hom(%, Q,/Z,)— H%, C,)— HX%,Q,/7,) =0.

Hence there is a homomorphism y:% —Q,/Z, such that the image of
(e)e H*(G, C,) under the inflation map inf: HXG, C,) - H*%.C,)
satisfies

inf((¢)) = (Jx). (1.2)

Put J :=%/ker(y). Then by construction (Jdy) is the image of some element
(¢cye H*(J, C,) under the inflation map inf: H3(J, C,) = H* (4, C,):

inf((£)) = (0y) = inf((c)).

This equation implies the existence of the reduction index r< o of E,, in
view of the following well known criterium [H], I.1.

(1.3) PROPOSITION. A central embedding problem E, = E(G, C,, ¢) for 4
is solvable if and only if (&) belongs to the kernel of the inflation map
inf: H3(G, C,) - H*(%,C,).

Now put #t:=n+r and consider the exact sequence
L5 C,—>0

O - CH —-‘*—'} C”l



CENTRAL EMBEDDING PROBLEMS 9

which induces the following commutative diagram with exact rows

. — Hom(¥%, C,) —*— HX4, C,) —— HX ¥, C,)

inf I mlI inf’ W ( 14)

. —> Hom( G., C,) '—_o“’ HZ( Gs C”) — HZ( G’ Cm)'

Then the inflation of (¢} in H?(4, C,) is in the image of &, hence the image
(¢,) of (¢) in H*G,C,) becomes trivial under the inflation map
HYG, C,)—~ H*4%, C,), and therefore by (1.3} the embedding problem
E'=F(G,C,.¢&,) 1s solvable. Conversely, using again (1.3) and the
diagram (1.4), we see that if E’ is solvable then the inflation of (&) In

H?(%4,C,) is in the image of &:
nf{(e)) = (%) for some yeHom(¥, C,). (1.5)

Altogether this shows that the reduction index r is equal to the genus index
s of E,. Finally, it follows from the equation (1.5) that the inflation of
(p"-ey in H¥ %4, C,) is trivial, hence by (1.3) the embedding problem
E(G, C,, p~ &) is solvable. Therefore the embedding index ¢ of E(G, C,,. ¢)
satisfies ¢+ < r.

Remarks. (a) The genus index occurs already--—in different ter-
minology--in [O] and [ MO].
(b) H%,Q,/Z,) is the Pontrjagin dual of the p-part of the Schur
multiplicator of the profinite group %.

2. ON THE p-TRIVIALITY OF THE SCHUR MULTIPLICATOR

We now examine the case of a number field k. We fix an algebraic
closure & of k. and for any subextension K/k of k/k, we denote by
G, = G(k/K) the absolute Galois group of K. Let p be a prime. Denote by
4, the G,-module of all roots of unity in k of order dividing p"
i, =, M, and for any K contained in k, u(K)= ., n K. Finally, let
S, = S,,(k'} be the set of all places of & dividing p, S, =S, (k) the set of all
archimedian places of &, and 3 =3 (k)=S,uS ; let §=S8(k) be any
set (finite or not) of places of k containing 2. We will consider central
embedding problems for the Galois group G(S) of the maximal algebraic
extension k¢ of & which is unramified outside S (in short: S-ramified).

First, we review some conditions for the triviality of H*(G,(S), Q,/Z,).
For convenience, we will always suppose that we are in the non-exceptional
case, i.e. the extension k, = k(u , ) is pro-cyclic over k. The following result

1s well known:
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{2.1) PrROPOSITION. Let S be any finite set of places of k containing %
Then the triviality of H*(G(S), Q,/Z,) is equivalent to the validity of
Leopoldt's conjecture for k and p.

See e.g. [HA ], 4.4.

For any set of places S of k containing X and X in &, let . ( ) be the
ring of S-integers of K, Cly(K) the ideal class group of ¢ (K), K) the
p-rimary part of Cly(K). Then we have:

(2.2) LEMMA. Let S be any set of places of k containing X. Then the
triviality of H*(G(S), Q,/Z,) is c’quivalent to the ﬁnitenesv of the group of
co-invariants A (k. W —1),, where I'=G(k , k) and (...)( —1) denotes the
“Tate twist”

Again, this i1s more or less known for finite S > 2. For arbitrary S> 2,
we will use theorems of Galois cohomology which are usually proved only
for finite S; a star (*) behind the references will then mean that the relevant
results are easily extended to So 2.

Proof of (22). For any 7,-module M on which G,(S) acts, denote by
M(n) the nth “Tate twist.” In the non-expectional case, ¢d,I"< 1, and
Hochschild-Serre’s spectral sequence boils down to the exact sequence:

0—>H'(I H'kg/k,,Q, /2, (n))— H(kg/k, Q,/Z,(n))
- Hkg/k,,Q,/Z,)n)—0.

But H(kg/k,,Q,/Z,)1)=H*kg/k,, p,) is the p-part of the Brauer
group of “({k . ), and this is trivial because the degree of &, /k is divisible
by p (this is a consequence of functorial properties of Brauer groups; see
[S1, 47*). So H(kg/k, Q,/Z,(n))=H"I', H'(ks/k,,Q,/Z,n)) for any
ne Z. Now consider the twisted Kummer exact sequence:

0— Ok V*®Q,/Z,(—1)— H'kg/k, . Q,/2,)— Aglk, ) —1)—0.

Combining this with cd, /"< 1, we get H'(F,H‘(A\S/li,,@ /Z,))
NI, Atk ) —1)). Since I is pro-cyclic H(I', M)=M,. To end the
proof, just note that ed (G,(S)) £ 2 ([HA], 2.27), so HX(G,(S), Q,/Z,) s
divisible.
As easy consequences of the above lemma, we get (always in the non-
exceptional case):

Tate’s lemma ([S, 2.8]) shows that HYTI, Ok }*®Q,/Z,(~1))=0.

(2.3). Leopoldt’'s conjecture for & and p implies the triviality of
HYG(S),Q,/Z,) for any S§>ZX (because Ag(k,) is a quotient of
Ak, )).
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(24). H¥(Gy(S),0Q,/2,)=0if A4k, ) is finite. This happens, e.g.,
(a) if S={all places of k}, ie, G.(S)=G, (in this case A4k, )=
(0})
(b) more generally, if S(k) is of density one (again, A (k. )=1(0))
(c) if the Iwasawa invanants A; and pug attached to A (k) are
trivial (cases of triviality of 4. and s can be found in [F]).

In order to get further information, we must use global-local techniques.
For any place v of k, we denote by k, the completion of & at v, and by G,
the absolute Galois group of &, identified with the decomposition sub-
group of some extension of v to k. For any discrete torsion G,(S)-module
M whose order i1s an S-unit we have localization maps

H{(G(S), M)— [ H(G,,, M),

res

where []’ denotes the topological restricted product ([HATJ. 1.2). Let us
denote by Ker' (M) or Ker'( M, k) the kernels of these localization maps.
Then Poitou-Tate’s duality ([ HAT], 1.3) says that

(2.5). If M is finite, the kernels Ker(M) are finite, and there is a
canonical perfect pairing

Kerl(M)x Keri(Hom(M, k¥)) > Q/Z.

We will use this to prove:

(2.6) PROPOSITION.  For any S o X the following statements are equivalent:
(i) HYG(S),Q,/Z,)=0
(1)  the orders of the kernels Keri(C,) are bounded for all n 2 1
(L1} the sequence Keri(C ) stabilizes.
Proof. It is known that the local groups H%(G, , Q, /Z,) are trivial (S,
3.2]) so that HX(G(S), Q,/Z,)=0 if and only if lim Ker3(C,) =0 (or is
finite). If the groups Keri(C,) are bounded, then lim Ker%(C,) is evidently

finite. To show the converse, let us first characterize Ker3(C,) as a module
of Galois descent

(27) LeMMA. For n2 1, put k,=k(p,) and G, =Gk, /k). Then class
Sfield theory and the corestriction map induce isomorphisms

‘AS(kn)/p"‘)( - 1 )(},, = Keri‘( C:H kn)(;',, = Keri‘( C;n k)
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Proof. By Poitou-Tate’s duality, it is the same to consider the map
induced by restriction: Kerl{u,, k) — Kerl(u,, k)% The well known
G, -cohomological triviality of g, (for details, see [ NK, 4.8]) then shows
that this map is an isomorphism. Moreover, since &, contains g, , Kummer
theory and class field theory give an isomorphism Kerl(u,, k,)~
Hom(A(k,), ,). This proves the lemma.

Suppose now that H*(G.(S),Q,/Z,)=0. We want to bound
(Aslk,)/p"(—1)g, or, more crudely, A4k, —1),,. As Gk, /k,) acts
trivially on A (k,)(—1), we have 4¢(k, { — 1), = Ag(k, {(—1),. A theorem
of Iwasawa ([I, 5.3.12*]) asserts that the kernels of the natural maps
Aglk,)— Ag(k, ) are bounded. To bound the A (k,)(—1),, it is then
already sufficient (by the snake lemma) to show that A¢(k_ )} —1)" and
Ag(k , )(—1), are finite. Since we are in the non-exceptional case, standard
reduction arguments allow us to suppose that k& contains z,. Let us
consider the module Hom(A4 (&, )(—1), Q,/Z,) over the Iwasawa algebra
AN=Z,[[I']]: this is a A-torsion module ([ 1. 4.3.8*}), and the structure
theorem then shows that Ag(k ) —1)" is finite if and only if
Ak M —1), is finite. But this last property is true by hypothesis and
Lemma (2.2). In order to show the last equivalence of proposition (2.6),
remark that by Lemma (2.7), for m = n, corestriction induces a map

Keri‘( Cm) =~ (A‘S'(km)/pm)( - l )(},,, - Keri‘( Cn) = (A.S'(kn )/[7")( _l )(.',,'

But for n>>0, no prime above p splits in k_ /k,, ([I, 6.2]), hence the
norm map Ak, )— Aglk,) is surjective, and so is the above map.

(2.8) Remark. By the above considerations, it is easily seen that
lim Ker{(u,) injects into Keri{x.. ). For S finite, the two groups are equal,
but in general these are not equal if S is infinite. It is known that Ker iz )
is independent of S o 2, and it is finite if and only if Leopoldt’s conjecture
holds for k and p (see [S, NG]). This gives another proof for (2.3), as well
as a bound for lim Kerl(y,) (see (3.2) below).

3. A UNIVERSAL BounD FOR THE GENUS INDEX

We maintain the hypotheses and notations of Section 2. In particular, we
suppose that we are in the non-exceptional case. Central embedding
problems E, = E(G, C,, ¢) for G,(S) will also be denoted by E(K/k, C,, ¢),
with G(K/k) = G. The main result is

{3.1) THEOREM. Let S be any set of places of k containing X, T «a finite
subset of S. Assume that H?(G(S), Q@ »/Z,)=0. Then there is a natural
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integer g = gk, T, S), depending only on k, T, S and on a choice of a basis
of H* (G,(TuX), Q,/Z »)s such that g is an upper bound for the genus index

~hence, according to (1.1), also for the reduction index and the embedding
index—-of every central embedding problem E,=E(K/k,C,, &) for G,(S)
such that Kik is T-ramified.

Proof. We proceed in three steps:

{1) Changing notations if necessary, we may suppose that 7T contains
2. In the nonexceptional case, ¢d, G (T) £ 2 and it is known ([ S, NG])
that HX(G,(T), Q,/Z,) is divisible of rank d (=the defect of Leopoldt’s
conjecture ). Choose a basis {0, ... 0,. .., 0,} of H*(G.(T),Q,/Z,). For all
n < m=n+.ys, we have commutative diagrams with exact rows:

00— €, —— @17 'z, s le «‘/Zﬁ — 0

I I

0—_—" Cvm_'-—_> @ Z[i_L Q/M'/Z,y_—_> 0

and

s HNG(T). Q,/Z,) — HAG(T), C,) —— HYG (T}, Q,/Z,) — s

e

S HAGUT). Q,/7,)—" HNG(T). C,) —— HAG(T), Q,/Z,) ——

Since H*G(T),Q,/Z,)=lim H*G,(T), C,). each 0, is defined as an
inductive system ((), ), with 8, , e HXG(T), C,) dnd Jumlli =10, for
m = n. For any fixed m, the images of the @, , ,,HZ(GA,(T ), Q,/Z,)

generate the latter group.

(2) Now take inflation from HZ*G(T), C;) to HYG.(S) C,).
By the triviality of H*G.(S),Q,/Z,), we get d characters g, €
H'(G,(5),Q,/Z,) such that &,(x,,)=inf(#, ) for 1 £i<d. Construct
inductively systems of characters {y,,}, ., -, by putting y, , =" By
the above diagrams (replacing T by S), we have J,(y, ,) =inf(0, ,) for any
l £i<dand any n = 1. Let U be the union of 7 and of the (finite) set of
places outside which all characters y, ; (hence all y, ,) are unramified. Now
fix n and a class (e)e H*(K/k, C,). Since K/k is T-ramified, we first inflate
{£) 1o a class (¢,)e HXG,(T), C,) which, by (1), can be written

<H {}l VI)' T)’
=1
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with y,e H(G(T), Q, ,/Z,). Inflating then everything to G,(S), we get a
class (e4) € H*(G,(S), C,) such that (eg)=6,((IT¢_; x%,) inf(x7)). The
character ye H'(G,(S), Q,/Z,) which appears inside the parentheses is
unramified outside U.

(3) To kill the obstruction (¢g), we use the standard local-global
techniques. Denote by

ln: HZ(GI\(S)’ Cn) - @ Hz(Gk,’ Cn)
re s
the localization map, and by X7(S, U) the preimage of @, ., H(G,, C,)
under /,. This s a finite group defined by the exact sequence

0 — Ker(C,) = X3S, U)y— @® HAG,. C,).

relV

Since H (k" /k,, C,)=0, where k" is the maximal unramified extension
of k,, and since y is unramified outside U, we have d,(y)e X}(S, U)
for any m=n+s. We now construct the bound g=g(k, Ty). Since
H*G,(S),Q,/Z,)=0 the Pontrjagin dual H*(G,(S), C,,)" is canonically
isomorphic to the p™-torsion part of the maximal pro-p-quotient
G{"(S)® Z, of the abelianized group G.(S)*". Similarly, the Pontrjagin
duals H*(G, , C,,)" are isomorphic to u,,(k,). Define g = g(k, T, S) by

= (max #ulk))- (ma)l( #Keri(C,))
rell q=

Note that the orders of the groups Kery(C,) are bounded, according to
proposition (2.6). For s < g, p* clearly kills X (S, U). The second diagram
in (1) then shows j, ,(es)=(6,(x))” =0. This means that g is an upper
bound for the genus index of E, for all n.

(3.2) Particular Cases. The bound g(k, T, S) defined above can be
improved in some cases:

(a) If S is of density 1, Hasses principle is known to hold, ie
Keri(C,)=0 for all n (see e.g. [NK, 4.7]). Then we can take g = g(k, T)
such that p® =max{ #u(k.), ve T}.

{b) Assume Leopoldt’s conjecture (but S arbitrary). Then, by (2.8),
we can take g= g(k, T) such that p® =max{ #u(k,), ve T} - #Kery(p,).
The case Ker(u, ) =0 looks particularly interesting, in that it prov1des a
universal bound g(k T) which depends only on local parameters for ve T.

ExampLes. {(a) Take p=3, k=@(\/2 de Z, square-free. Then for
|d] <200 and d# —107, 67, 103, 106, 139, we have Kerx(/z )=0 (see
[HED.
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(b) In general, little is known about fields for which Keri(x,)=0.
In [ MN] fields &k are studied for which a cruder invariant is trivial: Let
T(Z) be the Z,-torsion submodule of the (finitely generated) Z,-module
G ()" ®Z,; then Keri(u,) is a quotient of F,(X), and the field k is
called p-rational if Z,(2) =0 (evidently: the maximal pro-p-factor of G, {Z')
is a free pro-p-group). A typical example is k= Q(y,), p a regular prime.
For other examples, see { MN].

(c) Suppose that S is finite (then the hypotheses of (3.1) imply
Leopoldt’s conjecture). We get a weaker bound if we replace g(k, 7, S) by
f= f(k.S) such that p/ is the order of the torsion submodule 7;(S) of
G (S)" ® Z,,. Recall that 7,(S) is described by an exact sequence ([NG ], 4.2):

0— u(k)— @ plk,)— F,(S)— Kerl{u,)—0.

res
and 7,(S) and 7,(ZX) are related by the exact sequence

0> @ uk)—7US)—> 7(2)—0.

reS— X%
E.g.: Take p=3, k= @1\/;'). The following examples have been computed
by Hémard (see also [HE]):

d 29 43 62 67 82 122 199 257 717 1413

#TUE) 3? 3 3 32 3 34 3 3} 3? 3?

(d) Moreover, suppose that the field & is totally real. Then the genus
index bound f(k, S) defined above admists an analytical interpretation.
Actually, a classical formula of Coates (see e.g. [NG, 2.1]), giving the
order of .7,(Z) yields here: For p #2,

_ hR
p'= <p-part of’—wﬁ (1 —(Nv) *‘))- #uk)~' - [] #uk),

\/D vip resS-%
where A is the class number of k, D the absolute value of the discriminant,

R the p-adic regulator, Nv the absolute norm of a prime ideal associated
with ¢
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