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ABSTRACT
The paper presents the INTEGRATION microscopic traffic assignment and simulation
framework for modeling eco-routing strategies. Two eco-routing algorithms are developed: one
based on vehicle sub-populations (ECO-Subpopulation Feedback Assignment or ECO-SFA) and
another based on individual agents (ECO-Agent Feedback Assignment or ECO-AFA). Both
approaches initially assign vehicles based on fuel consumption levels for travel at the facility free-
flow speed. Subsequently, fuel consumption estimates are refined based on experiences of other
vehicles within the same class. The proposed framework is intended to evaluate the network-wide
impacts of eco-routing strategies. This stochastic, multi-class, dynamic traffic assignment
framework was demonstrated to work for two scenarios. Savings in fuel consumption levels in
the range of 15 percent were observed and potential implementation challenges were identified.
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INTRODUCTION
Motorists typically choose routes that minimize their travel cost (e.g., travel time).
Therefore, drivers typically select longer routes if they produce travel cost savings. The
commonly used User Equilibrium (UE) and System Optimum (SO) traffic assignment
algorithms utilize minimum travel time or the marginal travel time, respectively as a
generalized cost to assign traffic flows over a network. However given that UE and SO
assignments are estimated based on travel time, the fuel consumption and emissions of
UE and SO conditions may not produce optimum energy and emission levels. 

Several researchers have attempted to enhance traffic assignment methods using
environmental cost functions. For example, Tzeng and Chen [1] developed a multi-
objective traffic assignment method using nonlinear programming techniques and
produced various solutions that minimize CO emissions. By utilizing eigenvector
weighting with pair-wise comparison, the researchers estimated compromised solutions
for the flow patterns. They applied the case study to metropolitan Taipei to evaluate the
developed traffic assignment model. The approach assumed fixed link-specific CO
emissions and the total emissions were computed by summing up across all vehicles on
a link [1].

Rilett and Benedek (1994) and Benedek and Rilett (1998) investigated an equitable
traffic assignment with environmental cost functions. They emphasized the impacts of
CO emissions when UE and SO traffic assignments were applied to a sample network,
a simple network of Ottawa, Canada and a calibrated network of Edmonton, Canada.
The studies utilized a simple macroscopic CO emission model used in the TRANSYT
7F software. The emission model utilized the average speed and the link length as input
variables. The researchers showed that the traffic flows of the SO-CO (the traffic flows
that have the minimum total CO emissions) condition were roughly equivalent to the
flows of the UE and SO conditions within a small error range [2, 3].

Sugawara and Niemeier (2002) developed an emission-optimized traffic assignment
model that used average speed CO emission factors developed by the California Air
Resources Board (CARB). The sample network case study concluded that emission-
optimized trip assignments can reduce system-level vehicle emissions moderately when
compared to time-dependent UE and SO solutions. The research also found that an
emission-optimized assignment is most effective when the network is under low to
moderately congested conditions, saving up to 30% of total CO emissions; when the
network is highly congested, the emission reduction is diminished to 8%. The authors
explain that under emission-optimized conditions, less traffic volume is assigned to the
freeway because emission levels are very high at freeway free-flow speeds [4].

Nagurney and her colleagues developed a multi-class and multi-criteria traffic
network equilibrium model with an environmental criterion and claimed that a desired
environmental quality standard can be achieved by the proposed model through a
particular weighting method. In the study, a fixed amount of CO emission rate per
traveler per link was utilized to estimate the total CO emissions [5-7].

An earlier study by Ahn and Rakha [8] investigated the impacts of route choice
decisions on vehicle energy consumption and emission rates for different vehicle types
using microscopic and macroscopic emission estimation tools. The results demonstrated
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that the faster highway route choice is not always the best route from an environmental
and energy consumption perspective. Specifically, the study found that significant
improvements to energy and air quality could be achieved when motorists utilized a
slower arterial route although they incurred additional travel time. The study also
demonstrated that macroscopic emission estimation tools (e.g. MOBILE6) could
produce erroneous conclusions given that they ignore transient vehicle behavior along
a route. The findings suggest that an emission- and energy-optimized traffic assignment
can significantly improve emissions over the standard User Equilibrium (UE) and
System Optimum (SO) assignment formulations. Finally the study demonstrated that a
small portion of the entire trip involved high engine-load conditions that produced
significant increases in total emissions; demonstrating that by minimizing high-emitting
driving behavior, air quality could be improved significantly.

The objective of this paper is to develop an eco-routing framework that can be used
to evaluate the network-wide impacts (travel time, fuel consumption, and vehicle
emissions) of different levels of market penetration of eco-routing vehicles. The
framework is also capable of testing the framework under different levels of fuel
consumption estimate accuracies.

In terms of the paper layout initially the INTEGRATION modeling framework is
described given that it is used to develop the proposed eco-routing testbed.
Subsequently, the proposed algorithms for modeling eco-routing strategies are
presented. The framework is then tested and validated on a sample small network.
Implementation challenges are then discussed followed by the conclusions of the paper.

INTEGRATION MODELING FRAMEWORK
The INTEGRATION software is an agent-based microscopic traffic assignment and
simulation software [9-12], conceived as an integrated simulation and traffic
assignment model and performs traffic simulations by tracking the movement of
individual vehicles every 1/10th of a second. This allows detailed analyses of lane-
changing movements and shock wave propagations. It also permits considerable
flexibility in representing spatial and temporal variations in traffic conditions. In
addition to estimating stops and delays [13-15], the model can also estimate the fuel
consumed by individual vehicles, as well as the emissions [16-19]. The model also
estimates the expected number of vehicle crashes using a time-based crash prediction
model [20]. The INTEGRATION model has not only been validated against standard
traffic flow theory [14, 15, 21, 22], but also has been utilized for the evaluation of real-
life applications [23-25]. The types of analyses that can be performed with these built-
in models extend far beyond the capabilities of EPA’s MOBILE6 model [26, 27].

Traffic Assignment
Within the INTEGRATION software, the selection of the next link to be taken by a
vehicle is determined by the model’s internal routing logic [28-31]. There exist many
different variations to the model’s basic assignment technique. Some of these techniques
are static and deterministic, while others are stochastic and dynamic. However,
regardless of the particular technique that is utilized to determine these routings, the
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selection of the next link that a vehicle should take is done using a vehicle-specific array
that lists for the vehicle the entire sequence of links from its origin to its destination.
Upon the completion of any link, a vehicle simply queries this array to determine which
link it should utilize next to reach its ultimate destination in the most efficient manner.
When travel across this next link is in turn completed, the selection process is then
repeated until a link whose downstream node is the vehicle’s ultimate trip destination is
reached. Within the INTEGRATION software five different vehicle classes are specified
and each vehicle class can have its unique routing logic. 

The INTEGRATION simulation model currently provides for eight basic traffic
assignment/routing options:

1. Time-Dependent Method of Successive Averages (MSA)
2. Time-Dependent Sub-Population Feedback Assignment (SFA)
3. Time-Dependent Agent Feedback Assignment (AFA)
4. Time-Dependent Dynamic Traffic Assignment (DTA)
5. Time-Dependent Frank-Wolf Algorithm (FWA)
6. Time-Dependent External Routing 1 – File 8 (ER1)
7. Time-Dependent External Routing 2 – File 9 (ER2)
8. Distance Based Routing

Traffic Modeling
Once the routes of travel are selected, the INTEGRATION model updates the vehicle
longitudinal and lateral location (lane choice) every deci-second. The longitudinal
motion of a vehicle is based on a user-specified steady-state speed-spacing relationship
and the speed differential between the subject vehicle and the vehicle immediately
ahead of it. In order to ensure realistic vehicle accelerations, the model uses a vehicle
dynamics model that estimates the maximum vehicle acceleration level. Specifically, the
model utilizes a variable power vehicle dynamics model to estimate the vehicle’s tractive
force that implicitly accounts for gear-shifting on vehicle acceleration. The model
computes the vehicle’s tractive effort (Fn(t)), aerodynamic, rolling, and grade-resistance
forces, as described in detail in the literature [32, 33]. 

The car-following model is formulated as:
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The model constants are computed as

; 

and the vehicle spacing is computed as:

Here un(t+∆t) is the speed of the following vehicle (vehicle n) at time t+∆t; an(t) is
the acceleration of the subject vehicle (vehicle n); uf is the roadway mean free-flow
speed; uc is the roadway mean speed-at-capacity; qc is the roadway mean capacity; kj is
the roadway mean jam density; xn(t) is the position of the subject vehicle at time t; and
xn-1(t) is the position of the lead vehicle at time t; dmax is the maximum acceptable
deceleration level the driver is willing to exert (m/s2). This model ensures that the vehicle
acceleration does not exceed the vehicle dynamics maximum acceleration level.

The lane selection and lane-changing logic was described and validated against field
data in an earlier publication [34]. A later study [35] demonstrated the validity of the
INTEGRATION software for estimating the capacity of weaving sections by comparing
the software to field-observed weaving section capacities.

Estimation of Vehicle Fuel Consumption and Emission Levels
The INTEGRATION model computes a number of measures of effectiveness (MOEs),
including the average speed; vehicle delay; person delay; fuel consumed; vehicle
emissions of carbon dioxide (CO2), carbon monoxide (CO), hydrocarbons (HC), oxides
of nitrogen (NOx), and particulate matter (PM) in the case of diesel engines; and the
vehicle crash risk and severity. 

The computation of deci-second speeds permits the steady-state fuel consumption
rate for each vehicle to be computed each second on the basis of its current
instantaneous speed and acceleration level [16-19, 27, 36]. The VT-Micro model was
developed as a statistical model from experimentation with numerous polynomial
combinations of speed and acceleration levels to construct a dual-regime model as
described in Equation (2), where Li,j are model regression coefficients at speed exponent
i and acceleration exponent j, Mi,j are model regression coefficients at speed exponent
i and acceleration exponent j, v is the instantaneous vehicle speed in kilometers per hour
(km/h), and a is the instantaneous vehicle acceleration (km/h/s). These fuel consumption
and emission models were developed using data that were collected on a chassis
dynamometer at the Oak Ridge National Labs (ORNL), data gathered by the
Environmental Protection Agency (EPA), and data gathered using an on-board emission
measurement device (OBD). These data included fuel consumption and emission rate
measurements (CO, HC, and NOx) as a function of the vehicle’s instantaneous speed
and acceleration levels. The VT-Micro fuel consumption and emission rates were found
to be highly accurate compared to the ORNL data, with coefficients of determination
ranging from 0.92 to 0.99. A more detailed description of the model derivation is
provided in the literature [17]. 
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(2)

From a general point of view, the use of instantaneous speed and acceleration data
for the estimation of energy and emission impacts of traffic improvement projects
provide a major advantage over state-of-practice methods that estimate vehicle fuel
consumption and emissions based exclusively on the average speed and number of
vehicle-miles traveled by vehicles on a given transportation link. 

PROPOSED ECO-ROUTING LOGIC
Two eco-routing algorithms were added to the INTEGRATION routing logic. These
algorithms correspond to routing methods 9 and 10. Routing method 9 is very similar to
routing method 2 while routing method 10 is similar to 3 except that the objective
function is to minimize a vehicle’s fuel consumption level as opposed to its travel time.
The two new routings are described in detail in this section.

Model Initialization
Initially, when the network is empty routes are selected by computing the vehicle fuel
consumption level for each link based on travel at the facility’s free-flow speed
considering the grade on the link. The fuel consumption rate for a cruising speed equal
to the free-flow speed and a grade of G can be computed as

(3)

Here F(t) is the fuel consumption rate (l/s); g is the gravitational acceleration (9.8067
m/s2) and G is the roadway grade (dimensionless). 

The total fuel consumed on the link can then be estimated as

(4)

Here Fl is the total fuel consumed on link l (liters); dl is the length of link l (km); and
(vf)l is the free-flow speed on link l (km/h).

Model Updating
Following the initial vehicle routing, vehicles record their fuel consumption experiences
prior to exiting a link. A moving fuel consumption estimate for each link in the network
is created as

(5)
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instant t; α is a user specified smoothing constant in the interval [0,1]; Ft
l,c is the

observed fuel consumption estimate for vehicle class c on link l at instant t; and F′t-∆t
l,c

is the smoothed fuel consumption estimate for vehicle class c on link l at instant t-∆t.
Errors in the fuel consumption estimates can also be introduced using a white noise

error function as

(6)

Where F′tl,c is the final fuel consumption level of vehicle class c on link l at instant t
and wc is a user-specified white noise error in the fuel consumption estimates. This error
term is either normally or log-normally distributed with a mean of zero and a user
specified coefficient of variation (ratio of standard deviation to mean fuel consumption
measurement). The introduction of random errors allows for the modeling of stochastic
user equilibrium where different sub-populations or drivers have different minimum
paths.

ECO-Sub-population Feedback Assignment
Routing Mechanism 9 involves the application of an ECO-SFA mechanism, however in
this case the minimum path is based on the fuel consumption experiences of other
drivers within the same class. Specifically, all drivers within a specific class are divided
into five sub populations each consisting of 20% of all drivers within the class. The
paths for each of these sub populations are then updated every t seconds during the
simulation based on real-time measurements of the link fuel consumption levels for that
specific vehicle class. As was the case with routing mechanism 2, the value of t is a user-
specified value. Furthermore, the minimum path updates of each vehicle sub population
are staggered in time, in order to avoid having all vehicle sub populations update their
paths at the same time. This results in 20% of the driver paths being updated every t/5
s. 

ECO-Agent Feedback Assignment
Routing mechanism 10 involves the application of the above feedback mechanism to
individual drivers, rather than sub populations. It is referred to as an ECO-AFA. The
main difference is that, while the paths under method 9 were always shared by at least
20% of the drivers, within method 10 all paths are customized to each individual driver
and may therefore be unique relative to any other drivers. Given that paths can be
computed for individuals, rather than sub populations, the path calculations are
triggered based on a vehicle’s departure rather than some average time interval as in
method 9 (ECO-SFA). In other words, when paths are calculated for sub-populations in
method 9, paths are recomputed for an entire sub-population at specified intervals in
anticipation of their subsequent use when vehicles belonging to that sub-population
actually depart. This means that paths may often be several seconds, if not minutes old,
when a specific vehicle actually departs. In contrast, for method 10, the path for a
specific vehicle is computed at the time of departure of that vehicle from its origin and
from each link. This implies that the paths are computed based on the most recent

′′ = ′ +F F wl c
t

l c
t

c, ,

International Journal of Transportation Science and Technology · vol. 1 · no. 3 · 2012 265



information that is available at that time. It should also be noted that the selection of the
next link that a vehicle should take is done using a vehicle-specific array that lists for
that vehicle the entire sequence of links from its origin to its destination.  Upon the
completion of any link, a vehicle simply submits its experiences fuel consumption on
the link and then queries this array to determine which link it should utilize next to reach
its ultimate destination in the most efficient manner. When travel across this next link is
in turn completed, the updating and selection process is then repeated until a link whose
downstream node is the vehicle’s ultimate trip destination is reached. Again as was
mentioned earlier, the vehicle only uses the experiences of other vehicles in the same
class to update the fuel consumption estimates on a link. This allows for a multi-class,
stochastic, dynamic, ECO-routing user equilibrium. The routing is multi-class because
vehicles are only affected by experiences of other vehicles in the same class. The routing
is dynamic because the vehicle can change its route while en-route as traffic conditions
change. 

MODEL TESTING ON A SIMPLE NETWORK
The eco-routing algorithm was tested on a sample network composed of two alternative
routes for travel from zone 1 to zone 2 (squared nodes), as illustrated in Figure 1. The
first route involved travel along an arterial route (path 1→3→5→2), while the second
path involved travel along a combination of arterial and freeway travel (path
1→3→4→5→2). Links 1, 2, and 5 were arterials with a free-flow speed of 77 km/h
while links 3 and 4 were freeway links with a free-flow speed of 100 km/h. The speed-
at-capacity on the arterial and freeway facilities were set approximately equal to the
free-flow speed (76 and 99 km/h, respectively) in order to ensure that the average speed
did not vary as a function of the level of congestion on the roadway. All links were 0.5
km long except for link 2, which was 1.0 km long, in order to ensure that both paths
were of equal length (2 km). All vehicles would travel on the arterial route to node 3 and
then would have two equal distance choices: a slower arterial route (link 2) or a faster
freeway route (links 3 and 4). The two routes then meet at node 5 and vehicles travel the
remainder of the trip along the arterial facility (link 5).

The optimum fuel consumption rate can be derived by taking the derivative of
Equation (2) with respect to speed and setting it equal to zero as demonstrated in
Equation (7). If the grades on the roadways are zero Equation (7) is simplified as
demonstrated in Equation (8). The speed that produces the minimum vehicle fuel
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consumption (optimum speed) for the average ORNL vehicle is 76.6 km/h.

(7)

(8)

The variation in vehicle fuel consumption levels for the ORNL composite vehicle to
travel along a 1-km section of roadway as a function of the vehicle cruise speed is
illustrated in Figure 2. The figure demonstrates that the shape of the function is a bowl
shape with the minimum fuel consumption rate of 0.0777 L/km occurring at a cruise
speed of 76.65 km/h. The fuel consumption rate relative to the minimum rate is 1.07 for
a cruise speed of 100 km/h (i.e. travel at 100 km/h results in a 7 percent increase in the
fuel consumption rate), as demonstrated in Figure 2(b) and Table 1.
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Figure 2. Variation in Fuel Consumption as a Function of Cruise Speed (a) Fuel
Consumption; (b) Fuel Consumption Relative to Optimum Fuel
Consumption



Consequently, from a travel time perspective it would be more efficient to travel
along the freeway roadway while from a fuel economy perspective it would be more
efficient to travel along the arterial.

A total demand of 1200 veh/h traveling from zone 1 to 2 was loaded onto the network for
the first 1200 seconds. The simulation was continued until all vehicles cleared the network.
This resulted in a total of 400 vehicles being simulated, as summarized in Table 2.

Each of the scenarios constitutes four runs: Scenario 1 includes runs 3 through 6
while Scenario 2 includes runs 7 through 10. The runs reflect four routing strategies, as
follows:

a. Runs 3 and 7 model the proposed time-dependent sub-population feedback eco-
routing logic (ECO-SFA or routing method 9);

b. Runs 4 and 8 model the time-dependent sub-population feedback user equilibrium
logic (SFA or routing method 2);

c. Runs 5 and 9 model the proposed time-dependent agent-based feedback eco-
routing logic (ECO-AFA or routing method 10); and

d. Runs 6 and 10 model the time-dependent agent-based feedback assignment (AFA
or routing method 3).

Scenario 1: Arterial with Freeway Diversion (Run 3 - 6)
In scenario 1 links 1 and 5 were arterial links and would be typical of driver’s commute
where one typically starts on lower facility roadways and then has the option to travel
on a freeway or continue travel on the lower facility roadway. Both options then entail
traveling on the lower facility roadway to reach their destination. 
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v 

(km / h )
F/ Fm in

v 

(km / h )
F/ Fm in

v 

(km / h )
F/ Fm in

v 

(km / h )
F/ Fm in

70 1.005 80 1.001 90 1.021 100 1.070

71 1.004 81 1.002 91 1.025 101 1.077

72 1.002 82 1.003 92 1.029 102 1.084

73 1.001 83 1.005 93 1.033 103 1.092

74 1.001 84 1.006 94 1.037 104 1.099

75 1.000 85 1.008 95 1.042 105 1.108

76 1.000 86 1.010 96 1.047 106 1.117

77 1.000 87 1.013 97 1.052 107 1.126

78 1.000 88 1.015 98 1.058 108 1.136

79 1.001 89 1.018 99 1.064 109 1.146

Table 1. Variation in Relative Fuel Consumption as a Function of Cruise Speed
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As demonstrated in the results of Table 2 that routing methods 2 and 3 (runs 4 and
6) result in all vehicles taking the freeway route in order to minimize the driver travel
times. This route, however results in an average fuel consumption of 0.19 L/veh. 

Alternatively, when vehicles are routed using the routing mechanism 9 (run 3) one of
the sub-populations uses route 2 (freeway route) for the initial update horizon (first 300
s), as illustrated in Figure 3. The majority of vehicles use route 1 (arterial route) and all
vehicles use route 1 after vehicle feedback is received. Figure 3(a) shows the initial
oscillations in experienced travel times depending on the route of choice. In the case
travel along links 1 and 5 is 48 s while travel along the parallel freeway section is 36 s
(travel along links 3 and 4) and travel along the parallel arterial is 46.8 s (link 2). The
total travel time along the arterial/freeway route (route 2: links 1, 3, 4, and 5) is 82.8 s
while travel along the arterial route is 93.5 s (route 1: links 1, 2, and 5), as illustrated in
Figure 3(b). As demonstrated in Figure 3(c) travel along route 2 results in a higher fuel
consumption level compared to route 1. It should be noted that some vehicles that travel
along route 1 experience higher fuel consumption levels because of the congestion that
forms upstream of the diverge point at node 3. This routing mechanism reduces the
vehicle fuel consumption level from 0.19 (run 4) to 0.16 L (run 3) for the entire trip (see
Table 2), which corresponds to a 15 percent reduction in the average fuel consumption
level. This saving in fuel consumption comes at an increase of 10 percent in travel time
(92.6 versus 83.5 s).
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Figure 3. Run 3 Temporal Variation in Individual Vehicle Travel Time and Fuel
Consumption Levels



When vehicles are routed using the ECO-IFA mechanism all vehicles travel along
route 1, as illustrated in Figure 4. This results in a further reduction in the vehicle fuel
consumption level from 0.16 L (run 3) for the ECO-SFA mechanism to 0.15 L (run 5)
for the ECO-IFA mechanism, as summarized in Table 2.

Scenario 2: Freeway with Arterial Diversion (Run 7 - 10)
In scenario 2 links 1 and 5 are made freeway links instead of arterial links and thus the
free-flow speed on links 1 and 5 are 100 km/h instead of 77 km/h as was the case in
Scenario 1. This example, entails traveling on a freeway and having the option to
continue on the freeway or exit the freeway to travel on a slower but more fuel efficient
arterial roadway.

As was the case in Scenario 1, the SFA and IFA routing strategies would entail
continuing to travel on the freeway roadway (traveling on links 3 and 4). This produces
an average travel time of 71.7 s. In the case of ECO-IFA (run 9) all 400 drivers select
the more efficient arterial route (route 1). The vehicles increase their average travel time
from 71.7 s to 83.6 s, as would be expected. However, what is not expected is that the
average fuel consumption actually increases from 0.17 to 0.19 L by selecting the more
fuel efficient arterial route. This increase in fuel consumption, while might appear
counter intuitive as first glance, results from the fact that vehicles the vehicles that enter
the freeway from the more efficient arterial route have will accelerate from a speed of
77 km/h to 100 km/h on link 5. Consequently, although the drivers select the more fuel
efficient route they incur and acceleration penalty on the freeway and thus increase their
overall fuel consumption level. Had the length of the arterial and freeway routes been
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Figure 4. Run 5 Temporal Variation in Individual Vehicle Travel Time and Fuel
Consumption Levels



slightly longer the savings in fuel consumption would have outweighed the penalty
associated with the vehicle accelerations on the freeway on link 5.

CONCLUSIONS
The paper presented the INTEGRATION microscopic traffic assignment and simulation
framework for modeling eco-routing strategies. Two eco-routing algorithms are
developed: one based on vehicle sub-populations (ECO-Subpopulation Feedback
Assignment or ECO-SFA) and another based on individual drivers (ECO-Agent
Feedback Assignment or ECO-AFA). Both approaches initially assign vehicles based on
fuel consumption levels for travel at the facility free-flow speed. Subsequently, fuel
consumption estimates are refined based on experiences of other vehicles within the
same class. This stochastic, multi-class, dynamic traffic assignment framework was
demonstrated to work for two Scenarios. Savings in fuel consumption levels in the range
of 15 percent were observed and potential implementation challenges were identified.
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