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Tubulin family: Kinship of key proteins across phylogenetic domains

Edward H. Egelman

Atomic structures obtained by electron microscopy for
tubulin, and by X-ray crystallography for bacterial FtsZ,
show that the two proteins are highly homologous. The
complementarity between such high-resolution studies
and low-resolution reconstructions of microtubule
complexes is clear, but controversy still abounds.
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The simultaneous elucidation of the atomic structures of
eukaryotic tubulin [1] and bacterial FtsZ [2] is momentous
for several reasons. While limited sequence homology and a
common role in cell division suggested that FtsZ might be a
bacterial homolog of tubulin [3], it was not until the two
structures were solved that the speculation was shown to be
correct. This provides just one more example of the fact that
structures are conserved far more strongly than sequences.
And as the number of sequences proliferates greatly as a
result of the various genome projects, it is clear that struc-
ture-based methods ([4] for example) for determining
homology and function will become increasingly important.
The FtsZ structure was solved at 2.8 A by conventional X-
ray crystallography [2]; somewhat surprisingly, the structure
of tubulin was solved at 3.7 A by electron microscopy [1].

Figure 1

Numerous attempts to obtain ordered three-dimensional
crystals of tubulin had failed, in large part because the
high salt, high protein concentrations needed for crystal
formation cause tubulin to polymerize into helical micro-
tubules. Such polymerization is incompatible with crystal
packing and will disrupt attempts to form highly-ordered
three-dimensional crystals. To surmount this problem,
Downing and colleagues [1] used highly-ordered, two-
dimensional zinc-induced sheets of tubulin that contain
protofilaments of o and B tubulin heterodimers. These
sheets were ideal candidates for high-resolution electron
microscopy and served to generate the first structure of a
non-membrane protein to be solved by electron
microscopy. While the determination of an atomic struc-
ture by electron microscopy might come as a surprise to
many in the field of cytoskeletal proteins, workers in the
field of integral membrane proteins have been much more
familiar with the advances in electron microscopy. Almost
half of the current structures of integral membrane
proteins have been obtained by electron microscopy.

The stronger conservation of structure than sequence is
shown very clearly in the case of tubulin (Figure 1). While
the o and B tubulin subunits show about 40% sequence
identity, the two are nearly identical in structure [1]. A
structural core is highly conserved in the tubulin subunits
and FtsZ, but FtsZ has an amino-terminal extension
absent in the tubulin subunits, and each tubulin subunit
has two long, carboxy-terminal helices absent in FtsZ.
These observations suggest that, within the eukaryotic

Ribbon models of eukaryotic  tubulin [1]
(left) and prokaryotic FtsZ [2] (right). The core
structures are highly homologous, with a
major difference being the amino-terminal helix
(bottom right) that occurs in FtsZ but not
tubulin. As the amino-terminal extension does
not appear to be highly conserved among the
prokaryotic FtsZ proteins, Lowe and Amos [2]
suggest that it is unlikely to be involved in
filament formation. (Graphic courtesy of

Jan Loéwe.)
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lineage, a more complex, heterodimeric protein evolved
from a single ancestral FtsZ-like precursor.

The knowledge that FtsZ has a similar structure to
tubulin does not, however, tell us what the functional
form of FtsZ is within the cell [5]. For example, we know
that actin, hexokinase and the ATP-binding domain of
heat shock protein 70 all have a similar structure [6],
despite vanishingly small sequence conservation, but only
actin polymerizes to form a helical polymer. Although
FtsZ has been observed to form protofilaments, tubes and
sheets 7z vitro, whether the protein forms microtubule-like
structures 7z vivo is still an open question. The demonstra-
tion that the /z vitro polymerization and depolymerization
of FtsZ is regulated by the hydrolysis of GTP [7], as is
that of tubulin, is an important step towards establishing
the likelihood that FtsZ might polymerize in a similar
manner to tubulin within the cell.

The field of muscle research has been greatly advanced by
the determination of atomic structures for actin [8] and
myosin [9]. But it has also become apparent that these
structures alone do not solve many of the vexing questions
that have dominated this field. Rather, the structures
elevate the plane of the debate to a much higher level.
The structures provide a framework within which all bio-
chemical, spectroscopic and genetic results can be under-
stood. They also allow for the interpretation of
low-resolution electron microscopy in terms of an atomic
model. For example, different conformational states seen
in F-actin by electron microscopy can now be understood
in terms of the atomic structure of actin [10]. This comple-
mentarity between X-ray crystallography and electron
microscopy has blossomed recently in several areas, such
as virus research [11]. Similarly, the determination of
structures for tubulin [1] and two tubulin-binding motor
proteins, kinesin [12] and ncd [13], will not end the search
for understanding the basis of tubulin-based motility. If
recent papers are any indication, this area will remain
quite controversial.

An attempt to fit the crystal structure of the kinesin-like
protein ncd into a low-resolution three-dimensional recon-
struction of a microtubule-ncd complex was reported last
year by Sosa ez al. [14]. Kozielski ez a/. [15] have now per-
formed a similar analysis, but using a kinesin dimer crystal
structure [16] and electron micrographs of microtubules
decorated with such dimers. They have found a nearly
opposite orientation for the motor protein to that pre-
dicted by Sosa et a/. [14], and predict a binding stoichiom-
etry of one kinesin dimer per tubulin heterodimer, with
one head bound and the second unbound and disordered.
The same binding stoichiometry was also obtained by
Hirose ez al. [17]. Kozielski ez a/. [15] conclude that kinesin
dimers bind to the microtubule in a very similar conforma-
tion to that observed in the kinesin dimer crystal [16].
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"This would allow for a simple complementarity between
the electron microscopic and X-ray crystallographic
studies, as the high-resolution structures can be placed
into the low-resolution reconstruction.

In contrast to Kozielski ez a/. [15], Hoenger er al. [18]
explain their reconstruction of microtubules decorated
with dimeric kinesin by a binding stoichiometry of one
kinesin head per tubulin heterodimer. In this interpreta-
tion, there are no unbound heads. This view leads to a
very different understanding of the relation between the
crystal structure of the kinesin dimer [16] and the kinesin
dimer—microtubule complex. According to Hoenger ¢z al.
[18], the dimer must completely open so that each kinesin
head binds a tubulin protomer equivalently, and the
kinesin dimer must therefore have a very different
conformation in the crystal from that which it adopts when
it binds to the microtubule.

Those who have followed the field of microtubule
structural studies, with many reversals and conflicts con-
cerning which is the ‘plus end’ and which the ‘minus end’
of the polymer, which subunit is & and which is B, will not
be very surprised that the docking of a kinesin dimer onto
a microtubule is controversial. While the field promises to
generate more controversy in the future, it is clear that
now the debate has been greatly transformed from one of
‘blobology’ to one of interpreting low-resolution three-
dimensional complexes in atomic detail.
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If you found this dispatch interesting, you might also want
to read the February 1998 issue of

Current Opinion in
Cell Biology

which included the following reviews, edited
by David Drubin and Nobutaka Hirokawa,
on Cytoskeleton:

Tubulin and microtubule structure
Kenneth H Downing and Eva Nogales

The modular structure of actin-regulatory proteins
Yoram A Puius, Nicole M Mahoney and Steven C Almo

Microtubule dynamics in living cells
Harish C Joshi

Control of actin dynamics
Marie-France Carlier

Cytoskeletal proteins and Golgi dynamics
Jennifer Lippincott-Schwartz

Kinesin and dynein superfamily proteins in organelle
transport and cell division
Nobutaka Hirokawa, Yasuko Noda and Yasushi Okada

Motoring along the hyphae: molecular motors and the
fungal cytoskeleton
Roxanne A Yamashita and Gregory S May

Myosins: matching functions with motors
Jeffrey P Baker and Margaret A Titus

The slow axonal transport of cytoskeletal proteins
Ralph A Nixon

Intermediate filaments and their associated proteins:
multiple dynamic personalities
Megan K Houseweart and Don W Cleveland

In vivo functions of actin-binding proteins
Kathryn R Ayscough

Control of reorganization of the actin cytoskeleton by
Rho family small GTP-binding proteins in yeast
Kazuma Tanaka and Yoshimi Takai

Cytoskeletal control of polar growth in plant cells
Darryl L Kropf, Sherryl R Bisgrove and Whitney E Hable

Microtubules and actin filaments: dynamic targets for
cancer chemotherapy
Mary Ann Jordan and Leslie Wilson

The role of cytoskeletal proteins in cardiomyopathies
Jeffrey A Towbin

The full text of Current Opinion in Cell Biology is in the
BioMedNet library at

http://BioMedNet.com/cbiology/cel
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