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INTRODUCTION
In this paper, we let

P(Xy, o Xy) =Y a,xT X5, Qxy, e Xy) =Y byxht xBY
o B
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with a=(ay,.., %y), B=(By, .., Bx), be polynomials in N variables,
Xy, ., Xy, and with complex coefficients. We are interested in estimates
from below for the product PQ, that is in estimates of the form

IPQI= 4 11PY-1IQIl, (1)

for some norm | -|| on the space of polynomials.

The norms we use are first related to the coefficients of P,
i/p
m,=(z laav) ,
-3

for 1 € p< oo, and

||, =max [a,].
o

Other norms, also related to the coefficients of P, are

al\ 71 1/p
[PJ,=(2<M> laav) ,

where m is the total degree of P, and a!=a,!---ap!.
Comparison between these norms is given by the following inequalities:

1

1-1p
(i) 1#b<IrL Iz, @)

We can also consider P as a function on the polycircle, and introduce the
L, norms

ds, EB.A' ) I/p
2 2n )’

2n 2n 0 0
= ‘e W WNY P ...
1Pt = ([ [ 1Pt o)
for 1< p<oc, and

ey

We observe the following relations between the norms already intro-
duced:

IPle S IPl <P =1Pl <[Pl <IPl;.
Of course, for 1 < p<g< o,

I1Pll, < |IPll,.
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Moreover, as we see in Section 1, there is a constant C,, , >0 such that
if P is a polynomial with (total) degree at most m,

12,2 Cpg IPly-
For the |-|,-norms, we have, for 1< p<g<oc,
|P|,<|P|,,

but there is no constant depending only on the degree (and independent of
the number of variables) such that the converse inequality holds: this is
clear from the consideration of the example P=(x,+ --- + xy)/N.

In the case of polynomials in one variable, estimates of the type (1) were
obtained, under specific assumptions, by B. Beauzamy and P. Enflo [1].
They of course extend to polynomials in several variables, but lead to
estimates which depend on the number of variables.

We are interested here in estimates independent of the number of
variables. The first result of this nature was obtained by P. Enflo [2], in
the frame of concentration at low degrees. To define it, let |a|=
o, + --- +a,. Then we say that P has concentration d (0 <d < 1) at degree

kif
Y lal=dY la,l.

ful <k

Then the theorem in [2] is:

THEOREM. There is a constant A(d, d'; k, k') > 0 such that for any polyno-
mials P and Q, with concentration d at degree k, concentration d’ at degree
k', respectively, one has

POl 2 AP, 10l

The important point is that the constant A does not depend on the
degrees of the polynomials, nor on the number of variables.

We study here similar problems, in various norms, as was done in [1];
moreover the proof given here in the case of the |-|,-norm is simpler than
the original proof of [2]. For all these reasons, the present paper may be
regarded as a continuation of [1, 2].

It is convenient for us to start with homogeneous polynomials.

1. HOMOGENEOUS POLYNOMIALS

In this section, P and Q are homogeneous polynomials of degrees m and
n, respectively:

P(X1,n Xy)= Y X x%, Qxy,wmxy)= Y bpxfoxfN (1)

la} =m iBl=n
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Then we have:

THEOREM 1.1. There exists a constant C,(m,n)>0 such that, for any
polynomials P and Q, homogeneous of degrees m and n, respectively, one has,
for any p, 1< p< oo,

Ci(m, n) |Pl,-1Q|,< [PQl, <2 *" =V P|,.|Q],.
No information is given about the value of C,(m, n) in general. But in

the case p =2, precise bounds are obtained for the norm [-],:

THEOREM 1.2. Let P, Q be homogeneous polynomials of degrees m, n,
respectively. Then

m! nt

[PQ1.> (m+n)!

(Pl {21

and this estimate is best possible.

For the | -||,-norms, we obtain:

THEOREM 1.3. There exist constants Co(p, m, n} >0 and C,y(p, m,n)>0
such that, for any polynomials P and Q, homogeneous of degrees m and n,
respectively, one has, for any p, 1 < p< o0,

Co(p, m,n) | Pll,-1QI, < IPQll, < Cy(p, m,n) | Pll,- |Ql,,

and in the case p = o0,

Co(o, myn) [Pl 1@l SNPQll oo SIPlloo 1@l
with

inf{m, n} (2k_ 1)1‘[
c ,n)= tan® <.
(o0, m, n) k]l an Hom )

In order to prove Theorem 1.1, we start with some basic inequalities for
the /, norms. The first one gives the upper estimate in Theorem 1.1.

A. Relations between Norms
LemMA 1.Al. For 1<p<oo,
IPQ,p éz(m+n)(li 17p) 'Plp ) 'le-
Proof of Lemma 1.A.1. We write

PQ=Y c,x}---x}.



PRODUCTS OF POLYNOMIALS 223

A coefficient ¢, is a sum

a+f=7

Of course, o, <7, ..., &y <Yy, 50 the number of terms in this sum does not
exceed

(it 1)y D2 =,

So, by Holder’s inequality, for 1 < p < oo,

P
|PQ|Z=Z Z aabﬂ
p e+ f=y
<2(m+n)(p71)z Z |aabBlp

v+ f=y
gz(m+n)(p71) IPII,; |Q‘ﬁs
and for p = o0,

|PQ| ., = max

?

Z a.by

x+f=7

<2™*"max |a,| -max |bg|,

which proves our lemma.

LeMMA 1.A2. For 1< p< oo,
I[P+ Q12<277(|PI2+101%).

Proof of Lemma 1.A.2. This inequality follows immediately from the
fact that, for two complex numbers a and b,

la+b|? <27~ '(ja]” + |b]?).

LemMMA 1.A3. Let P,=0P/0x,. Then, for 1 < p< oo,

N

1/p
m''? lPlp<< Y 1P i) <m|P|,.

i=1

Proof of Lemma 1.A.3. We have, for 1< p< oo,
N
> 1P43=3 (10 T )
i=1 a i

and

p
m=2a[<2af’s<2ai) =m”,
i i i
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from which the lemma follows. Modifications in the case p=oc are
obvious.
We now turn to the proof of Theorem 1.1. Let k, m,neN, and let
Ci(m, n)= C,(p, m, n) be the largest real number such that the inequality
Ci(m, n) |Pl; 101, <|P“Q],

holds for all homogeneous polynomials P, Q of degrees m, n, respectively.

Clearly, 0< C(m, n)<1. Our object is to show that C,(m, n)>0 for
every k, m,ne N: taking k=1, we get the theorem. This is accomplished
by an inductive argument, the basic steps of which are fulfilled in the
following two lemmas:

LemMma 1LA4. For 1< p< oo,
Cras(m, 0)2m?=1C(m—1, mk) - C,(m, 0).

Proof of Lemma 1.A4. We assume p < o0, the case p = oo being left to
the reader. For any homogeneous polynomial P of degree m, with the
notation of Lemma 1.A.3, we have, for every i,

[(P*1),l,=(k+1) PP,
> (k+1) Cy(m—1,mk) | P, |P*],
> (k+1) Cy(m—1,mk) Ci(m, 0) |P,|,, | P|,
which implies
ip

N 1/
(' I(Pk+1)i|z) p> (k+1) Cym—1, mk) Cr(m,0) IPI’; (Z IP,.IZ)

By Lemma 1.A.3,

(k+1)m [P**, 2 (k+ 1) Ci(m—1,mk) C¢(m,0) |P[5* ' m'?,

which gives the desired result.

LemMa 1.AS. For 1< p<w,
Ci(m, n)= Cr o 1(m, n— 1) nVP[(km + n)? + (km)?]~ VP 2~ (- Vplkm+m+m)

Proof of Lemma 1.A.5. Again, we treat only the case p < co. We have,
for every i,
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Crsilmn—1)7 |P|FF D2 Q| E < [PEIQ,NS
= |P(P*Q,+ kP*~'P,Q)—kP*P,Q|*
<277 Y(|P(P*Q,+ kP*~'P,Q)|”
+k” |P*P,Q|%), by Lemma 1.A.2
<2(P~ll(km+m+n)(lp|z |PkQ,-+ kPk— lPiQ‘Z
+k? |PXQI 2 |P,|7), by Lemma 1.A.1.

But PXQ,+kP*~'P,Q = (P*Q),. We sum both sides over i and apply
Lemma 1.A.3. We find

nC, . ((m,n—1)" |P|f* V70|17
<20 Dk (om + m)? | P\ [P*QIS + k7m” |PI] | PQIY),
which implies
|PXQI, 2 Cy o y(m, n— 1) nVP[(km + n)? + (km)P]~"/?
x 2= (= Vpkm e mem) | plk Q)
and shows the result.

We now complete the proof of Theorem 1.1. By induction on m, we show
that, for every n>0,

Ci(m,n)>0. (1)
Clearly, C,(0, n)=1. Assume we know that
Ciim—1,n)>0, forall »>0. (2)
First, we show that, for every k=1,
C.(m, 0)>0, forall m=>=0. (3)

This is done by an induction on k: C,(m, 0) =1, and the inductive step on
k is made by Lemma 1.A.4, using (2). So (3) is proved.
Next, we show that

Ci(m,n)>0, forall k,m,n>0. (4)

This will be done by an induction on n. For n=0, this is (3). Assume that
Ci(m,n—1)>0 for all k, m. Using Lemma 1.A.5, we find that C(m, n)>0
for all k, m. This proves (4), which implies (1).

The constants occurring in all lemmas are uniformly bounded in p,
1< p< oo, so in the final result we may give a constant independent of p.
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Remark 1. Similar results can be obtained in the case 0 < p <1 (where
|-], is only a quasi-norm); the constants then depend on p and become
worse and worse when p — (.

Remark 2. 1If we consider the case p=1, m=n=k=1, Lemma 1.A4
gives C,(1,0)=1, and Lemma 1.A.5 gives C,(1, 1)>1. Thus

|POl, >3 1Pl 101y,

for homogeneous polynomials P, Q of degree 1. But (at least for real coef-
ficients), a better estimate can be found:

LemMMa 1.A.6. Let P, Q be homogeneous polynomials of degree 1, with
real coefficients. Then

|POl, >3 1Pl, 1014,
and this estimate is best possible.

Proof. Wewrite P=3"Va,x;,, Q=Y b;x;, with ¥ |a,| =3 |/ =1. We
can assume that all the b,’s are >0, and that for some # (1<n<N), ;20
ifi<n and ¢, <0ifi>n Weseta=>"a,, =315, and

P(x, y)=ax—(1—-a)y,
O(x, y)=fx+(1~p)y.
Then one checks easily that
PO, =1P0I, 25,
and this value is attained when ¢ =f=1.

The above remark and this result show that the method of proof of
Theorem 1.1 does not produce constants which are best possible.
We now turn to the proof of Theorem 1.2.

B. The Norms Deduced from Taylor's Formula

We have defined the [-],-norms in the Introduction. In the case of
homogeneous polynomials, they are related to Taylor’s formula as follows.

For a polynomial P(x,, .., x5), homogeneous of degree m, we can write
1 o omp
P(x,, ..., =— ——— e X 1
Ot X =20 ”_%:, B, - dx, M

If P is written as before,

P(xlr ] xN)= Z aaxi” __.x%v’

lel=m
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the norm [P], defined as

P=( T () )

with a!=a,! --a,!, satisfies clearly
p>1./p

We define & ,(m, n) as the largest constant 4> 0 such that the inequality

(Pol1,240P1, (2],

holds for all N, all polynomials P, Q in N variables, homogeneous of
degrees m, n, respectively.

Theorem 1.2 asserts that k,(m, n)=/m! nl/(m+ n)!. It is derived from a
statement about functions, which we now describe.

Let u=(uy, ..., u,,), v=(vy, ..., v,), and let F(u), G(v) be functions on the
unit cubes /™, I, with complex values, and invariant under the symmetric
groups &, &,, respectively. Let also w=(w,,..,w,,,), and define a
shuffle of type (m, n) to be

(j’ j):(lls ety im;jl’ ey jn)’

where i <iy < -+ <, ji<J,< -+ <j,, and (F, #) is a permutation of
the set {1,2,..,m+n}.

The set of shuffles of type (m,n) is denoted by sh(m, n), and its
cardinality is

omp

O0x; - 0x,

1

(Pl=—y <i1 i

i =1

Ll (m+n)
| 1% mint

|sh(m, rn)] =

We write x , for (x,, .., x; ).
We now define c,(m, n) as the largest constant y>0 for which the
inequality

Yy F(x,)G(x,)

(#. #)esh(m, n)

Z P Fll yom G Ly
L,,(I”H'")

holds for all symmetric functions Fe L,(I™), Ge L,(I").
The two constants k,(m, n) and c,(m, n) are related by:

LemMa 1B.Y. Forallp, 1<p<oo,allmneN,

m! n!
(m+n)!

k,(m, n)= c,(m, n).

641/36/2-7
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Proof of Lemma 1.B.1. (a) We first show that
m! n!
kp(m, n)>= (—’n—:n—)’ Cp(m, n).

Let F, G be continuous symmetric functions on I, I", respectively. We
define (with variables in P as capital letters)

N . .
P(Xls"'a XN)=NﬁM/p z F(%’ ---911_:;) Xil"'Ximy (2)

iyusim=1

N . .
Q(Xy, s Xy)=N""P 5 G(’"’“ f’—"];—)XmX (3)

Imdsesdmyn=1
These polynomials are of degree m, n, respectively, with N variables. So

omp

i H
S I—— S 7 P o _1_’ -
5X,-l---aX,-m N " (N )

N

p) 1/p

This last quantity tends to || P|| ) when N — co, by approximation of the
integral by means of Riemann sums.
We also have

PQ =N ~(m+mip % F(%,...,%)G(i’"]\;l,...,i’"]\;")X,.l.--X,.m,

and

(em S |p(h i
(v £ [e(%.5)

iy e im=1

iy bman=1
Nf(m+n)/p N il i
PO =—— Fl—=, .2
(P21, (m+n)! ( e g , (N N
e dmrn=1 U {ilsimin} = {J1s s Jman}

p>l/p

Y Flx,)G(xy)

(F, #F)esh(m, n)

im+l im+n
xG( N N)

m! n!
7
(m+n)!

L]
Lp(1m+n)

and this proves our first claim, first for continuous functions, then for all
functions in L,, p < 0o, and finally for p = co.



PRODUCTS OF POLYNOMIALS 229

(b) We now show the converse inequality. If P, ¢ are homogeneous
polynomials as before, we define

t ompP
Fx,, .., x,,,)--*m—!m,
where 7, = [Nx,}+ 1 . i, = [Nx,, ]+ L.

48 im
So F is constant in each cube, and therefore

N\m/p N amp EARTS
F my =5 T —
WEY £y == (Z XX, )
:N"””’p[P],,.
G being defined the same way from @, we get
e L1y = Nﬁk"/‘p[Q]p
and
| £ Axow,)
(s, 7)€ shim, n) L Lp(1m+m)
_-(meﬂn Z amP 6nQ p)[/p
(m! nt)? (F, F)eshim, n) aXiz "'aXim aX,i) "'aX.in
_ p im+njt
— (m 4 n)y
=Nt — = (PR,

and the lemma is proved. It will allow us to compute precisely k,(m, n).
First we show:

TuroreM 1.B.2. For all F, G which are ¥,,, &, invariant,

(JJ);ShW*mF(x,)G(xj) LZ(,MM); (ern+n IEW Lagrm NG Larmy-
Progf. We have
Y RG]
(. F1estim,n) )
:u ,E;h(m » u'.jq};shm,,, fF(X") Gix,) mm dx , dx ,

= 1 im 16

+ Y[R G )RR G, dx, d
(F.EVA(IF)
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But

[ Fx,) GO, Fx,) Gl ) i, v,

=_[F(xfnf" XgrngdOX g s X g n gV F Xy s X g 1 50)

XG(XgnysXgng)dXy  podxy, g dx, ,dx,
2
=j 'JF(xJn,,,z) Gz, x4, p)dz| dxy pdx, .20,

and this proves Theorem 1.B.2. Theorem 1.2 now follows from
Theorem 1.B.2 and Lemma 1.B.1.

The estimate ./(m+n)!/m'n! in Theorem 1.B.2 (and therefore the
estimate of Theorem 1.2) is best possible. Indeed, take

Flx,, ..x,)=1, G(X1, .y X,) = @ mF1F oo x0)
Then |1F) ;i m =1, IG]l . m=1, and

2 (m+n)!

Y Flx,)G(x,)

(#, F)esh(m,n)

L2(1m+n) m! n! )

Remark. From Theorem 1.1 and the comparison estimates

1 1—-1/p
() 1PLsteL <, @)

it follows that k,(m,n)>0 for all p, 1<p<oo, and therefore that
c,(m,n)>0. But for p#2, we do not know the precise value of these
constants.

These theorems have some consequences:
First, we observe that Lemma 1.A.6 and Lemma 1.B.1 show that if £, g
are real-valued functions,

jol jol (%) 8(0)+ f(3) g(x)| dx dy > ( jo' )l dx)( jo‘ 10| dy).
We also deduce from (4):

ProOPOSITION 1.B.3. If P, Q are homogeneous polynomials of degrees
m’ n’

1
IPQIZ?\/—(_’;—T"_? |P),-1Q1,.



PRODUCTS OF POLYNOMIALS 231

As we already said, this estimate is independent of the number of
variables, and we do not know how precise it is. However, in the case of
two variables, it can be greatly improved:

ProrosITION 1.B4. Let P, Q be homogeneous polynomials of degrees
m, n, with two variables. Then

70:>("") (o) () 17e120

Proof of Proposition 1.B4. From Theorem 1.B.1, we get

m+n\ "2
tpo1>("1") P 101 5)
But [-],<]-|,. Moreover, in the case of two variables, we have:

LeMMa 1.B.5S. Let P be a homogeneous polynomial of degree m, with two
variables. Then

m - 172
(P13 (o)) 1Pl

Proof of Lemma 1.B.5. One uses the fact that, if o, + 2, =m,
o Vo = [m/2] (m~ [m/2])!.
Proposition 1.B.3 follows immediately from the lemma.

Remark. A previously known bound, in the case of two-variable poly-

nomials, was
2m\ ~V2 (2o 12
pol> () () Tienie,

1
25,,,—+,,IP|2|Q|2~

Indeed, set f(z)= P(z, 1). The above formula is easily deduced from the
comparison between Mahler's measure,

2n oy, d0
M(f)=exp | "log| /()] 3.

and the L,-norm of f, || f||,=|P|,: see Mahler [4]. The bound given in
Proposition 1.B.4 is slightly better.

We now turn to the estimates related to the L,-norms.



232 BEAUZAMY ET AL.

C. Estimates in L,-Norms

We now prove Theorem 1.3, first in the case p < co0. Since ||P|,=|P|,,
the result is known in the case p=2. It follows for other values of p by
comparison arguments between the various norms. The constants involved,
of course, have to be independent of the number of variables.

LEMMA 1.C.1. Let P be a homogeneous polynomial of degree m. Then
Pl <P, <2Weer I+ Dm2 P, if 2<p<oo,
277 Pl <Pl < P, f 1<p<2.
Proof of Lemma 1.C.1. By Parseval’s identity,
IPI§=11P?3=1P3.
By Lemma 1.A.1, with P=Q,
|P*3<2%" |P3,
and thus
IPlly <27 || P, (1)
Let now /> 1. We have
[Pl = 1P
<@ P, by (1)
<2m? P
=2"%|P|y,
and therefore, for /> 1,
1Pz <2™ || P],.

Now, for p>2, one chooses /=[log, p] + 1 and obtains the estimate.

We now consider the case p <2. The inequality || P|,< | P]|, is obvious.
The other inequality needs to be proved only in the case p = 1. But then we
have

1P <P -1IPIE?

2P -IPISE, by (D).

So
[Pl =2""|IP,,
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and our lemma is proved. Theorem 1.3, in the case p< o, follows
immediately.

We now consider the case p=oo. Then Lemma 1.C.1 is not true
anymore, as the example of P=x,+ --- + x, shows. The right hand side
inequality is obvious. We now prove the other one.

Let &= (&4, ..., EN), 1=(ny, .., ny) be points on the polycircle |x,| =1
such that

|P(f)| = max |P(X1, s xNH’

x| =1

Q)| = lfg‘ale [Q(x 1, o XN

We now consider, for 0<r<1,

fO)=Pg+(1—1)n),  g)=Q0C+(1—1)n).

Since max _; |P(x;, .., Xy) Q(x,, .., xy)| is attained on the Shilov
boundary |x;| = 1, we see that

1PQI.. > max /(1) g(0)].

Our result now follows immediately from the following theorem of Kneser

[3]:

THeOREM (H. Kneser). Let f(z), g(z) be polynomials of degrees m, n and
let E be a bounded continuum in C. Then

max |/(z) g(2)| > c(m, n) max |f(z)| max |g(z)],

where

o (2k—1)n
c(m,n)--k[:I1 tan T

Equality is attained if, setting z =cos ¢, f(z) g(z) = cos(m + n) ¢, and

(2k~1)7z>'

f(z)=l£[1 (z—cos 2o

To finish this section, we observe the estimate

inf(m, n) (2k—~ 1) P 1
C,(0, m, n)= tan? > )
ol n) k];[l an’ )

We now turn to polynomials which are not necessarily homogeneous.
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2. POLYNOMIALS WITH CONCENTRATION AT LOow DEGREES

Let, as before,

P(xy,..,xy)= Z a,xP - xW
a

be a polynomial in many variables. We set a=(ay,..,0oy), |¢=
o+ .-+ +ay, and, for ke N, we put

Plf=Y a,x3...x%.
o) < &

Let 0<d< 1. We say that P has concentration 4 at (total) degree %, in a
norm ||, if

1P1“ll = d I1Pll.

This applies for instance to any of the norms |-|,, ||-||, defined in the
previous paragraph.

We extend to this new frame the results previously obtained for
homogeneous polynomials. First, we extend them to polynomials of fixed
degrees, with bounds dependent on the degree.

THEOREM 2.1. For any p, 1 < p< oo, any polynomials P, Q of degrees
m, n, respectively,

Ci(m, n)|P|, |Q],<|PQ|, <2+ = VPP |0,

where C,(m, n) is the constant defined in Theorem 1.1.

THEOREM 2.2. For any p, 1 € p< oo, any polynomials P, Q of degrees
m, n, respectively,

Cao(p, m, n) 1P, 1Q1l, <1 PQI, < Co(p, m, n) [P, 1Q1l,,

and in the case p = oo,

Cy(0, m, n) |Pl o 1@l SHPQl oo S 1Pl 1@ o5

where C,(p, m, n), Cy(p, m, n) are the constants defined in Theorem 1.2.

These theorems are immediately deduced from Theorems 1.1 and 1.2,
Indeed, if P(x,, .., xy) is any polynomial of degree m, we put

X, Xy
P*(xg, X15 s Xy)=xg P —, o — ),
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and P* is homogeneous of degree m. Moreover, (PQ)*=P*Q*,
|Pl,=|P*|,, |Pll,= | P*|,. The theorems follow.

We now turn to polynomials with concentration at low degrees. Let

P(Xy,y s XN) = X7 - X%,
o

Qlxy, .y XN)=Z bﬁxflil...xﬁ;v

B
satisfy
[P\, =d|P|, (1)
101", =4d" 101, (2)

THEOREM 2.3. Let 1< p<co. For myneN, 0<d, d'<1, there is a
constant A(p; d, d'; m, n) >0 such that, for any polynomials P, Q satisfying

(1), (2),
(POY™ "1, 2 A 1P, 10,

Proof of Theorem2.3. We may assume |P|,=|Q|,=1. For ieN, we
write P; for the homogeneous part of P of degree j, that is,

= @,y
Pi=Y a,xj---x3.

laf =4

We give the proof for p < co and leave it to the reader for p = 0.
Condition (1) implies

_Z |P|2=>d".
Therefore, for some i, <m,
lPillpz————~(m+ 175" (3)
The same way, for some j, <=,
d?
1Q5lp 2 ——=77- (4)

(n+1)Y7
By Theorem 1.1, with A, =A4,(p;m, n; d, d’),

IPI-)Q_]]IPZAA’I' (5)
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Set R=PQ. Then

Ril+j1= z Pin- (6)

i+ j=1i1+jt

In this sum, either i<i, or j<j,, and i, + j, <m+n. So the sum has at
most (m +n)? terms. We have two cases:

— Case 0:
1
|Ri|+j||p> 5'11’

and the conclusion is reached, or
— Case 1:

IRy 4 5l <341

In this case, by (6),

1
v P, 25 A

=Gt j=i+ 0

So we can find iy, j,, with either i, <i; or j, < ji, such that

|Pi1Qj2|p>}'2, (7)
with
_l )\11
2T 2 (m+n)¥

By Lemma 1.A.3, since i <m+n, j<m+h,
1P, Qul, <C(p, mn) |Pyl, 10, (8)
with C(p, m, n)=22"+m0 =12 and, with ;= 4,/C(p, m, n),
P, =4 104,245 %)

Assume first i, <i;. We look at the product P,Q;, and we have, by
Theorem 1.1,

lPi2Qj1'p>)'3’

and we have two cases:
— Case 1.0:

|Ri2+j]|p> %139
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and
— Case 1.1:

(R, 4 ] p <3
If i,>1i,, then j, < j,, and we do the same with P, Q, instead.

We repeat this process. If we fall into a Case 0, the conclusion is reached.
Otherwise, we find indexes i, j,, such that for every k either i, <i, _, or
Ji < jx_1- Therefore, the number of steps is at most m + a: then we reach
polynomials of degree 0, for which the conclusion is clear.

We now look at the L, norm. There is a substantial difference from the
1, norm, which has to be mentioned first. Obviously, one has

[P|™, <P,
A similar estimate,
|21, < C P,

with an absolute constant C, cannot hold in the L, norm. Indeed, the
exponential system is not a l-unconditional basis in L,, so there is a
polynomial fin one variable such that

LA™, > 1A

and one considers P(x,, ..., xy)= f(x;)--- f(xy).
On the other hand, we have:

LEMMA 24. For every p, 1< p< o, every polynomial P with N
variables,

1P, < (2" 1) P,

Proof of Lemma?2.4. We assume |P)|,=1. We first consider the case
p = 2. By the Marcinkiewicz interpoiation theorem, to prove our formula
for p< oo it is enough to prove it for p=2, 4, ... Then, letting p — 0, we
also get it for p= oo,

So we take p =2k, k> 1. We have the obvious formula:

1Pl o = | P¥I1 5. (10)
Let, as before, P,, be the homogeneous part of P of degree m. Let

Rm=Pm+Pm+l+
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In R%, the only terms of degree km are PX . Since the L, norm is uncondi-
tional, we get

1Pl Y* < Ry 11Y,

and by (10)
12l < | Rl -

Since R,,, =R, — P,,, we deduce

IR 41l 2R, 5
and inductively

IRull, <27 | Roll, =2

Since P|"=P—R,,,, we obtain

1PI™l, < 1+27%1,

which is our claim. So the lemma is proved for p>2. The case 1 < p<2
follows if we consider the operator P — P|™, from L, into itself: its trans-
pose is the same operator, from L, into itself (1/p+1/g=1).

We may now state our result for the L, norms:

THEOREM 2.5. Let 1< p< . For mneN, 0<d, d’' <1, there is a
constant A'(p; d, d’;m, n)>0 such that, for any polynomials P, Q satisfying

1P1™,=d | Pl,,
191", =d" 121,

one has

1PN 1,2 A 1P, 121,

The proof is identical to the one of Theorem 2.3, except that, in order to
get (9) in this proof, one uses Lemma 2.4.

We now turn to the following question: when does the product PQ have
a large coefficient?

3. LARGE COEFFICIENTS

Let again P and Q be polynomials in many variables. Assume that P has
a large coefficient and that Q has a large coefficient at low degrees. Then
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we prove that the product PQ has a large coefficient, with estimates
independent of the number of the variables. We obtain precisely:

THEOREM 3.1. Let 0<d, d’' <1, and ke N. There is a number A(d, d’; k)
such that for any polynomials P and Q with

10141 24" 101, (2)

the product satisfies

\PQ| . =A|P|,-10,.

In the case of one-variable polynomials, a statement of the same nature
was obtained by Beauzamy and Enflo [1]. There is, however, a difference
between the present assumptions and the ones in [1], where we required
only |Q]*|,>1Ql,. In the present case, dealing with many variables, we
have to require also that Q have a large coefficient, and not only some
concentration at low degrees, otherwise Q= (x,+ --- +xy)/N, together
with P=1, would provide a counter-example to our statement.

The proof uses most of the ideas of [1], but some refinements are
needed to go from the one-variable case to the many-variable case.

We denote by m the normalized Haar measure on IT".

LemMA 3.2. Let P be a polynomial satisfying
1P, =d| Pl .
Let
E={(0,, .., 05); |P(e™, .., ") 2d | P|,}.
Then m(E) > d*/2.

Proof. We may of course assume that |P|,=1, and therefore
[Pl <1/d. So we have

db do 1
- 221 N — (1 —
1 —J | P P I L+Lr< sm(E)+d*(1 —m(E)),

and the result follows.

The next lemma provides an extension of Jensen’s inequality, for polyno-
mials with concentration at low degrees, in the case of a fixed number of
variables. The proof is quite similar to that of Lemma 3 in [1].
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LEMMA 3.3. Let keN, d’, with 0<d' <1. There exists a constant

C(d’, k) such that any polynomial Q in k variables with

Q1M =d',  1Q1,<1
satisfies
. 0. d8;  df
8 6y, 1 . k '
flog 9™, .. ™) 5222 CUd', k).

Proof. For any B=(B,, .., By and O0<r,, .., r, <1, we have
—if101+ - + Brbk) del d@k

e . .
b = J. T T— 4 e’G‘ vy ¥ e’e" _— e
[ r‘fl"‘rgk Q( 1 s e Tk ) 27'[ 27_[’

and therefore, for some points z,, ..., z,, with |z,| =71, ..., |lz,| =71,

’ 2 2 =281 ... 2Bk 2
d < z P < Z ry Ty 19(zy, -y Zi)]

1Bl <k 1Bl <k

But repeated applications of the classical Jensen’s inequality give

J.log Q(eial'{‘Zx ei0k+zk)

142, 14 7,6%

b, o,
2n 2n

i 6y
sl ot | 2
=log|0(zy, ., z¢)]-
Making k changes of variables, we can write
i6 i6
fonfo (1 2
—r? 1—r; db, o,

z,e%? (1—-Z,e%%2n 2=

. . 1
=Jlog 1Q(e™, ..., &) =

= oeo ™)
log |Q] <0 log 1|20

1—r, 1-r, o o . dfy,  df,
< Lk 1 B ey — .. =&
1+r 1+rk-£oglg|<o og |0 el 2n 2n

l+r, 14r, . o A8, df,

e —— 1 101, s oy 2L, K

1—r, l—rkjloglglzo og |0(e el 2n 2n

(3)

(4)

(5)
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But . 1050108 Q| <3. Taking r;= --- =r, =1, we obtain

1

— lo 4261
zkjlw«) g0l

log [Q(z1, .., )| €

! ;
<37 | log 1] +2¢7,

and the result follows. We observe that here the constant C(d’, k) might be
computed explicitly.

LemMa 34. Let Q be a polynomial in any number of variables, satisfying
(3). Then

dé, do,
— . ——2C(d', k),
2 2= < )

[10g 10(e™, ., &™)

where C(d’, k) is the constant given by the previous lemma.

Proof. By assumption, we know that in Q there is a coefficient b,, with
IBl <k and |by| >d'. Therefore, the term byxf -- x4 contains at most k
variables, and we can of course assume that only x|, ..., x, appear.

Let J be the part of Q containing only these variables. Then 0 satisfies

10 2d’,  10I,<L.
So by the previous lemma

! i db
[10g10(e™, ., ey ... L5 ok,
2 2=n

Let us denote by 0, ., the part of Q which contains only the variables
Xy, e X 41- Then @, can be written as

Qk+1=Q+Xk+1Rl+xi+le+ e

where R, R,, ... are polynomials in x,, ..., x, only. Therefore, by the classi-
cal Jensen’s inequality,

. ; dg, do ; o 40, db

iy B +1 1. k+1> i0) O 1._‘ k

J108 100, (e, . %o S T > [10g 196, ., ey T2 T2
™)

We now introduce (,,,, part of @ containing only the k42 first
variables, and repeat (7), and so on: the estimates remain the same at each
stage.
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LemMMA 3.5. Let O0<a<l, keN, 0<d'<l. There is a constant
Aa, d', k)>0 such that, for any polynomial Q satisfying (3), any subset E
of ITY with m(E) 2 a,

mEn {10134 }) > a/2.

Proof. Let A be any measurable subset of /7. We have

2[ loglgl=] loglof<| 101<1, ®)

and from Lemma 3.4,
[ 10gl01= cld, k)~ 12
AL‘

Let now ¢>0, and take 4 = {|Q| >¢}. Then
(log &) m(4°) > C(d', k) ~ 3.

So
Q' k-

4)=1
m(A4) log ¢

If now ¢ is taken sufficiently small (depending only on a, d’, k) to ensure
that
’ 1
——-—-——C(d k)3 <a/,
loge
the result follows.
We now make the convenient definitions and normalizations for the

proof of the theorem. We write P under the form
P(xb"'s xN)= Z aoc‘xol‘l-“x}.VN’ (9)
aeZN

with g _o=1. So by (1)
2 la,) < 1/d.

We put Py=ay, o

We know also that in Q written as before there is a coefficient b, of a
term containing only x, ..., x, (at most), with |f] <k. We can assume that
this by =1, and we get

el <1/d". (10)

We also denote by Q, the above term byxf .. x5
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We say that P’ is a part of P if it can be written as 3.,. 4 @, X7 -+ - Xy,
for some subset 4 of Z". Similarly, we define a part of Q. We say that a
part P’ of P is disjoint from P, if 4 does not contain (0, ..., 0), and that Q'
is disjoint from Q, if 4 does not contain the above index f.

With these definitions, we can now state:

LEMMA 3.6. There is a constant Ald, d',k)>0 such that for any
polynomials P, Q as above, any parts P’ and Q' disjoint from P, and Q.
respectively, one has

[(Po+ P HQo+ QN2 4
Proof. We observe that
[Po+P'ly=1Po+ P, 2 |Po+ Pl Z2d|Py+ Pl Z2d [P+ P .,

and therefore P, + P’ satisfies the assumptions of Lemma 3.2. Let E be the
subset of ITY where |[P,+ P'|>d Tt follows from Lemma 3.2 that
m(E) = d?/2.

We can apply Lemma 3.5 to Q, + Q', since it also satisfies (3), and to the
subset £ previously found. We deduce from Lemma 3.5 that there is a
subset E, of E, with m(E,) = d?/4, on which we have simultaneously

|Po+ P 2d, Qo+ Q|24

The lemma follows obviously.
We now turn to the proof of the theorem, which follows the lines of [ 1].
If 4 is a subset of Z" or N”, we denote by =, the restriction projection

nAP)=Y a,xi - x3
A

The support A of a polynomial P is the set A= {a;a,#0}, and card(4) is
the number of its elements.

Let E, be the support of P,(J,: it has only 1 element. Let =y, instead of
T, be the projection on it. By our normalizations,

Imo(Po Qo) =12 A
Several cases can occur:

—1If no(PQ)Il» = 4/2, then | PQ|,, = 4/2, and the theorem is obtained.
We call this Case 0.

— Or |no(PQ)|l; < 4/2. Then we decompose P and Q into disjoint
pieces:

P=P,+ P, 0=0,+0"

641/36,2-8
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Then we have:

— either ||ny(P'Qp)ll» = 4/4 (Case 1),
—or |[no(PQ')]; = /4 (Case 2).

We first look at Case 1. We set ¢, =4/8. We decompose P’ into two
disjoint pieces, P, + P”, where in P, all coefficients satisfy |¢,| >¢,, and in
P’ all |a,) <&,. Then

[7o(P Qo> < [mo(P"Qo)l 0 &1 |Qol 1 < 4/8,
and therefore

I7mo(P1 Qo) 2 > 4/8.

The part P, since |P|; < 1/d, has at most K, = 1/¢,d terms. Moreover
MBI P Qola <Pl - 1Qoll < [Pyl

We denote by E; the support of (Py+ P,) Qo. It has at most 1+ K|
clements. By Lemma 3.6, we have [(P,+ P,) Qoll, =4, and we look at
|7, (PQ),, with &, written instead of m .

We now turn to Case2. We put &\ =A1d/8, we decompose Q' into
Q.+ Q" as in Case 1, and we get in the same way

Imo(PQ1)|> 2 4/8.

There are in Q, at most K| = 1/(¢;d’)? terms, and

Q112 = Ad/8.

The support E, of Py(Q,+ @,) has at most 1 + K| terms, and we look at
7, (PO,

Assume now that we have repeated this process » times, and that we
have obtained a sequence, denoted by u,,, of Case 1's or 2’s, in seme order,
with for instance a Case 1’s and b Case 2’s (a+ b =n).

Each Case 1 produces in P disjoint parts P, .., P,, with |P,|, > id'/8.
Each term in P, is greater than ¢,, and there are at most X, such terms.

Each Case 2 produces in Q disjoint parts @, ..., Qp, with |Q;|l, > Ad/8.
Each term in Q; is greater than ¢; and there are at most K; such terms.

Let E, be the support of (Po+ --- + P )N Qo+ --- +@,). This set has
a. cardinal o, <(1+K,+ -+ +K,)(1+ K+ --- +K;). We look at
7, (PO

— If |7, (PO), = 4/2, we have |PQ| = 4/2 \/a,: this is Case u,, 0.
— If not, we apply Lemma 3.6, and we write

P=P0+"'+Pa+P’, Q=Q0+"‘+Qb+Q',
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we obtain two cases:

— either |7,(P'(Qo+ -+ + Q)= 4/4, Caseu,, 1,
—or |, (PQ")|,>4/4, Caseu,, 2.

In Caseu,,l, we set ¢,,,=4d'/8 /a,. We decompose P’ into
P,.,+ P’, where all terms in P,,, are =¢,,,, and all terms in P” are
<e,, - We obtain

17a(Pyy1(Qo+ -+ + Q)= 4/8.

The part P, has at most K, ; < 1/de,, , terms, and
|Pyiili 2 2d'/8.

In Caseu,,2, we set &,,,=4id/8./o,. We decompose Q' into
0,.1+Q", as above. We obtain

I PQp 4 1)l2 2 /8.

The part O, , has at most K, <1/d'%'?, | terms, and |Q, . ||, > Ad/8.

Since |P|, € 1/d, the total number of Case 1’s is at most 8/Add’. Since
10l, < 1/d’, the total number of Case 2’s is at most (8/Add’)>. Therefore,
for n<8/Add’ + (8/Add’)?, a Case 0 occurs and the result is proved.
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