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1. Introduction

The structure of groups in which every member of a given system X of subgroups is abelian has
been studied for several choices of the collection X. The first step of such investigation is of course the
case of the system consisting of all proper subgroups: it is well known that any locally graded group
whose proper subgroups are abelian is either finite or abelian, and finite minimal non-abelian groups
are completely described. Here a group G is called locally graded if every finitely generated non-trivial
subgroup of G contains a proper subgroup of finite index; the class of locally graded groups con-
tains all locally (soluble-by-finite) groups and all residually finite groups, and so it is a large class of
generalized soluble groups. On the other hand, the consideration of Tarski groups (i.e. infinite simple
groups whose proper non-trivial subgroups have prime order) shows that there exist infinite minimal
non-abelian groups. A further progress in this research area was due to G.M. Romalis and N.F. Sesekin,
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who considered groups in which all non-normal subgroups are abelian, and proved that (generalized)
soluble groups with such property have finite commutator subgroups (see [6–8]). Recently, groups in
which every non-abelian subgroup satisfies a given generalized normality condition have also been
studied (see [1]).

The aim of this paper is to describe the class A∞ consisting of all groups in which every subgroup
of infinite index is abelian. Of course, the class A∞ is closed with respect to subgroups and homomor-
phic images and contains all minimal non-abelian groups. Moreover, it is also clear that non-abelian
groups in the class A∞ are finitely generated and that every periodic subgroup of a non-periodic
A∞-group is abelian. Note also that any A∞-group satisfies the maximal condition on non-abelian
subgroups; information on the structure of these latter groups has been obtained by L.A. Kurdachenko
and D.I. Zaicev [3].

Our main result on A∞- groups is the following.

Theorem. Let G be an infinite non-abelian A∞-group, and let T be its largest periodic normal subgroup. Then
G satisfies one of the following conditions:

(a) G is finitely generated, G/Z(G) is a just-infinite group with no abelian subgroups of finite index and any
two maximal abelian subgroups of G/Z(G) have trivial intersection.

(b) G is soluble with derived length at most 3, T is finite abelian and one of the following statements holds:
(b1) G = 〈x〉 � T , where x is an element of infinite order such that [T , x] �= {1}.
(b2) G = 〈x〉 � (T × 〈y〉 × 〈z〉), where x, y and z are elements of infinite order such that [T , x] = {1},

[x, z] = 1 and [x, y] = tzn for some t ∈ T and some positive integer n.
(b3) G = (〈x〉�(T ×〈y〉)〈g〉, where x and y are elements of infinite order such that [T , x] = [T , g] = {1},

g3 ∈ T , 1 �= [x, y] ∈ T , xg = y and yg = zy−1x−1 for some z ∈ T .
(b4) G = (〈x〉 � (T × 〈z〉 × 〈y〉)〈g〉, where [T , x] = [T , g] = {1}, [z, x] = [z, g] = 1, [x, y] = tzn for

some element t of T and some positive integer n, g3 ∈ T 〈z〉, xg = y and yg = uzm y−1x−1 for some
element u of T and some non-negative integer m.

(b5) G is isomorphic to a subgroup of a direct product T × K , where T is a finite abelian group and
K = 〈g〉 � A is a semidirect product of a torsion-free abelian normal subgroup A and a finite cyclic
subgroup 〈g〉 whose non-trivial elements act rationally irreducibly on A.

(b6) G is isomorphic to a subgroup of a direct product T × K , where T is a finite abelian group and
K = 〈g〉� A is a semidirect product of a torsion-free abelian normal subgroup A and an infinite cyclic
subgroup 〈g〉 such that C〈g〉(A) = 〈gm〉 for some integer m > 1 and gn acts rationally irreducibly on
A for each proper divisor n of m.

Most of our notation is standard and can be found in [4].

2. Preliminary results

The first lemma is an obvious property of groups containing a cyclic subgroup of finite index; as
a consequence, cyclic-by-finite A∞-groups are easily described.

Lemma 2.1. Let G be a cyclic-by-finite group. Then G contains a finite normal subgroup N such that the factor
group G/N either is cyclic or infinite dihedral. In particular, if G is not finite-by-cyclic, then it is generated by
its finite subgroups.

Corollary 2.2. Let G be a cyclic-by-finite infinite group and let T be its largest periodic normal subgroup. Then
G belongs to the class A∞ if and only if either T is abelian and G/T is infinite cyclic or T = Z(G) and G/T is
infinite dihedral.

In the following, we shall denote by Zα(G) the α-th term of the upper central series of the
group G , and by Z̄(G) its hypercentre. Our next two results describes the behaviour of the upper
central series of A∞-groups.
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Lemma 2.3. Let G be an A∞-group and let N be a normal subgroup of G. Then either N is contained in Z(G)

or G/N is finite-by-cyclic.

Proof. Suppose that N is not contained in Z(G). Of course, it can be assumed that G/N is infinite,
so that in particular N is abelian. Consider an element x of G such that 〈x, N〉 is not abelian; then
the index |G : 〈x, N〉| is finite and hence G/N is cyclic-by-finite. If G/N is generated by its finite
subgroups, we have that G is generated by its abelian subgroups containing N , and so N � Z(G),
a contradiction. Thus G/N is not generated by its finite subgroups, and hence G/N is finite-by-cyclic
by Lemma 2.1. �
Corollary 2.4. Let G be an A∞-group. Then either Z(G) = Z2(G) or the factor group G/ Z̄(G) is finite.

Proof. Suppose that Z(G) is properly contained in Z̄(G). Then G/ Z̄(G) is finite-by-cyclic by
Lemma 2.3, and so G/ Z̄(G) is finite since it has trivial centre. �

It is now possible to describe torsion-free nilpotent A∞-groups. The proof of our next lemma
makes use of the well-known result by A.I. Mal’cev stating that if G is a torsion-free nilpotent group,
then the factor group G/Z(G) is likewise torsion-free (see [4, Part 1, p. 53]).

Lemma 2.5. Let G be a torsion-free nilpotent non-abelian A∞-group. Then

G = 〈x〉 �
(〈y〉 × 〈z〉),

where [x, z] = 1 and [x, y] = zn for some positive integer n.

Proof. Since G is not abelian, there exist elements x and y such that xy �= yx and 〈x, y〉 has class 2.
Then 〈x, y〉 has finite index in G , so that G itself has class 2 and [x, y] belongs to Z(G). As G/Z(G)

is torsion-free, it follows that the index |Z(G) : 〈[x, y]〉| is finite and hence Z(G) is cyclic; let z be the
generator of Z(G) such that [x, y] = zn for some integer n > 0. Clearly, the factor group G/Z(G) is
free abelian of rank 2, and so the elements x and y can be chosen in such a way that G = 〈x, y〉Z(G).
Therefore G has the structure described in the statement. �

Recall that a group is said to be minimax if it has a series of finite length whose factors either
satisfy the minimal or the maximal condition on subgroups. It was proved by P.H. Kropholler [2]
that a finitely generated soluble group either is minimax or has a section which is isomorphic to the
standard restricted wreath product of a group of prime order by an infinite cyclic group. The following
lemma shows that Kropholler’s theorem applies to soluble-by-finite A∞-groups.

Lemma 2.6. Let G be an A∞-group. Then G has no sections isomorphic to the standard restricted wreath
product of a group of prime order by an infinite cyclic group.

Proof. Since all sections of G are likewise A∞-groups, it is enough to show that G cannot be isomor-
phic to such a wreath product. Assume for a contradiction that

G = 〈x〉 �
(
Drn∈Z〈an〉

)
,

where each an has the same prime order p and ax
n = an+1 for every integer n. Then the non-abelian

subgroup

〈
a0, x2〉 = 〈

x2〉
�

(
Drn∈Z〈a2n〉

)
has infinite index in G , and this contradiction proves the statement. �
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Corollary 2.7. Let G be a soluble-by-finite non-abelian A∞-group. Then G is minimax.

Proof. Since G is finitely generated, the statement follows from Lemma 2.6 and the above quoted
result of Kropholler. �

Next step is the description of A∞-groups which are finite over their hypercentre.

Lemma 2.8. Let G be an infinite non-abelian A∞-group whose hypercentre has finite index. Then the set T of
all elements of finite order of G is a finite abelian subgroup and one of the following conditions holds:

(a) G = 〈x〉 � T , where [T , x] �= {1};
(b) G = 〈x〉� (T ×〈y〉×〈z〉), where [T , x] = {1}, [x, z] = 1 and [x, y] = tzn for some t ∈ T and some positive

integer n.

Proof. As the group G is finitely generated, also its hypercentre is finitely generated. Thus G is
nilpotent-by-finite and there exists a positive integer n such that G/Zn(G) is finite; it follows that
the (n + 1)-th term γn+1(G) of the lower central series of G is finite (see [4, Part 1, p. 113]). Therefore
T is a finite abelian subgroup of G and the factor group G/T is torsion-free and nilpotent. Moreover,
G/T has class at most 2 by Lemma 2.5.

It is clear that condition (a) holds, provided that G/T is cyclic. Assume now that G/T is an abelian
non-cyclic group. As G is not abelian, it contains a non-abelian 2-generator subgroup E and the index
|G : E| must be finite, so that G/T has rank 2. Thus there exist elements of infinite order x and y of
G such that

G = 〈x〉 �
(〈y〉 � T

)
.

The subgroup 〈x, T 〉 and 〈y, T 〉 have infinite index in G , so that they are abelian and hence 〈y, T 〉 =
〈y〉 × T and [T , x] = {1}. It is also clear that in this case [x, y] is a non-trivial element of T , and con-
dition (b) is satisfied with z = 1 and t �= 1. Suppose finally that G/T has class 2. Then by Lemma 2.5
the centre Z/T of G/T is infinite cyclic and G/Z is free abelian of rank 2, so that G has the structure
described in (b) also in this case. �

The following easy result will be relevant in the study of abelian-by-finite A∞-groups.

Lemma 2.9. Let G be an abelian-by-finite A∞-group. Then either G is metacyclic-by-finite or in every sub-
group of G the centre and the hypercentre coincide.

Proof. Assume that G is infinite and contains a subgroup H whose centre Z(H) is a proper subgroup
of the hypercentre Z̄(H). Clearly, H is infinite, since it has finite index in G , and H/ Z̄(H) is finite
by Corollary 2.4. Therefore H satisfies one of the conditions (a), (b) of the statement of Lemma 2.8.
On the other hand, groups satisfying condition (b) are not abelian-by-finite, and hence H must be
finite-by-metacyclic. Therefore the group G is finite-by-metacyclic-by-finite and so also metacyclic-
by-finite. �

Recall that a group G is said to be just-infinite if it is infinite but all its proper homomorphic
images are finite; in particular, the infinite cyclic group is the unique abelian just-infinite group. The
structure of just-infinite groups has been described by J.S. Wilson [9]. It turns out that just-infinite
groups occur as sections of A∞-groups which are not soluble-by-finite.

Lemma 2.10. Let G be an A∞-group which is not soluble-by-finite. Then the factor group G/Z(G) is just-
infinite and any two maximal abelian subgroups of G/Z(G) have trivial intersection.
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Proof. Since G is finitely generated, it contains a normal subgroup N of infinite index such that all
normal subgroups of G properly containing N have finite index. Thus N is abelian and the factor group
G/N is just-infinite. As G is not soluble-by-finite, it follows from Lemma 2.3 that N lies in Z(G), so
that N = Z(G) and G/Z(G) is just-infinite. Assume that the group Ḡ = G/Z(G) has two different
maximal abelian subgroups Ā and B̄ such that Ā ∩ B̄ �= {1}. The centralizer CḠ ( Ā ∩ B̄) contains 〈 Ā, B̄〉,
so that CḠ( Ā ∩ B̄) is not abelian and hence it has finite index in Ḡ . It follows that the normal closure

( Ā ∩ B̄)Ḡ is central-by-finite. On the other hand, ( Ā ∩ B̄)Ḡ has finite index in Ḡ and so Ḡ is soluble-
by-finite. This contradiction shows that any two maximal abelian subgroups of G/Z(G) have trivial
intersection. �

The latter lemma of this section yields that if G is any A∞-group which is not soluble-by-finite,
then G/Z(G) is a just-infinite A∞-group, and the last result of this section deals with the structure
of just-infinite A∞-groups.

Lemma 2.11. Let G be a just-infinite A∞-group which is not residually finite. Then G contains a simple minimal
non-abelian normal subgroup of finite index.

Proof. As the group G is just-infinite, but not residually finite, it is non-abelian and contains a unique
minimal normal subgroup N; clearly, G/N is finite and hence N is finitely generated. Moreover, N has
no proper subgroup of finite index, and so it follows from the property A∞ that N is a minimal
non-abelian group. Assume for a contradiction that N is not simple, so that N = MG , where M is
a proper non-trivial normal subgroup of N . It follows that N is locally nilpotent and so even nilpotent,
contradicting the assumption that G is not residually finite. Therefore N is simple. �
3. Soluble-by-finite groups

The description of soluble-by-finite A∞-groups will be accomplished through a series of lemmas.
The first of these essentially allows to reduce to the case of nilpotent-by-finite groups in the class A∞ .

Lemma 3.1. Let G be an infinite soluble-by-finite A∞-group which is not abelian, and let T be the
largest periodic normal subgroup of G. Then T is finite abelian and either G is nilpotent-by-finite or G =
〈x〉 � (A × T ), where A is a torsion-free abelian subgroup and x is an element of infinite order such that
[T , x] = {1}, C〈x〉(A) = {1} and each non-trivial subgroup of 〈x〉 acts rationally irreducibly on AT /T .

Proof. Let R be the Hirsch–Plotkin radical (i.e. the largest locally nilpotent normal subgroup) of G .
Suppose first that G/R is finite, so that R is finitely generated and hence it is nilpotent. Thus G is a
(finitely generated) nilpotent-by-finite group, so that in this case T is finite and hence also abelian.

Assume now that G/R is infinite, so that in particular R is abelian. Since G/R contains abelian
non-trivial normal subgroups, Z(G) is properly contained in R and so by Lemma 2.3 we have that
G/R is finite-by-cyclic. Moreover, as each normal subgroup of G properly containing R is not abelian,
it follows that all non-trivial normal subgroups of G/R have finite index and hence G/R is infinite
cyclic and G is soluble. Thus T lies in R and so it is abelian. Let x be an element of infinite order of
G such that G = 〈x〉 � R . Clearly, CG(R) = R and so C〈x〉(R) = {1}. Assume for a contradiction that

C R(x) ∩ [R, x] �= {1},

so that there exists an element a of R such that [a, x] �= 1 and [a, x, x] = 1. Then 〈a, x〉 is a nilpo-
tent non-abelian subgroup and hence the index |G : 〈a, x〉| is finite, a contradiction because G is not
nilpotent-by-finite. Therefore

C R(x) ∩ [R, x] = {1},
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and since R ∩ 〈x〉 = {1}, it follows also that

C R(x) ∩ ([R, x]〈x〉) = {1}.
On the other hand, the subgroup [R, x]〈x〉 is not abelian, so that it has finite index in G and hence
Z(G) = C R(x) is finite. Assume that C R(x) is properly contained in T , and let y be an element of
T \ C R(x); then the subgroup 〈x, y〉 = 〈x〉〈y〉〈x〉 has finite index in G and hence the index |R : 〈y〉〈x〉| is
also finite. On the other hand, 〈y〉〈x〉 has obviously finite exponent and so R itself has finite exponent,
a contradiction by Corollary 2.7. Therefore T = C R(x) is finite. In particular, R = A × T for a suitable
torsion-free subgroup A.

Assume now that C R(x) �= C R(xn) for some positive integer n. Clearly, the subgroup C R(xn) is nor-
mal in G and the factor group G/C R(xn) is finite-by-cyclic by Lemma 2.3; then R/C R(xn) is finite and
so the abelian subgroup 〈xn, C R(xn)〉 has finite index in G , contradicting again the fact that G is not
nilpotent-by-finite. Therefore C R(xn) = C R(x) for each positive integer n. Let n be a positive integer,
and let B be any non-trivial subgroup of A such that BT is 〈xn〉-invariant. If b is any non-trivial
element of B , the subgroup 〈b, xn〉 is not abelian and so has finite index in G and hence

〈b〉〈xn〉 = R ∩ 〈
b, xn〉

has finite index in R; thus also the index |R : BT | is finite and 〈xn〉 acts rationally irreducibly
on R/T . �

Observe that the torsion-free abelian subgroup A in the statement of Lemma 3.1 in general cannot
be chosen to be normal in G . To see this, consider the group

G = 〈x〉 �
(〈t〉 × 〈a1〉 × 〈a2〉

)
,

where t is an element of order 2 and a1,a2, x are elements of infinite order such that tx = t ,
ax

1 = a1a2t and ax
2 = a2

1a2. Put U = 〈a1〉 × 〈a2〉 × 〈t〉. Then every non-trivial power of x acts rationally
irreducibly on the free abelian group U/〈t〉, and hence G satisfies the conclusion of the statement
of Lemma 3.1. Suppose now for a contradiction that G contains a normal subgroup A such that
U = A × 〈t〉 and Ax = A. Then 〈

a2
1

〉 × 〈
a2

2

〉 = U 2 = A2

is likewise a normal subgroup of G and

Ū = U/U 2 = 〈t̄〉 × 〈ā1〉 × 〈ā2〉
is an elementary abelian group of order 8; the action of x on Ū is represented by the matrix

(1 0 0
1 1 1
0 0 1

)

over the field F2 with two elements. On the other hand, Ū = 〈t̄〉 × Ā, with Āx = Ā, and hence the
action of x on Ū is also given by a matrix of the form

(1 0 0
0 1 β

0 α 1

)
,

where αβ = 0 in F2. This is a contradiction as the two matrices considered above are not conjugate
in the general linear group GL(3,F2).



M. De Falco et al. / Journal of Algebra 347 (2011) 83–95 89
Lemma 3.2. Let G be a non-abelian A∞-group such that Z(G) = Z2(G). If G = 〈x, A〉, where A is a torsion-
free abelian normal subgroup, then the centralizer C A(x) is cyclic. Moreover, if A ∩ 〈x〉 = {1}, then Z(G) =
C〈x〉(A) and 〈xn〉 acts rationally irreducibly on A for each positive integer n such that xn /∈ Z(G).

Proof. Let a be any element of A such that [a, x, x] = 1. Then [a, x] belongs to Z(G), so that a ∈
Z2(G) = Z(G) and [a, x] = 1. As

[A, x] = {[a, x] ∣∣ a ∈ A
}
,

it follows that

[A, x] ∩ C A(x) = {1}

and hence

[A, x]〈x〉 ∩ C A(x) = A ∩ 〈x〉.

On the other hand, the subgroup [A, x]〈x〉 is not abelian, and so it has finite index in G . Therefore
also the index |C A(x) : A ∩ 〈x〉| is finite and hence the centralizer C A(x) is cyclic.

Suppose now that A ∩ 〈x〉 = {1}, so that C A(x) = {1} and Z(G) = C〈x〉(A). Assume that A contains a
non-trivial subgroup B such that Bxn = B for some positive integer n and the index |A : B| is infinite.
Then the subgroup 〈B, xn〉 has infinite index in G and hence it is abelian. Therefore B � CG(xn) and
so n > 1; in particular, x acts rationally irreducibly on A. Moreover, the centralizer C A(xn) is a non-
trivial G-invariant subgroup of A, and hence it has finite index in A. On the other hand, A/C A(xn) is
isomorphic to [A, xn], so that it is torsion-free. Thus A = C A(xn) and xn belongs to Z(G). The lemma
is proved. �

We can now prove that all infinite abelian-by-finite A∞-groups are soluble.

Lemma 3.3. Let G be an infinite abelian-by-finite A∞-group. Then G is soluble.

Proof. Assume for a contradiction that G is not soluble, and let T be the largest periodic normal
subgroup of G . Then T is abelian and finite by Lemma 3.1, so that the factor group G/T is also a
counterexample and it can be assumed without loss of generality that G has no periodic non-trivial
normal subgroups. Let A be any maximal abelian normal subgroup of finite index of G . Then A is
torsion-free and CG(A)/A is finite, so that it follows from Schur’s theorem that CG(A) is abelian and
hence CG(A) = A (see [4, Part 1, Theorem 4.12]). If G contains a metacyclic subgroup of finite index,
A must be free abelian of rank 2; in this case, G/A is isomorphic to a finite subgroup of GL(2,Z)

and hence it is soluble. This contradiction shows that G is not metacyclic-by-finite, and so Lemma 2.9
yields that in any subgroup of G the centre and the hypercentre coincide.

As G is not soluble, the order of the finite group G/A is even, and so there exists an element x ∈
G \ A such that x2 ∈ A. Put H = 〈x, A〉. Then the centralizer C A(x) is cyclic by Lemma 3.2; moreover,
A/C A(x) is torsion-free and

A ∩ 〈x〉 � C A(x) = Z(H) = Z2(H).

Therefore Lemma 3.2 can also be applied to the group H/C A(x), obtaining that x induces on A/C A(x)
a fixed-point-free rationally irreducible automorphism of order 2. It follows that x inverts all elements
of A/C A(x), so that A/C A(x) is infinite cyclic and A is metacyclic. This last contradiction completes
the proof. �
Lemma 3.4. Let G be a torsion-free abelian-by-finite A∞-group. Then the centre of G is not trivial.
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Proof. Assume that the statement is false, and among all counterexamples choose a group G contain-
ing a maximal abelian normal subgroup A such that G/A is finite of minimal size. As G is torsion-free,
it follows from Schur’s theorem that CG(A) = A. If G/A is cyclic, there exists an element x such that
G = 〈A, x〉 and xn ∈ A for some positive integer n; then xn belongs to Z(G), a contradiction. Thus G/A
is not cyclic. Since G is soluble by Lemma 3.3, A is contained in a normal subgroup M of G such that
the index |G : M| is a prime number. Clearly, A < M and so Z(M) �= {1} by the minimal choice of G .
Let y be an element of the set M \ A. If Z(〈A, y〉) �= Z2(〈A, y〉), the group G is metacyclic-by-finite by
Lemma 2.9, so that the index

∣∣〈A, y〉 : Z2
(〈A, y〉)∣∣

is finite and hence 〈A, y〉 must be abelian; this contradiction shows that Z(〈A, y〉) = Z2(〈A, y〉), so
that C A(y) is cyclic by Lemma 3.2. It follows that Z(M) = 〈a〉 is an infinite cyclic normal subgroup
of G; as Z(G) = {1}, the factor group G/〈a〉 is finite-by-cyclic by Lemma 2.3. Thus 〈a〉 is contained
in a cyclic normal subgroup 〈b〉 of G such that G/〈b〉 is infinite cyclic, and hence G = 〈b, g〉, where
bg = b−1. Therefore g2 ∈ Z(G), and this last contradiction completes the proof of the lemma. �
Lemma 3.5. Let G be an abelian-by-finite A∞-group. If G is torsion-free, then either G is nilpotent or G =
〈x〉 � A, where A is an abelian normal subgroup and x is an element such that Z(G) = 〈xm〉 for some positive
integer m and xn acts rationally irreducibly on A for each proper divisor n of m.

Proof. Suppose that the group G is not nilpotent, and let Z̄(G) be its hypercentre. Of course,
Z̄(G) = Zc(G) for some positive integer c, so that the index |G : Z̄(G)| must be infinite (see [4, Part 1,
Theorem 4.25]) and hence Z(G) = Z̄(G) by Corollary 2.4. Let H be an abelian normal subgroup of
finite index of G , and consider the transfer homomorphism τ of G into H . By Lemma 3.4 there exists
in G a central element z �= 1, and we have

zτ = zk �= 1,

where |G : H| = k. In particular, Gτ �= {1} and so G has an infinite cyclic factor group G/A. Clearly,
A is abelian and G = 〈x〉 � A for some element x. Application of Lemma 3.2 yields that

Z(G) = C〈x〉(A) = 〈
xm〉

for some positive integer m, and xn acts rationally irreducibly on A for each proper divisor n of m. �
Corollary 3.6. Let G be an abelian-by-finite A∞-group. If G is torsion-free and non-trivial, then it has an
infinite cyclic homomorphic image.

Lemma 3.7. Let G be an abelian-by-finite A∞-group with no periodic non-trivial normal subgroups. If all
torsion-free subgroups of G are abelian, then G has a unique maximal torsion-free subgroup.

Proof. Since G does not contain periodic non-trivial normal subgroups, it is clear that G has a unique
maximal torsion-free normal subgroup A and the index |G : A| is finite. Moreover, A is abelian and
CG (A) = A by Schur’s theorem. Assume for a contradiction that there exists an element g ∈ G \ A of
infinite order. The subgroup 〈g, A〉 is not abelian, and so it contains an element x �= 1 of finite order.
As the index |G : 〈x, A〉| is finite, the set of all elements of finite order of 〈x, A〉 cannot be a subgroup;
thus the hypercentre Z̄(〈x, A〉) must have infinite index in 〈x, A〉, and hence Z(〈x, A〉 = Z̄(〈x, A〉) by
Corollary 2.4. Application of Lemma 3.2 yields that Z(〈x, A〉) = C〈x〉(A) is finite. On the other hand, gn

belongs to A for some positive integer n, and hence gn ∈ Z(〈x, A〉). This contradiction proves that all
elements of infinite order of G belong to A. �
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Lemma 3.8. Let G be a group and let A be an abelian normal subgroup of G. If x is an element of G such that
(xa)m = 1 for some positive integer m and for each element a of A, then the group A/[A, x] has finite exponent
dividing m. Moreover, [A, xk] = [A, x] for every positive integer k coprime to m.

Proof. Let a be any element of A. Since A is an abelian normal subgroup of G , for each positive
integer n, we have

[
a, xn] = [

a, xn−1][axn−1
, x

] = · · · = [
aax . . .axn−1

, x
]
,

and so [a, xn] belongs to [A, x]. Moreover,

1 = (xa)m = xmaxm−1
. . .axa = axm−1

. . .axa = [
a, xm−1][a, xm−2] . . . [a, x]am

and hence

a−m = [
a, xm−1][a, xm−2] . . . [a, x]

lies in [A, x]. Therefore Am is contained in [A, x] and A/[A, x] has finite exponent dividing m.
Let k be any positive integer coprime to m. Then x = xkh for some positive integer h. Since [A, x]

is 〈x〉-invariant, the subgroup [A, xk] is contained in [A, x], and so

[A, x] = [
A,

(
xk)h] �

[
A, xk] � [A, x].

Therefore [A, xk] = [A, x]. �
Lemma 3.9. Let G be an abelian-by-finite A∞-group with no periodic non-trivial normal subgroups. If all
torsion-free subgroups of G are abelian, then either G is abelian or Z(G) = {1} and G = H � A, where A
is a torsion-free abelian normal subgroup and H is a finite cyclic subgroup whose non-trivial elements act
rationally irreducibly on A.

Proof. By Lemma 3.7 the group G has a unique maximal torsion-free subgroup A, and of course it
can be assumed that A is properly contained in G . Let g be any element of G \ A. Then g has finite
order and ag �= ga for each a ∈ A; in particular, CG (A) = A, the centre of G is trivial and g acts fixed-
point-freely on A. Therefore a classical result of Zassenhaus [10] yields that all abelian subgroups
of G/A are cyclic. Moreover, the elements of finite order of 〈g, A〉 cannot form a subgroup, so that
the hypercentre of 〈g, A〉 has infinite index in 〈g, A〉, and hence it follows from Corollary 2.4 that

Z
(〈g, A〉) = Z2

(〈g, A〉).
Thus g acts rationally irreducibly on A by Lemma 3.2.

Assume first that the finite group G/A has even order. Then there exists an element x of G \ A of
order 2, so that ax = a−1 for each element a of A. Thus A is infinite cyclic and G is infinite dihedral.

Suppose now that G/A has odd order, so that all its Sylow subgroups are cyclic and hence G/A
is the semidirect product of two cyclic subgroups with coprime orders (see for instance [5, 5.3.6 and
10.1.10]). Then

G = 〈y〉 �
(〈x〉 � A

)
,

where x and y have coprime orders m and n, respectively. Clearly, the commutator subgroup [A, x] =
〈x, A〉′ is normal in G , and so we can consider the factor group

Ḡ = G/[A, x] = 〈 ȳ〉 �
(〈x̄〉 × Ā

)
.
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Since A/[A, x] has finite exponent dividing m by Lemma 3.8, it is finite and it follows from Maschke’s
theorem that Ā has a Ḡ-invariant complement in 〈x̄〉 × Ā. Therefore without loss of generality it can
be assumed that 〈x̄〉 is a normal subgroup of Ḡ , so that xy = xku, where u is an element of [A, x]
and k is a positive integer prime to m. On the other hand, [A, xk] = [A, x] by Lemma 3.8 and hence
u = [xk,a] for some a ∈ A. Thus

xy = xk[xk,a
] = a−1xka,

so that xya−1 = xk and (ya−1)n is an element of A normalizing 〈x〉. Thus (ya−1)n = 1, and replacing y
by ya−1 we may suppose that xy = xk . It follows that 〈x, y〉 is a finite subgroup, so that it is abelian
and hence even cyclic. Moreover, G = 〈x, y〉 � A, and the lemma is proved. �
Lemma 3.10. Let G be an abelian-by-finite A∞-group, and let T be the largest periodic normal subgroup of G.
If all torsion-free subgroups of G are abelian, then also the torsion-free subgroups of G/T are abelian.

Proof. Let H/T be any torsion-free (non-trivial) subgroup of G/T . Then the subgroup H has an infi-
nite cyclic homomorphic image by Corollary 3.6, and so H = 〈h〉 � A, where A is an abelian normal
subgroup containing T and h is an element of infinite order. As A is finitely generated, there exists
a positive integer n such that An is torsion-free, so that 〈h, An〉 is likewise torsion-free and hence
it is abelian. Thus An is contained in Z(H) and so H/Z(H) is finite-by-cyclic. It follows that H is
finite-by-nilpotent, so that the torsion-free group H/T is nilpotent and hence even abelian, as it is
abelian-by-finite. The lemma is proved. �
Lemma 3.11. Let G be an abelian-by-finite A∞-group with no periodic non-trivial normal subgroups. If G
contains torsion-free non-abelian subgroups and Z(G) = Z2(G), then G is torsion-free.

Proof. Assume for a contradiction that the statement is false, and choose a counterexample G con-
taining a maximal abelian normal subgroup A such that the factor group G/A is finite with smallest
possible order. Suppose that G contains a non-abelian subgroup H whose hypercentre has finite in-
dex, so that the elements of finite order of H form a finite subgroup K (see [4, Part 1, p. 113]). Since
H has finite index in G , it follows from Dietzmann’s Lemma that K G is finite, so that K = {1} and H
is a torsion-free nilpotent group. But G is abelian-by-finite and so H must be abelian. Therefore ev-
ery non-abelian subgroup of G is infinite over its hypercentre, and hence Corollary 2.4 shows that
Z(H) = Z2(H) for each subgroup H of G .

The centralizer CG(A) has finite commutator subgroup by Schur’s theorem, so that it is abelian, and
hence CG(A) = A. Moreover, G is soluble by Lemma 3.3, and hence it contains a normal subgroup M
such that A � M and G/M has prime order p. Suppose first that M = A. Then G = 〈z〉 � A, where z
is an element of order p, and Lemma 3.2 yields that Z(G) is trivial; on the other hand, G contains a
torsion-free non-abelian subgroup U , and if u is an element of U \ A, the power up obviously belongs
to the centre of G , a contradiction. Therefore A is properly contained in M .

Assume now that all torsion-free subgroups of M are abelian. Then by Lemma 3.7 the elements
of infinite order of M (together with the identity) form a characteristic abelian subgroup, which of
course must coincide with A; it follows from Lemma 3.9 that M = 〈g〉 � A, where g is an element
of finite order m and each non-trivial power of g acts rationally irreducibly on A. Since G contains
torsion-free non-abelian subgroups, there exists an element x of infinite order such that G = 〈M, x〉;
clearly, xp ∈ M and so xp even belongs to A. The centralizer C A(x) is cyclic by Lemma 3.2. As all
elements of infinite order of M lie in A, we have (ga)m = 1 for each element a of A, and so it
follows from Lemma 3.8 that the factor group A/[A, g] has finite exponent dividing m. Note also that
[A, g] = M ′ is a normal subgroup of G .

Suppose that p divides m, so that 〈g〉 contains an element h of order p. Then both cosets xA and
h A have order p, and 〈h A〉 is a normal subgroup of G/A, so that [x,h] belongs to A. Thus

C A(x)h = C A
(
x[x,h]) = C A(x),
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and so A is cyclic since C A(x) is cyclic and h acts rationally irreducibly on A. It follows that G is
infinite dihedral, which is impossible as G contains torsion-free non-abelian subgroups. Therefore p
does not divide m and x induces on M/[A, g] an automorphism whose order is coprime with the
exponent of the group. As in the last part of the proof of Lemma 3.9, it can be assumed that gx = gk

for some positive integer k prime to m and hence there exists a positive integer s such that

x−s gxs = gks = g.

Thus xsp belongs to C A(g) and 〈xsp〉 is a normal subgroup of M . On the other hand, g acts rationally
irreducibly on A, so that A is cyclic and G is dihedral. This contradiction proves that M contains
torsion-free non-abelian subgroups, and hence it is torsion-free by the minimal choice of the order
of G/A.

Application of Lemma 3.5 yields that M = 〈y〉 � B , where B is an abelian normal subgroup and
Z(M) = 〈yr〉 for some positive integer r. Clearly, yr belongs to A since CG(A) = A. Let w be any non-
trivial element of finite order of G . Then C A(w) = {1} by Lemma 3.2 and so wyr �= yr w . It follows
that CG(yr) = M , so that |G : M| = 2 and hence w2 = 1. Therefore 〈yr, w〉 is an infinite dihedral group
and the index |G : 〈yr, w〉| is finite, which is impossible since M is torsion-free and non-abelian. This
last contradiction completes the proof of the lemma. �
Lemma 3.12. Let G be an abelian-by-finite A∞-group such that Z(G) = Z2(G). Then either G is abelian or
cyclic-by-finite or it satisfies one of the following conditions:

(a) G = (〈x〉 � (T × 〈y〉)〈g〉, where T is a finite abelian subgroup and x and y are elements of infinite order
such that [T , x] = [T , g] = {1}, g3 ∈ T , 1 �= [x, y] ∈ T , xg = y and yg = zy−1x−1 for some z ∈ T ;

(b) G is isomorphic to a subgroup of a direct product T × K , where T is a finite abelian group and K = 〈g〉� A
is a semidirect product of a torsion-free abelian normal subgroup A and a finite cyclic subgroup 〈g〉 whose
non-trivial elements act rationally irreducibly on A;

(c) G is isomorphic to a subgroup of a direct product T × K , where T is a finite abelian group and K = 〈g〉� A
is a semidirect product of a torsion-free abelian normal subgroup A and an infinite cyclic subgroup 〈g〉
such that C〈g〉(A) = 〈gm〉 for some integer m > 1 and gn acts rationally irreducibly on A for each proper
divisor n of m.

Proof. Suppose that neither G is abelian nor cyclic-by-finite; in particular, G is not nilpotent since
Z(G) = Z2(G). Assume first that G has no periodic non-trivial normal subgroups. If all torsion-free
subgroups of G are abelian, application of Lemma 3.9 yields that G satisfies condition (b) with T = {1}
and K = G . On the other hand, if G contains a torsion-free non-abelian subgroup, then G is torsion-
free by Lemma 3.11 and in this case it follows from Lemma 3.5 that G satisfies condition (c) with
T = {1} and K = G .

Suppose now that the largest periodic normal subgroup T of G is not trivial. The subgroup T is
finite abelian by Lemma 3.1 and for each element a of G the subgroup 〈a, T 〉 has infinite index in G ,
so that T is contained in the centre of G and G/T cannot be nilpotent.

Assume that all torsion-free subgroups of G are abelian, so that the same property holds for G/T
by Lemma 3.10. Application of Lemma 3.9 yields that Z(G/T ) = {1} and

G/T = H/T � A/T ,

where A/T is a torsion-free abelian normal subgroup and H/T is a finite cyclic subgroup whose non-
trivial elements act rationally irreducibly on A/T . In particular, A is nilpotent with class at most 2,
Z(G) = T and G = 〈g, A〉 for some element g of H . If A is not abelian, the group G is metacyclic-by-
finite by Lemma 2.9 and so A/T is a free abelian group of rank 2, and hence

A = 〈x〉 �
(〈y〉 × T

)
,
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where [x, y] is a non-trivial element of T . Moreover, g acts on A/T as an irreducible square matrix of
order 2, so that g3 belongs to T and the elements x and y can be chosen in such a way that xg = y
and yg = zy−1x−1 for some z ∈ T . Therefore in this case G satisfies condition (a) of the statement.
On the other hand, if A is abelian, the factor group A/C A(g) is isomorphic to [A, g] and C A(g) =
Z(G) = T , so that [A, g] is a torsion-free normal subgroup of G and G/[A, g] is a finite abelian group.
Since G can be embedded in the direct product G/[A, g] × G/T , it follows that condition (b) is satis-
fied.

Assume finally that G contains torsion-free non-abelian subgroups. As Z(G) = Z2(G) and T � Z(G),
we have also that Z(G/T ) = Z(G)/T , and so Z(G/T ) = Z2(G/T ). Moreover, G/T obviously contains
torsion-free non-abelian subgroups and hence it is torsion-free by Lemma 3.11. Thus T is the set of
all elements of finite order of G . It follows that G/T has an infinite cyclic homomorphic image by
Corollary 3.6. Therefore G = 〈g〉 � A, where g is an element of infinite order and A is an abelian
normal subgroup of G . Since G is abelian-by-finite, there exists an integer m > 1 such that C〈g〉(A) =
〈gm〉. Applications of Lemma 3.5 yields that Z(G) = T × 〈gm〉, and so C A(g) = T . Then the subgroup
[A, g] is isomorphic to A/T , and hence it is torsion-free abelian. It follows that [A, g]〈g〉 is a torsion-
free normal subgroup of G and G/[A, g]〈g〉 is a finite abelian group. Clearly, G can be embedded
in the direct product G/[A, g]〈g〉 × G/T , and in this case the group G satisfies condition (c) of the
statement. The lemma is proved. �

The above lemma completes the description of abelian-by-finite A∞-groups, and our final result
deals with the case of nilpotent-by-finite A∞-groups which are not finite extensions of abelian groups.

Lemma 3.13. Let G be a nilpotent-by-finite A∞-group which is not abelian-by-finite, and let T be the largest
periodic normal subgroup of G. Then either G is nilpotent or

G = (〈x〉 �
(
T × 〈z〉 × 〈y〉))〈g〉,

where [T , x] = [T , g] = {1}, [z, x] = [z, g] = 1, [x, y] = tzn for some element t of T and some positive integer
n, g3 ∈ T 〈z〉, xg = y and yg = uzm y−1x−1 for some element u of T and some non-negative integer m.

Proof. Assume that G is not nilpotent. The subgroup T is finite abelian by Lemma 3.1, and hence it
is contained in the largest nilpotent normal subgroup F of G . Clearly, F has no abelian subgroups of
finite index and T is the set of all elements of finite order of F . Application of Lemma 2.8 yields that

F = 〈x〉 �
(
T × 〈y〉 × 〈z〉),

where x, y, z are elements of infinite order of G such that [T , x] = {1}, [x, z] = 1 and [x, y] = tzn for
some t ∈ T and some positive integer n. As

Z(F ) = T × 〈z〉,
for each element g of G the subgroup 〈Z(F ), g〉 has infinite index in G , and hence it is abelian.
It follows that Z(F ) = Z(G). The factor group Ḡ = G/Z(G) is abelian-by-finite, so that it is soluble
by Lemma 3.3 and hence the Fitting subgroup F̄ = 〈x̄〉 × 〈 ȳ〉 of Ḡ coincides with its centralizer. If
Z(Ḡ) �= {1}, the centre Z(G) is properly contained in Z2(G) and so the hypercentre of G has finite
index by Lemma 2.4; then G is finite-by-nilpotent, and so even nilpotent because T is contained
in Z(G). This contradiction proves that Z(Ḡ) = {1}, and hence it follows from Lemma 3.4 that Ḡ is
not torsion-free. Moreover, Ḡ has no periodic non-trivial normal subgroups since F̄ is torsion-free
and CḠ( F̄ ) = F̄ , and so all torsion-free subgroups of Ḡ are abelian by Lemma 3.11. Thus Lemma 3.9
yields that Ḡ = 〈ḡ〉 � F̄ , where ḡ is an element of finite order whose non-trivial powers act rationally
irreducibly on F̄ . As F̄ is free abelian of rank 2, we have ḡ3 = 1 (so that g3 belongs to T 〈z〉) and the
elements x and y can be chosen in such a way that xg = y and yg = uzm y−1x−1 for some element u
of T and some non-negative integer m. The statement is proved. �

We are now in a position to prove the main result of the paper.
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Proof of the theorem. The group G is obviously finitely generated. If G is not soluble-by-finite, then
it satisfies condition (a) of the statement by Lemma 2.10. Suppose that G is soluble-by-finite, and
assume first that it is not nilpotent-by-finite. It follows from Lemma 3.1 that

G = 〈x〉 � (A × T ),

where A is torsion-free abelian and x is an element of infinite order such that [T , x] = {1}, C〈x〉(A) =
{1} and each non-trivial subgroup of 〈x〉 acts rationally irreducibly on AT /T . Then the torsion-free
group G/T has the same properties as the group K in statement (b5). Moreover, C AT (x) = T so
that the subgroup [A, x] = [AT , x] is isomorphic to AT /T and hence it is torsion-free. It follows that
[A, x]〈x〉 is a torsion-free normal subgroup of G , and G/[A, x]〈x〉 is a finite abelian group. As

[A, x]〈x〉 ∩ T = {1},
the group G embeds into the direct product of G/[A, x]〈x〉 and G/T and so it satisfies condition (b5).

Assume now that the group G is nilpotent-by-finite. If the hypercentre of G has finite index, it
follows from Lemma 2.8 that G satisfies one of the conditions (b1) and (b2) of the statement. On the
other hand, if the index |G : Z̄(G)| is infinite, we have Z(G) = Z2(G) by Corollary 2.4 and Lemma 3.13
yields that either G satisfies condition (b4) or it contains an abelian subgroup of finite index. There-
fore we may finally suppose that G is abelian-by-finite. In this latter case it follows from Lemma 3.12
that G satisfies one of the conditions (b3), (b5), (b6). The proof of the theorem is complete. �
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