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Abstract

We prove that for any p ∈ [1, +∞] a finite irreducible family of linear operators possesses an extremal
norm corresponding to the p-radius of these operators. As a corollary, we derive a criterion for the Lp-
contractibility property of linear operators and estimate the asymptotic growth of orbits for any point. These
results are applied to the study of functional difference equations with linear contractions of the argument
(self-similarity equations). We obtain a sharp criterion for the existence and uniqueness of solutions in
various functional spaces, compute the exponents of regularity, and estimate moduli of continuity. This,
in particular, gives a geometric interpretation of the p-radius in terms of spectral radii of certain operators
in the space Lp[0, 1].
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The concept of fractal object and self-similarity is intensively studied in the literature and
applied in various fields of mathematics. According to the general definition of Hutchinson [1],
a fractal is a compact set which coincides with the union of its images under the action of several
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contraction operators. In particular, if those operators are affine, then it is referred to as affine
fractal. Under certain assumptions on the operators, an affine fractal is a continuous curve, i.e., it
can be parametrized by a continuous function v : [0, 1] → Rd that satisfies a certain functional
equation. This point of view on affine fractals originated in [2,3] and has been developed in great
detail. In particular, the classical Koch and De Rham curves [4] possess this property, continuous
refinable functions in wavelets theory [5,6] and in the study of subdivision algorithms [7,8] can
also be interpreted as fractal curves. In some special cases the notion of parametrized fractal
curves was generalized to Lp-functions [9,10,11,12] and to self-similar measures [13,14].

In this paper, we introduce the concept of general Lp-fractal curves which are solutions of self-
similarity equations in the space Lp[0, 1]. As we shall see, this generalization is quite reasonable.
First, there is a sharp criterion of Lp-solvability (given by Theorem 2). Moreover, an Lp-solution
of a self-similarity equation is unique, whenever it exists, is stable and can be computed by
iterative approximations (Remark 7). Any finite family of affine operators and any partition of the
segment [0, 1] produce an equation of self-similarity, whose summable solution (if it exists) is a
fractal curve. This definition covers many special cases of known self-similar functions, including
solutions of refinement equations, and enables us to analyze them in a general framework. In
Section 4, we establish a criterion of continuity of the fractal curves, compute their regularity, and
estimate the moduli of continuity.

The results on general fractal curves are formulated in terms of the p-radii ρp of families of
linear operators. In Sections 2 and 3, we derive several auxiliary results concerning the p-radii.
First we define an Lp-extremal norm for linear operators and prove its existence in Theorem 1. This
theorem extends a well-known result of Barabanov [15] from the case p = ∞ to all p ∈ [1, +∞].
Then we establish the Lp-contractibility property for any family of linear operators (Proposition
1) and apply this result in Section 3 to estimate the growth of the Lp-averaged norm of the orbit
of an arbitrary point under the action of that family of operators. This will allow us to estimate
the rate of convergence of the iterative approximation method (Theorem 3) and to make a very
detailed analysis of the regularity of fractal curves in Section 5. This approach is also applicable
to analyze the local regularity of fractal curves (Remark 12).

2. Extremal norms and Lp-contractibility

In this section, we introduce some notation and prove the main theorems concerning ex-
tremal norms and the Lp-contractibility. Throughout the paper we deal with finite families B =
{B1, . . . , Bm}, m � 1 of linear operators acting in the d-dimensional Euclidean space Rd . We con-
sider an arbitrary norm | · | in Rd and the corresponding operator norm ‖B‖ = sup|x|=1 |Bx|. For
a given k ∈ N and for any sequence σ ∈ {1, . . . , m}k we write �σ for the product Bσ(1) · · · Bσ(k).

Also for any p ∈ [1, +∞) denote by Fk(p) = Fk(p,B) the value
[
m−k

∑
σ ‖�σ ‖p

]1/p
,

which is the Lp-averaged norm of all products of the operators Bj of length k; Fk(∞) =
maxσ∈{1,...,m}k ‖�σ ‖.

Definition 1. For given p ∈ [1, +∞] the p-radius of linear operators of the family B is the value
ρp = ρp(B) = limk→∞[Fk(p,B)]1/k .

This limit exists for any operators and does not depend on the norm in Rd [16]. If m = 1 or
all the operators Bj are equal to some operator B, then by well-known Gelfand’s formula ρp(B)

equals to the (usual) spectral radius ρ(B), which is the largest modulus of eigenvalues. The p-
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radius of given operators is a non-decreasing function in p. Moreover, the function f (x) = ρ1/x

is concave in x on the segment [0, 1] [17].

Remark 1. The value ρ∞ is often called the joint spectral radius. The joint spectral radius (JSR)
first appeared in a short paper of Rota and Strang [18] in 1960. For almost 30 years this object was
nearly forgotten. It was not before late 1980s that JSR emerged simultaneously and independently
in three different topics: in the theory of linear switched systems [15,19], in subdivision algorithms
for approximation and curve design [3,8] and in the study of wavelets and of refinement equations
[5]. The paper of Daubechies and Lagarias had a broad impact and aroused a real interest to JSR.
Now this notion has a lot of applications. The computational issue of JSR has also been studied in
many works. It was shown by Blondel and Tsitsiklis [20] that there is no algorithm for approximate
calculation of JSR with a prescribed relative accuracy ε > 0 that is polynomial with respect to
both ε−1 and the dimension d . Nevertheless, there are algorithms that are polynomial either in
ε−1 or in d. These algorithms originated with Protasov in [21,22]. The algorithm presented in
[21] is polynomial in ε−1, it is based on approximation of the invariant bodies by polytopes; the
algorithm from [22] is polynomial in the dimension d, it is based on the Kronecker lifting. The
second algorithm was obtained later and independently by Zhou [17] in 1998 and by Blondel and
Nesterov [23] in 2005. Other approaches for the computation and estimation of JSR were derived
by Gripenberg [24], Maesumi [25], Blondel et al. [26], etc.

The notion of JSR was extended to the p-radius, first for p = 1 by Y. Wang [9], and then for
all p ∈ [1, +∞] by Jia [10] and independently by Lau and J. Wang [11]. A polynomial in the
dimension d algorithm for approximate computation of ρp with a given accuracy was elaborated
by Protasov [22]. For even integers p this problem can be solved easier (see Remark 8 for more
detail).

One of the main tools in the study of JSR is the concept of extremal norm developed by
Barabanov [15], who proved the existence of such a norm for the joint spectral radius ρ∞. In this
section we generalize this notion for the p-radii ρp for all p < ∞. In Theorem 1, we show that
for any p ∈ [1, +∞] a finite irreducible family B of linear operators possesses an extremal norm
corresponding to the p-radius ρp(B). Then we derive a criterion of Lp-contractibility in terms
of the p-radius (Proposition 1). In Section 3, we apply the p-radius and the extremal norms to
estimate the asymptotic growth of orbits for any point u ∈ Rd under the action of the family B.
In Sections 4 and 5, these results are used to analyze the solutions of a wide class of functional
equations. This gives a geometric interpretation of the p-radius in terms of spectral radii of certain
linear operators in Lp[0, 1].

For any point u ∈ Rd and any number k � 1 the set {�σ u | σ ∈ {1, . . . , m}k} containing mk

points is the orbit of u. For any p ∈ [1, +∞] we denote

Fk(p, u) = Fk(p,B, u) =
[
m−k

∑
σ

|�σ u|p
]1/p

with the standard modifications for p = ∞. Thus, Fk(p, u) is the averaged (in Lp-norm) length
of all the mk elements of the orbit. In particular, Fk(1, u) is the arithmetic mean of lengths of the
vectors �σ u, Fk(2, u) is the quadratic mean, and Fk(∞, u) = maxσ∈{1,...,m}k |�σ u|. For k = 1
we use the short notation F1 = F. Thus

F(| · |, p,B, u) =
⎛⎝ 1

m

m∑
j=1

|Bju|p
⎞⎠1/p

, F(| · |, ∞,B, u) = max
j

|Bju|.
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In this section, we assume the family B and the parameter p ∈ [1, +∞] to be fixed and use the
short notation F(| · |, u) = F(| · |, p,B, u).

Definition 2. A norm | · | in Rd is called extremal for a given family B and for a given p ∈
[1, +∞] if there is λ � 0 such that F(| · |, u) = λ|u| for any u ∈ Rd .

We shall see in Theorem 1 that any irreducible family of operators possesses an extremal norm.
A family is called irreducible if its operators do not have a common invariant nontrivial (different
from {0} and Rd ) real linear subspace.

In the proof of Theorem 1 below we use some elementary facts from convex analysis. Let S
be the set of convex bodies (compact sets with a nonempty interior) in Rd centrally symmetric
with respect to the origin. For M ∈ S, u ∈ Rd we denote (u, M) = supx∈M(u, x). The function
of support of the body M is ϕM(u) = (u, M); M∗ = {u ∈ Rd , (u, M) � 1} is the polar of M .
This is well known that for any M ∈ S one has M∗ ∈ S and (M∗)∗ = M .

We write |x|M for the Minkowski norm in Rd with a given unit ball M ∈ S. This norm is
defined as |x|M = inf{α > 0|α−1x ∈ M}. For any M ∈ S, u ∈ Rd we have |u|M∗ = (u, M) (see,
for instance, [27]).

Theorem 1. An irreducible family of operators B for every p ∈ [1, +∞] possesses an extremal
norm. For any such a norm the factor λ is positive and equals to ρp(B).

Proof. Suppose that | · | is an extremal norm. Since for any u ∈ Rd , |u| = 1 and for any σ ∈
{1, . . . , m}k one has ‖�σ ‖ � |�σ u|, it follows that Fk(p) � Fk(p, u) = λk for any k. There-
fore, ρp � λ. Further, take an arbitrary basis {ei}di=1 of Rd such that |ej | = 1 for all j , for
each σ ∈ {1, . . . , m}k take a vector xσ ∈ Rd such that |xσ | = 1, |�σ xσ | = ‖�σ ‖ and write the
expansion of xσ in that basis: xσ = ∑d

i=1 ασ,iei .
Denote also C = max{|αi ||∃x = ∑d

j=1 αjej , |x| = 1, i = 1, . . . , d}. Using the triangle
inequality for the lp-norm, p < ∞, we get

Fk(p) =
[
m−k

∑
σ

∣∣∣∣∣�σ

(∑
i

ασ,iei

)∣∣∣∣∣
p]1/p

�
∑

i

[
m−k

∑
σ

∣∣�σ (ασ,iei)
∣∣p]1/p

�
∑

i

C

[
m−k

∑
σ

|�σ ei |p
]1/p

.

Therefore, Fk(p) � C
∑

i Fk(p, ei). The limit passage extends this for p = ∞. Since
Fk(p, ei) = λk , we see that Fk(p) � dCλk for any k, hence ρp � λ. Thus, λ = ρp for any
extremal norm.

To prove the existence we use Theorem 2 of [22] which states that for any irreducible family
of operators A1, . . . , Am and for any p there exists an invariant body M ∈ S such that

p⊕ m∑
j=1

AjM = m1/pλM (1)

for some λ � 0. The symbol
p⊕ denotes the Firey summation: for M1, . . . , Mm ∈ S the sum

M = p⊕∑
j Mj is a convex body defined by its function of support as follows: ϕM(u) =



V.Yu. Protasov / Linear Algebra and its Applications 428 (2008) 2339–2356 2343[∑
j ϕ

p
Mj

(u)
]1/p

, u ∈ Rd (with the standard modification for p = ∞). In particular,
1⊕∑

j Mj

is the Minkowski sum and
∞⊕∑

j Mj is the convex hull.
The family of adjoint operators B∗

1 , . . . , B∗
m is irreducible as well, therefore it possesses an

invariant body M ∈ S. This means that for any u ∈ Rd we have

(u, m1/pλM) =
⎡⎣∑

j

(u, B∗
j M)p

⎤⎦1/p

=
⎡⎣∑

j

(Bju, M)p

⎤⎦1/p

. (2)

Dividing (2) by m1/p and taking into account that (Bju, M) = |Bju|M∗ , we obtain λ|u|M∗ =
F(| · |M∗ , u). Thus, the norm with the unit ball M∗ is an extremal one. �

Remark 2. For p = ∞ the existence of extremal norms originated with Barabanov [15]. Theorem
1 extends this result to all p. From relation (2) we see that the extremal norms are, in a sense, dual
to invariant bodies, whose existence were proved by Protasov in [21] (in case p = ∞) and in [22]
(for all p). The polar to an invariant body is the unit ball of the extremal norm corresponding to
the adjoint operators. For the case p = ∞ this duality phenomenon was observed and analyzed in
[28]. The results of [21,22] can be implemented for computing and approximating the extremal
norms.

Remark 3. Any invariant norm can be interpreted as a fixed point of a certain homogeneous
continuous operator on the set of all norms in Rd . First, let us note that if a family of linear
operators B is irreducible, then for any norm | · | the functional u 	→ F(| · |, u) is also a norm
in Rd . We write N for the set of all norms in Rd . Clearly, N is an open pointed convex cone.
Thus, we have a map P : | · | → F(| · |, u) of the cone N into itself. For any norm | · | from N
we have P(| · |) ∈ N, where P(| · |)[u] = F(| · |, u) for all u ∈ Rd .

By Theorem 1, the nonlinear operator P always has an “eigenvector” | · |, for which P(| · |) =
F(| · |, u) = λ| · |. Such an eigenvector may not be unique. For instance, a rotation of the plane by
the angle π/2 has many extremal norms (for example, the Lp-norms in R2 for all p ∈ [1, +∞]).
Nevertheless, Theorem 1 guarantees that all possible eigenvectors have the same eigenvalue
λ = ρp(B). We see that like the usual spectral radius the p-radius can also be viewed as an
eigenvalue, although of an infinite-dimensional nonlinear operator.

Everything said above concerns irreducible families. Operators with common invariant sub-
spaces may fail to have extremal norms. The corresponding examples are well-known and ele-
mentary. The next proposition, however, guarantees the existence of “almost extremal” norms
in this case. This leads to a weaker geometric characteristic of the p-radius: the averaged Lp-
contractibility property which holds for any families of operators.

Proposition 1. For any p the following properties of a family of operators B are equivalent:

(a) ρp(B) < 1;
(b) there is a norm | · | in Rd and γ < 1 such that F(| · |, u) � γ |u|, u ∈ Rd .

For p = ∞ this fact is well-known. The inequality ρ∞ < 1 is equivalent to the simultaneous
contractibility of the operators in a certain norm [16]. To prove Proposition 1 we need to make
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some observations. First of all, from (b) it follows that Fk(p,B, u) � γ k|u| for any k, which
implies ρp � γ < 1. It remains to derive the implication (a) ⇒ (b). For irreducible families this
follows from Theorem 1. Suppose now that the family B is reducible; then the matrices Bi in a
suitable basis have a block lower triangular form:

Bi =

⎛⎜⎜⎝
B1

i 0 0 · · · 0
∗ B2

i 0 · · · 0
· · · · · · · · · · · · · · ·
∗ · · · · · · ∗ Bl

i

⎞⎟⎟⎠ , i = 1, . . . , m, (3)

where each family of matrices Bj = {Bj

1 , . . . , B
j
m} is irreducible. We denote by V1, . . . , Vl the

subspaces of Rd corresponding to factorization (3). Any vector x ∈ Rd is represented in a unique
way as a sum x = ∑l

j=1 xj , where xj ∈ Vj for all j . We denote ρp,j = ρp(Bj ).

Lemma 1. For any family B and for any p ∈ [1, +∞] one has ρp = maxj=1,...,l ρp,j .

The proof for the case p = ∞ can be found in [6], and for all other p in [22].

Proof of Proposition 1. Consider factorization (3) and the expansion u = ∑l
j=1 uj of any vector

u ∈ Rd along the system of subspaces {Vj }lj=1. For each j the family of operators Bj acing in Vj

is irreducible, hence Theorem 1 provides an extremal norm | · | on Vj , for which F(p,Bj , uj ) =
ρp,j |uj |, uj ∈ Vj . For any α > 0 we introduce a norm |u|α = ∑l

j=1 αj−1|uj | in Rd and the
corresponding operator norm ‖ · ‖α . For any k we have

Bku =
l∑

j=1

B
j
k uj + Aku,

where Ak is a linear operator in Rd and ‖Ak‖α → 0 as α → 0. Therefore

F(| · |α, p,B, u) �
l∑

j=1

F(| · |α, p,Bj , uj ) + C(α)|u|α

=
l∑

j=1

ρp,jα
j−1|uj | + C(α)|u|α,

where C(α) → 0 as α → 0. Since ρp,j � ρp we see that the last expression does not exceed

ρp

l∑
j=1

αj−1|uj | + C(α)|u|α = (ρp + C(α))|u|α.

If ρp < 1, then choosing α so small that ρp + C(α) < 1, we conclude the proof. �

Remark 4. As it was pointed out by the anonymous Referee, Proposition 1 is not actually new,
it was proved in 2004 in the work [29, Proposition 2.17]. We are grateful to the Referee for this
remark and recognize the priority of the work [29]. This is interesting to compare the two proofs,



V.Yu. Protasov / Linear Algebra and its Applications 428 (2008) 2339–2356 2345

which appear to be totally different. The authors of [29] constructed an “almost extremal” norm
as a limit of certain sequence of norms. We obtain the same norm by factorizing the operators
B1, . . . , Bm to the form (3) and by taking a weighted sum of the extremal norms of the factors.
One can apply an algorithm of approximation of invariant bodies elaborated in [22] and get
approximations for the extremal norms of the all factors in (3). This yields an approximation of
the “almost extremal” norm for the initial family B. In this sense our proof has one advantage: it
gives a way to approximate the desired norm numerically.

3. Asymptotics of orbits of linear operators

In Sections 4 and 5, we study solutions of self-similarity equations. Before this we need
to do some preliminary job and to analyze the asymptotic growth of the value Fk(p,B, u) as
k → ∞. In this section we present several results on this direction, that are, in our opinion, of some
independent interest. Assume we have an arbitrary family of linear operatorsB = {B1, . . . , Bm} in
Rd . How to estimate the Lp-averaged norm of the images {Bσ(1) · · · Bσ(k)u, σ ∈ {1, . . . , m}k} for
an arbitrary u ∈ Rd? In other words, we deal with the averaged norms of the orbits Fk(p,B, u).
Theorem 1 provides an immediate solution in case of irreducible families of operators. Since all
norms in Rd are equivalent, we have

Corollary 1. For an irreducible familyB and for every p ∈ [1, +∞] there are constants c1, c2 >

0 such that for any u ∈ Rd we have c1(ρp)k|u| � Fk(p, u) � c2(ρp)k|u|, k ∈ N.

Thus, for an irreducible family the value Fk(p, u) is asymptotically equivalent to (ρp)k .
This means, in particular, that for all vectors u /= 0 this value has the same rate of growth as
k → ∞. For general operators this is, a priory, not true: Fk(p, u) may grow faster than (ρp)k ,
moreover, it may have different rates of growth for different vectors u. Corresponding examples
are elementary already in case m = 1,B = {B}. If u is an eigenvector of the operator B associated
to an eigenvalue λ, then Fk(p, u) = |Bku| � kr−1λk , where r is the multiplicity of λ. So, the
growth may be different for different u and it may exceed λk .

To attack the problem of asymptotics of Fk(p, u) for general families of operators B we use
factorization (3). According to Lemma 1, ρp = maxj=1,...,l ρp,j . The total number of subscripts
j ∈ {1, . . . , l}, for which this maximum is attained, will be denoted by s and called valency of
the family B. The valency depends on p. However, neither the values ρp,j nor s depend on the
basis chosen for factorization (3).

For an arbitrary u ∈ Rd we write Vu for the smallest by inclusion common linear invariant
subspace of the family B containing u.

Proposition 2. For any family B of linear operators, for every p ∈ [1, +∞] and u ∈ Rd there
are positive constants c1, c2 such that

c1|u| � Fk(p, u) � c2k
s−1(ρp)k|u|, k � d, (4)

where ρp is the p-radius of the family B restricted to Vu, s is its valency on Vu. Moreover, there
is a uniform constant c2 for all vectors of the subspace Vu.

Thus, the p-radius ρp is the exponent of growth of the Lp-averaged norm of the images
Bσ(1) · · · Bσ(k)u. The value Fk(p, u) for all k is asymptotically between (ρp)k and ks−1(ρp)k .
The parameters ρp and s depends only on the subspace Vu.



2346 V.Yu. Protasov / Linear Algebra and its Applications 428 (2008) 2339–2356

Corollary 2. For any family B and for any p ∈ [1, +∞] there are c1, c2 > 0 such that

c1(ρp)k � Fk(p) � c2k
s−1(ρp)k, k � d, (5)

where ρp = ρp(B) and s is the valency of B.

Proof of Proposition 2 and of Corollary 2. It can be assumed that Vu = Rd , otherwise we
consider restrictions of the operators to Vu. We start with the lower bound in (4). Since u does not
belong to common invariant subspaces of B, it follows that there are products �q, q = 1, . . . , d

of the operators of the family B, each product �q is of length nq � d, such that the vectors
{�qu}dq=1 form a basis of Rd . Now consider factorization (3) and the corresponding subspaces

{Vj }lj=1. Since the familyBj is irreducible on Vj we see that it possesses an extremal norm | · | on

Vj . We introduce the following norm in Rd : |x| = ∑l
j=1 |xj |, xj ∈ Vj . For any x ∈ Rd and for any

i, j it follows that |Bix| � |Bj
i xj | = ρp,j |xj |. Choose j so that ρp,j = ρp; then for any y ∈ Vj we

have Fk(p,B, y) � Fk(p,Bj , y) = |y|(ρp)k, k ∈ N. Now we write the vector y in the basis
{�qu}: y = ∑d

q=1 λq�qu. Using the inequality Fn+k(p,B, x) � Fn(p,B)Fk(p,B, x), we
obtain

|y|(ρp)k � Fk(p,B, y) = Fk

(
p,B,

∑
q

λq�qu

)
�
∑
q

|λq |Fk

(
p,B, �qu

)
�
∑
q

mnq/p|λq |Fk+nq (p,B, u)

�
[∑

q

mnq/p|λq |Fnq

(
p,B

)]
Fk(p,B, u).

It remains to set c1 = |y| ·
[∑

q mnq/p|λq |Fnq (p,B)
]−1

, which proves the lower bound in (4),

and hence in (5) as well. Now consider the upper bound. Each operator Bk can be written as

(Bkx)i = Bi
kxi +

∑
j�i−1

Di
k,j xj ,

where Di
k,j : Vj → Vi are linear operators. Whence |(Bkx)i | � |Bi

kxi | + C
∑

j�i−1 |xj |, where

we set C = maxi,j,k ‖Di
k,j‖. Applying the triangle inequality in the lp-norm, we obtain

F(p,B, x)i � ρp,i |xi | + C
∑

j�i−1

|xj |, i = 1, . . . , m, (6)

whereF(p,B, x)i = [
m−1 ∑m

k=1 |(Bkx)i |p
]1/p

. Obviously,F(p,B, x) �
∑l

i=1 F(p,B, x)i .
Let us now denote zk = (Fk(p,B, u)1, . . . ,Fk(p,B, u)l)

T ∈ Rl , z0 = (|u1|, . . . , |ul |)T. Let
also P be a lower triangular l × l-matrix with the diagonal entries ρp,1, . . . , ρp,l and with all
entries under the diagonal equal to C. Substituting zk−1 for x in (6) we obtain zk � Pzk−1 and
hence zk � P kz0, where a � b means that ai � bi for all i. Since the largest eigenvalue of P

equals to maxi ρp,i = ρp and its multiplicity is s it follows that for k � d the norm of the vector
P kz0 does not exceed C0k

s−1(ρp)k|z0|, where C0 is a constant. Hence the sum of entries of the
vector zk is at most c2k

s−1(ρp)k|u| for some c2 > 0. Thus
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F(p,B, u) �
m∑

i=1

F(p,B, u)i � c2k
s−1(ρp)k|u|,

which proves the upper bound of (4). The upper bound of (5) is now derived in the same way as
in the proof of Theorem 1. �

For any x ∈ Rd we set C(x) to be the largest number such that Fk(p, x) � C(x)(ρp(B))k

for all k � d. Proposition 2 implies the following:

Corollary 3. The function C(x) is upper semicontinuous and positive, whenever x does not
belong to common invariant subspaces of the family B.

The condition k � d imposed in (4) and in (5) is necessary only for the upper bound in the
case ρp = 0, when these inequalities may fail for k < d. This exceptional case, however, can be
easily recognized due to the following:

Corollary 4. The p-radius of a family B is zero if and only if all products of these operators of
length d vanish. In this case all the blocks in (3) are one-dimensional and all B

j
k are zeros.

Proof. Assume first that the family B is irreducible. Corollary 1 for k = 1 yields that ρp = 0
precisely when F1(p, u) = 0 for all u ∈ Rd , i.e., when all the operators Bj are zeros. If B is
reducible, then we consider factorization (3). Applying Lemma 1 we obtain: ρp = 0 if and only
if ρp,j = 0 for each j . Therefore, all the blocks Br

j are zeros, consequently all products of the
operators B1, . . . , Bm of length l (and hence, of length d) vanish. �

4. Self-similar functions in Lp

In this section, we apply the p-radius and extremal norms to the problem of solvability of a
wide class of functional equations.

For an arbitrary p ∈ [1, +∞] we consider the space Lp[0, 1] of vector-functions from the

segment [0, 1] to Rd with the norm ‖v‖p =
(∫ 1

0 |v(t)|pdt
)1/p

and ‖v‖∞ = ess sup[0,1] |v(t)|,
where | · | is a given norm in Rd . We denote the Lebesgue measure of a set H ⊂ R by |H |. Let
us have a partition of the segment [0, 1] with nodes 0 = b0 < · · · < bm = 1. We use the notation
�j = [bj−1, bj ] and rj = |�j | = bj − bj−1. This partition will be referred to as {�j }mj=1. Let
gk: [0, 1] → �k be the affine function that maps the segment [0, 1] to �j . So

gk(t) = tbk + (1 − t)bk−1, k = 1, . . . , m. (7)

Suppose we are given a family of affine operators Ã = {Ã1, . . . , Ãm} acting in Rd . Let A =
{A1, . . . , Am} be the family of the associated linear operators in Rd . In the sequel we denote by
A the linear part of an affine operator Ã.

Definition 3. A fractal curve (a self-similar function) of a family of affine operators Ã cor-
responding to a given partition {�j }mj=1 is a summable function v: [0, 1] → Rd satisfying the
equation

v(t) = Ãkv(g−1
k (t)), t ∈ �k, k = 1, . . . , m (8)

almost everywhere on [0, 1].
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A fractal curve is a fixed point of the affine operator of self-similarity Ã acting in Lp[0, 1] by
the formula [Ãf ](t) = Ãkf (g−1

k (t)), t ∈ �k . By A we denote the linear part of this operator. In
Theorem 3, we show that the spectral radius ρ(A) of this operator equals to the p-radius ρp of
the family A.

Functional self-similarity equations of the type (8) have been intensively studied in the lit-
erature, they found many applications in the image processing, wavelets, approximation theory,
mathematical physics, ergodic theory, probability, number theory etc. A detailed review of appli-
cations of fractal curves would lead us too far from the subject of this paper. See, for example,
the works [2]–[14], [30]–[34] and references therein. We mention only that Definition 3 covers
most of classical fractal curves, such as the Cantor singular function (three operators in R1), the
Koch and the de Rham curves (two operators in R2), etc.

Most of fractal curves analyzed in the literature concern two special cases of Definition 3:

(1) arbitrary partition {�j } of the segment [0, 1] and arbitrary operators in R1, or some special
operators in R2;

(2) uniform partition, when r1 = · · · = rm = 1
m

, and special operators in Rd (for instance, the
block Toeplitz operators in the study of refinement equations and wavelets, etc.) The results
obtained for this case concern mostly continuous solutions. Refinement equations will be
discussed in more detail in Remark 6.

In Definition 3, we attempt to cover all these cases and to put them in a general framework. As
we shall see, this approach is quite reasonable. First of all, there is an existence and uniqueness
theorem for the solutions in the spaces Lp[0, 1] and C[0, 1] (Theorems 2 and 4). The solutions
continuously depend on the initial data (Remark 7). Their exponents of regularity are explicitly
computed in terms of the corresponding p-radii, their moduli of continuity can be estimated and
their differentiability and smoothness can be analyzed by a general scheme. Finally, any affine
fractal can be parametrized by a solution of Eq. (8) (Remark 9).

We formulate the main theorem under the assumption that the family Ã is irreducible, i.e.,
these operators do not have common affine invariant real subspaces, different from the whole Rd .
As we shall see in Remark 5, this assumption is made without loss of generality. Note that the
irreducibility of affine operators does not imply the irreducibility of their linear parts. To prove
the theorem we need one simple auxiliary result and some further notation.

Lemma 2. For any f ∈ Lp[0, 1], p < ∞ and any partition � = {�j }Nj=1 of the segment [0, 1] let

S(f, �) be a step (piecewise constant) function that on each segment �j equals to 1
|�j |

∫
�j

f (t)dt.

Then ‖f − S(f, �)‖p → 0 as diam(�) → 0, where diam(�) = maxj |�j |.

The proof is quite elementary and we leave it to the reader. For any σ ∈ {1, . . . , m}k we denote
the corresponding segment �σ = gσ(1) ◦ · · · ◦ gσ(k)[0, 1], where the affine functions gj (t) are
defined in (7). Thus, |�σ | = rσ(1) · · · rσ(k), where rj = |�j | is the length of the segment �j . We
write �k for the partition of kth degree {�σ , σ ∈ {1, . . . , m}k}. This partition splits the segment
[0, 1] into mk pieces. For any positive vector z = (z1, . . . , zm) and for any α ∈ R we set zαA =
{zα

1 A1, . . . , z
α
mAm}. Denote also r = (r1, . . . , rm). For example, mrA = {mr1A1, . . . , mrmAm}.

Theorem 2. For an irreducible family of affine operators Eq. (8) possesses a summable solution
v(t) if and only if ρ1(mrA) < 1. This solution is unique.
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If for some p ∈ [1, +∞] one has ρp((mr)1/pA) < 1, then v ∈ Lp. For p < ∞ the converse
is also true: if v ∈ Lp, then ρp < 1. If v ∈ L∞, then ρ∞ � 1.

Proof. Take an arbitrary p < ∞ and denote Bj = (mrj )
1/pAj ,B = (mr)1/pA, ρp = ρp(B).

For any f1, f2 ∈ Lp[0, 1] we have

‖A(f1 − f2)‖p =
⎡⎣∫ 1

0

∑
j

rj |Aj(f1(t) − f2(t))|pdt

⎤⎦1/p

=
[∫ 1

0
Fp(p,B, f1(t) − f2(t))dt

]1/p

.

Thus

‖A(f1 − f2)‖p = ‖F(p,B, f1(·) − f2(·))‖p. (9)

Taking a limit, we extend this equality for p = ∞. If ρp < 1, then Proposition 1 provides us
with a norm | · | in Rd such that F(p,B, f1(t) − f2(t)) � γ |f1(t) − f2(t)| for all t ∈ [0, 1] and
hence ‖A(f1 − f2)‖p � γ ‖f1 − f2‖p, where γ < 1. Therefore, Ã is a contraction operator in
Lp[0, 1] which possesses a unique fixed point in this space. This proves the sufficiency.

To establish the necessity we involve Proposition 2. Assume Eq. (8) possesses a solution
v ∈ Lp and set a = ∫ 1

0 v(t)dt . By the same symbol we denote the function a(t) ≡ a, t ∈ [0, 1].
For any k � 1 and any segment �σ of the partition �k we have

|�σ |−1
∫

�σ

v(t)dt =
∫ 1

0
Ãσ(1) · · · Ãσ(k)v(t)dt = Ãσ(1) · · · Ãσ(k)

∫ 1

0
v(t)dt

= Ãσ(1) · · · Ãσ(k)a.

Therefore, the step function fk = Ãka equals to the average |�σ |−1
∫
�σ

v(t)dt on each segment

�σ . The diameter of the partition �k tends to zero, hence by Lemma 2 in case p < ∞ one has
‖fk − v‖p → 0 as k → ∞. In case p = ∞ the sequence ‖fk − v‖∞ may not converge to zero,
but it is bounded.

Assume there is a common linear subspace L of the operators Aj that contains the vectors
v(t) − a for almost all t ∈ [0, 1]. This subspace can be defined by several equations (lq , u) =
0, q = 1, . . . , n, where lq are some linear functionals in Rd . For any q we have (lq , v(t)) = (lq , a)

for almost all t . Therefore, for any j ∈ {1, . . . , m} Eq. (8) implies

(lq , Ãj a) =
(

lq ,

∫ 1

0
Ãj v(t)dt

)
=
(

lq , |�j |−1
∫

�j

v(t)dt

)
= (lq , a).

This yields that the affine plane L̃ = a + L contains all the points Ãj a, j = 1, . . . , m. Hence,
for any x ∈ L we have Ãj (a + x) = Ãj a + Ajx ∈ L̃, because Ãj a ∈ L̃ and Ajx ∈ L. Thus, L̃

is a common invariant affine plane for the family Ã, which contradicts the assumptions. Whence
there is a set μ, |μ| > 0 such that v(t) − a does not belong to common invariant subspaces of
the family A (and therefore to ones of the family B), whenever t ∈ μ. Now apply Corollary 3
and denote C(t) = C(v(t) − a). We see that the function C(t) is positive on μ, consequently,
there is an ε > 0 and a set of positive measure με ⊂ μ such that C(t) � ε for all t ∈ με. Thus,
Fk(p,B, v(t) − a) � ε(ρp)k for all t ∈ με. Iterating equality (9), we obtain
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‖Ak(f1 − f2)‖p = ‖Fk(p,B, f1(·) − f2(·))‖p, k ∈ N, (10)

which for f1 = v, f2 = a yields ‖Ãkv − Ãka‖p = ‖Fk(p,B, v(·) − a)‖p. Thus

‖v − Ãka‖p � |με|1/pε(ρp)k, k ∈ N. (11)

If p < ∞, then the left-hand side tends to zero as k → ∞, and so |με|1/pερk
p → 0 as k → ∞,

which implies ρp < 1. In case p = ∞ the left-hand side is bounded uniformly, hence ρ∞ � 1. �

Remark 5. Actually instead of the irreducibility of the operators we used a weaker assumption:
the familyÃ does not possess common invariant affine subspaces (different from Rd ) containing
the point a = ∫ 1

0 v(x)dx. Nevertheless, in the study of arbitrary fractal curves it suffices to consider
only irreducible families. Let L̃ be the smallest by inclusion affine plane containing a and invariant
with respect to all operators of Ã. Since for any k the image of the function fk = Ãka lies in L̃

and fk converge to v in L1[0, 1] as k → ∞, it follows that v(t) ∈ L̃ a.e. Hence one could consider
the restrictions of the operators Ãj to the subspace L̃. On this subspace our family is irreducible.

Indeed, if the operators have a common invariant plane L̃0 ⊂ L̃ (we take this plane to be
smallest by inclusion), then a /∈ L̃0. Theorem 2 implies that ρ1(B) < 1 on the space L, and hence
on L0 as well. Then Eq. (8) possesses a solution on the plane L̃0 which does not coincide with v

since a /∈ L̃0. This contradicts the uniqueness.
Thus, restricting, if necessary, our operators to the subspace L̃ we obtain a fractal curve

generated by an irreducible family. This justifies the irreducibility assumption in Theorem 2. In
the sequel, unless the opposite is stated, we assume that the familyÃ is irreducible.

The criterion of Lp-solvability of Eq. (8) looks especially simple for uniform partitions of the
segment [0,1], when r1 = · · · = rm = 1

m
.

Corollary 5. For the uniform partition equation (8) possesses an Lp-solution (p < ∞) if and
only if ρp(A) < 1.

Remark 6. The best studied case of fractal curves are refinable functions which are compactly
supported solutions ϕ: R → R of the refinement equations:

ϕ(t) =
N∑

k=0

ckϕ(mt − k), t ∈ R (12)

(for the sake of simplicity we consider here one-dimensional univariate refinement equations with
finitely many terms). Let n be the smallest integer that is not less than N

m−1 . The vector-function
v(t) = (ϕ(t), ϕ(t + 1), . . . , ϕ(t + n − 1))T, t ∈ [0, 1] is a fractal curve. It satisfies Eq. (8) for the
uniform partition of the segment [0, 1] and for affine operators Ãs = Ts |V , s = 1, . . . , n, where V

is a certain affine subspace of Rn (defined individually for each equation) end Ts are linear opera-
tors defined by their matrices (block Toeplitz matrices) as follows: (Ts)ij = cmi−m−j+s+1, i, j ∈
{1, . . . , n}. Refinement equations have been studied in great detail in connection with wavelets
theory, subdivision algorithms, etc. (see [11,29,30] for many references). These equations belong
to the special case of the self-similarity equation, when r1 = · · · = rm = 1

m
and the operators Ãs

are defined by the block Toeplitz matrices Ts . For refinement equations most of our results are
known. The criterion of Lp-solvability was obtained in [11], the criterion of continuity of the
solution was derived in [6], the formula for the Hölder exponent was in [5,6,30]. So, the results
of Sections 4 and 5 can be considered as natural generalizations of known facts on refinement
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equations from the uniform partitions to arbitrary partitions and from the operators defined by
the Toeplitz matrices to arbitrary affine operators. Here it should be mentioned that the proofs
of the corresponding results for refinement equations used essentially the special properties of
the uniform partition and of the Toeplitz matrices, therefore, we have to introduce a different
technique. Also the estimation for the moduli of continuity (Theorem 5) and the conditions of
Lipschitz continuity (Corollary 7) are new for refinement equations.

Corollary 5 gives one more geometric interpretation of the p-radius. A family of affine operators
has an Lp-fractal curve for the uniform partition of [0, 1] if and only if the p-radius of the
corresponding linear operators is smaller than 1. The following theorem establishes a stronger
fact. The p-radius of a family A equals to the usual spectral radius of the corresponding linear
self-similarity operator A in the space Lp[0, 1].

Theorem 3. Let an irreducible family of affine operatorsÃ in Rd and a partition of the segment
[0, 1] be given, A be the corresponding self-similarity operator in Lp[0, 1], where p ∈ [1, +∞].
Then the p-radius ρp((mr)1/pA) is equal to the spectral radius ρ(A). In particular, for the
uniform partition we have ρ(A) = ρp(A). Moreover

C1(ρp)k � ‖Ak‖p � C2(ρp)kks−1, k ∈ N, k � d, (13)

where ρp = ρp((mr)1/pA), s is the valency of the family (mr)1/pA, and C1, C2 > 0.

Proof. Combining equality (10) with Proposition 2, we conclude that

‖Ak(f1 − f2)‖p � c2‖f1 − f2‖p(ρp)kks−1, k ∈ N, k � d (14)

for any f1, f2 ∈ Lp[0, 1], which gives the upper bound in (13). Applying now the inverse inequal-
ity (11) we arrive at the lower bound of (13). Taking the power 1/k in (13) and invoking Gelfand’s
formula ρ(A) = limk→∞[‖Ak‖p]1/k , we complete the proof. �

Remark 7. The solution v(t) of self-similarity equation (8) in the space Lp[0, 1], whenever it
exists, can be computed by iterative approximations starting with an arbitrary initial function f ∈
Lp[0, 1]. Indeed, inequality (14) applied for f1 = f, f2 = v gives ‖Ãkf − v‖p � C2(ρp)kks−1.
This provides a sharp upper bound for the rate of convergence of this method. Since ρp < 1, it
follows that the iterative approximation method converges exponentially for any initial function
f , provided the fractal curve belongs to Lp. In particular, it converges faster than (ρp + ε)k for
any ε > 0. Since the operator A continuously depends on the operators of the family Ã and on
the partition {�j }, it follows that the solution v ∈ Lp, whenever it exists, continuously depends
on those parameters in the metric Lp[0, 1].

Remark 8. It was shown by Protasov [22] and later independently and in some weaker form
by Zhou [17] that for even integers p, starting with p = 2, the p-radius can be found as an
eigenvalue of a suitable finite-dimensional linear operator. This means that for even integers p

the p-radius can be effectively computed. Therefore, for instance, the L2-solvability of Eq. (8)
can be effectively decided by Theorem 2 for any affine operators and for any partition. Under the
additional assumption that all the operators of the family A have a common invariant cone (for
example, if all their matrices are nonnegative in some basis), Blondel and Nesterov [23] proved
that the p-radius can be computed for odd integers p as well. Hence, in this case the L1-solvability
of Eq. (8) can be effectively decided.
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Remark 9. Fractal curves can also be considered as natural generalizations of the notion of affine
fractals. Recall that an affine fractal of a family of affine operatorsÃ is a compact set K ⊂ Rd such
that K = ∑m

i=1 ÃiK . According to the classical result of Hutchinson [1], a familyÃ possesses a
unique fractal, provided all the operators ofÃ are contractions. Proposition 1 relaxes this condition
to ρ∞(A) < 1. On the other hand, Theorem 2 guarantees the solvability of Eq. (8) in the space
L∞[0, 1], whenever ρ∞(A) < 1. This implies that any affine fractal K can be parametrized by
the solution v(t) of the corresponding equation of the type (8). More precisely, if ρ∞ < 1, then
there is a bounded Borel function v satisfying Eq. (8) almost everywhere on [0, 1] and such that
{v(t), t ∈ [0, 1]} = K . See the recent work [35, Section 6] for details.

5. Smooth fractal curves

The technique proposed in the previous section enables us to go further in the study of fractal
curves and to derive criteria of their continuity, differentiability, etc. In some cases this leads to a
very sharp information on the regularity of fractal curves. First of all, we have to introduce one
more condition on affine operators. According to Theorem 2, the fractal curve belongs to L∞,
provided ρ∞(A) < 1. In this case, by Proposition 1 there is a norm in Rd , for which the affine
operators of the familyÃ are all contractions. In particular, each operator Ãj has a unique fixed
point vj ∈ Rd .

Definition 4. A family of affine operators Ã such that ρ∞(A) < 1 is said to satisfy the cross-
condition if

Ãj vm = Ãj+1v1 for any j = 1, . . . , m − 1. (15)

This condition for contraction affine operators was put to good use in many works and is
sometimes called Barnsley condition. We are going to see that this condition, together with the
inequality ρ∞ < 1, is responsible for continuity of fractal curves.

Theorem 4. The solution of (8) is continuous if and only if ρ∞(A) < 1 and (15) holds.

Proof. Combining relation (9) for p = ∞ with Proposition 1, we conclude that if ρ∞ < 1, then
Ã is a contraction operator in the space L∞[0, 1]. Furthermore, if condition (15) is fulfilled, then
Ã respects the space C[0, 1]. Therefore, it has a unique fixed point in this space. Conversely, if
v ∈ C[0, 1], then the step functions fk = Ãka converge to v, i.e., ‖v − Ãka‖∞ → 0 as k → ∞.
Using (11) for p = ∞ we get ερk∞ → 0, which yields ρ∞ < 1. Finally, Eq. (8) applied at the
nodes of the partition yields v(bj ) = Ãj v(1) = Ãj vm and v(bj ) = Ãj+1v(0) = Ãj+1v1, which
proves (15). �

Remark 10. Theorems 2 and 4 admit also the case d = 0, when the affine space degenerates to
one point. In this case all the operators Aj are identical zeros, and the function v(t) is an identical
constant. In the sequel it will be more convenient to exclude this trivial case and assume that
d � 1.

Having ensured the continuity one can compute the exponents of regularity of fractal curves
in the space C[0, 1]. We use the modulus of continuity of a function f ∈ C[0, 1] which is the
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value ω(f, h) = sup{|f (t1) − f (t2)|, t1, t2 ∈ [0, 1], |t1 − t2| � h}, h > 0, and the Hölder expo-
nent: αf = {sup α|ω(f, h) � Chα}.

Theorem 5. If a fractal curve v is continuous, then its Hölder exponent αv is a unique solution
of the equation ρ∞(r−αA) = 1. The modulus of continuity satisfies the inequality

C1h
α � ω(v, h) � C2| ln h|s−1hα, h ∈

(
0,

1

2

)
, (16)

where s is the valency of the family r−αA for p = ∞, α = αv, C1, C2 > 0 are some constants.

Proof. Let v ∈ C[0, 1] and let α be the solution of the equation ρ∞(r−αA) = 1. For a given seg-
ment � ⊂ [0, 1] we denote by dev(v, �) = supt1,t2∈� |v(t1) − v(t2)| the deviation of the
function v on �. This is the diameter of the set {v(t), t ∈ �}. Also we set dev0(v, �) =
supt∈�

∣∣∣v(t) − 1
�

∫
� v(τ)dτ

∣∣∣. From the triangle inequality it follows that dev(v, �) � 2 dev0(v, �).

On the other hand, since the point 1
�

∫
� v(τ)dτ belongs to the convex hull of the set {v(t), t ∈

�}, we have dev(v, �) � dev0(v, �). In the proof of Theorem 2 we showed that there is a
subset μ ⊂ [0, 1] of positive measure such that for any t ∈ μ the vector v(t) − a does not
belong to common invariant subspaces of the operators A. For any t ∈ μ Proposition 2 implies
Fk(∞, r−αA, v(t) − a) � C, where C > 0 does not depend on k. Therefore, for any k there is
σ ∈ {1, . . . , m}k such that∣∣∣[�k

j=1r
−α
σ(j)Aσ(j)

]
(v(t) − a)

∣∣∣ � C.

Whence
∣∣∣[�k

j=1Aσ(j)

]
(v(t) − a)

∣∣∣ � C|�σ |α , and so

dev0(v, �σ ) = sup
t∈�σ

|v(t) − Ãka| = sup
t∈�σ

|Ak[v − a](t)| � C|�σ |α.

Thus, for any k there is a segment �σ of the partition �k such that dev(v, �σ ) � C|�σ |α , which
proves the lower bound in (16). To establish the upper bound we take arbitrary points t1, t2 ∈ (0, 1)

such that 0 < t2 − t1 < r0, where r0 = minj=1,...,m rj , and denote by n the smallest natural num-
ber, for which the partition �n has a node on the interval (t1, t2). Denote this node by b. Let n1 be
the smallest natural number such that the partition �n1 has a node on the interval (t1, b), similarly
we define n2. Since t2 − t1 < r0, we see that n1, n2 � 2. Thus, the segment [t1, t2] is covered by
two segments �σ1 ∈ �n1−1 and �σ2 ∈ �n2−1. Therefore

|v(t1) − v(t2)| � 2 max{dev(v, �σ1), dev(v, �σ2)} (17)

For any i ∈ {1, 2} we have

dev(v, �σi
) � 2 dev0(v, �σi

) = 2 sup
t∈[0,1]

∣∣�σi
(v(t) − a)

∣∣ ,
where �σi

= Aσi(1) · · · Aσi(ni−1). Proposition 2 applied to the operators r−αA for p = ∞ yields∣∣�σi
(v(t) − a)

∣∣ � |v(t) − a|(�σi
)αc2(ni − 1)s−1 � C(�σi

)α lns−1 �σi
, where C is independent

of t and ni . Thus, dev(v, �σi
) � 2C(�σi

)α lns−1 �σi
. Substitute this in (17):

|v(t1) − v(t2)| � 4C(�σ )α lns−1 �σ , σ ∈ {σ1, σ2}, |�σ | = max{|�σ1 |, |�σ2 |}.
Since |�σ | � r0

−1|t1 − t2| (because |�σi
| � r0

−1|ti − b| for i = 1, 2), we arrive at the upper
bound in (16). �
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Corollary 6. If a fractal curve v is continuous, then αv > 0.

Corollary 7. If a fractal curve v is Lipschitz continuous, then ρ∞(r−1A) = 1 and (15) holds.
Conversely, if (15) holds, ρ∞(r−1A) = 1, and s = 1, then v is Lipschitz continuous.

Remark 11. One aspect may seem strange in Theorem 5. In caseρ∞(r−1A) < 1 we haveαv > 1,

which is, of course, impossible. In fact, this case cannot appear because of cross-condition (15).
This condition implies that

∑m
j=1 Aj(vm − v1) = vm − v1 and therefore, ρ1(mA) � 1. This, in

turn, yields for any p � 1

ρp((mr)1/pr−1A) � ρ1((mr)1r−1A) = ρ1(mA) � 1. (18)

For p = ∞ this gives ρ∞(r−1A) � 1.

Remark 12. The proof of Theorem 5 can easily be modified to analyze the local regularity of
continuous self-similar functions. The local regularity of fractal objects is used in problems of
real data modeling, mathematical physics, signal processing, etc. (see, for instance, [31]–[34] and
references therein). In this paper, we do not obtain any precise statements on the local regularity,
and refer instead to the recent work [35], where we treated the case of uniform partition of
the segment (r1 = · · · = rm). In this case we can express the local Hölder exponent of a self-
similar function v(t) at any point t ∈ [0, 1] by means of certain joint spectral characteristics of
the operators {Aj }. It is also possible to describe the distribution of points t ∈ [0, 1] with a given
value of the local regularity. In particular, the Hölder exponent is the same at almost all points of
the segment [0, 1] and is equal to − logm ρ̄, where ρ̄ is the Lyapunov exponent of those operators
[35, Section 8].

Definition 3 makes it possible to test easily any fractal curve on differentiability. The crucial
observation is that the derivative is also a fractal curve in a smaller space.

We use the notation Cl[0, 1] for the space of l times continuously differentiable functions from
[0, 1] to Rd , and Wl

p[0, 1], p ∈ [1, +∞] for the Sobolev space of functions possessing absolutely

continuous (l − 1)st derivative and lth derivative in Lp, W 0
p = Lp.

If a fractal curve is differentiable, then it is continuous, and Theorem 4 implies that each of
the operators Ãj has a unique fixed point vi and condition (15) is satisfied. Let Ṽ be the smallest
affine subspace of the linear operators r−1A containing the point vm − v1.

Proposition 3. The solution v of (8) belongs to W 1
p if and only if the family Ã satisfies (8) and

the p-radius ρp of the operators r
1
p

−1
m

1
p A on the subspace V is smaller than 1. In this case

dim Ṽ = d − 1 and the derivative v′(t) is a fractal curve for the family r−1A on Ṽ .

Proof. If v ∈ W 1
p , then differentiating (8) we get

v(t) = r−1
k Ãkv(g−1

k (t)), t ∈ �k, k = 1, . . . , m (19)

almost everywhere on [0, 1]. The smallest by inclusion affine plane containing v′(t) for almost all t
also contains the point

∫ 1
0 v′(x)dx = v(1) − v(0) = vm − v1 and hence coincides with Ṽ (Remark

5). Theorem 2 now yields ρp(r
1
p

−1
m

1
p A|V ) < 1. Combining this with (18) we conclude that V /=

Rd and so dim V � d − 1. On the other hand v(t) = v1 + ∫ t

0 v′(τ )dτ , therefore, the affine hull of
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the set Ṽ ∪ {v1} is the entire Rd . Hence dim V = d − 1. Conversely, if ρp

(
r

1
p

−1
m

1
p A

∣∣
V

)
< 1,

then by Theorem 2 Eq. (19) has an Lp-solution on the plane Ṽ . Its primitive is a solution of (8),
which by the uniqueness coincides with v. �

Note that the space Ṽ is uniquely defined, whenever v(t) is continuous. Hence, to check
whether v ∈ W 1

p one needs to compute the corresponding p-radius. Furthermore, Theorem 4 and

Proposition 3 applied to the operators r−1A restricted to the affine subspace Ṽ yield a criterion for
the function v to belong to C1[0, 1] and to W 2

p[0, 1]. Iterating we obtain a criterion of solvability

of Eq. (8) in the spaces Wl
p and Cl, l � 1. The derivative v(l) lies in an affine subspace Ṽl ⊂ Rd

of dimension d − l. In particular, dim Ṽd = 0, which means that the function v(d) is concentrated
at one point, i.e., is an identical constant. Therefore, v(t) is a dth primitive of a constant, i.e.,
belongs to Pd , which is the space of polynomial curves of degree at most d (all the coordinate
functions are algebraic polynomials in t , their largest degree is d). Thus, we have established.

Proposition 4. If a fractal curve v belongs to Wd
1 [0, 1], then v ∈ Pd .

We see that the regularity of a fractal curve in Rd is either less than d or infinite. If a fractal
curve possesses a summable dth derivative, then it is polynomial, and so it is infinitely smooth.
In this case there is a basis in Rd in which the matrices of the operators Aj are lower triangular
with the diagonal elements rj , . . . , r

d
j ; the kth entry of the function v in this basis is a polynomial

of degree k. Let us finally remark that any polynomial curve is a fractal one. For any polynomial
curve v of degree d and any partition {�j }dj=1 of the segment [0, 1] there are affine operators Ãj ,
for which v satisfies (8). Indeed, from an identical constant by d passages to primitive one can
obtain any polynomial curve of degree d .
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