Note

A note on the perturbation of positive matrices by normal and unitary matrices ${ }^{\text {H }}$

Michael Neumann*, Nung-Sing Sze
Department of Mathematics, University of Connecticut, Storrs, CT 06269-3009, United States

Received 7 June 2007; accepted 10 August 2007
Available online 22 October 2007
Submitted by M. Tsatsomeros

Abstract

In a recent paper, Neumann and Sze considered for an $n \times n$ nonnegative matrix A, the minimization and maximization of $\rho(A+S)$, the spectral radius of $(A+S)$, as S ranges over all the doubly stochastic matrices. They showed that both extremal values are always attained at an $n \times n$ permutation matrix. As a permutation matrix is a particular case of a normal matrix whose spectral radius is 1 , we consider here, for positive matrices A such that $(A+N)$ is a nonnegative matrix, for all normal matrices N whose spectral radius is 1 , the minimization and maximization problems of $\rho(A+N)$ as N ranges over all such matrices. We show that the extremal values always occur at an $n \times n$ real unitary matrix. We compare our results with a less recent work of Han et al. in which the maximum value of $\rho(A+X)$ over all $n \times n$ real matrices X of Frobenius norm \sqrt{n} was sought.

© 2007 Elsevier Inc. All rights reserved.

AMS classification: 15A48; 15A18
Keywords: Nonnegative matrices; Spectral radius; Doubly stochastic matrices; Normal matrices; Real unitary matrices

[^0]0024-3795/\$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.1aa.2007.08.025

1. Introduction

In the recent paper [10], one of the questions considered by the authors was the following additive spectral perturbation problem: Given a nonnegative matrix $A \in \mathbb{R}^{n, n}$, then find

$$
\begin{equation*}
\min _{S \in \Omega_{n}} \rho(A+S) \quad \text { and } \quad \max _{S \in \Omega_{n}} \rho(A+S) \tag{1.1}
\end{equation*}
$$

Here $\rho(\cdot)$ is the spectral radius of a matrix and Ω_{n} is the set of all $n \times n$ doubly stochastic matrices. It was shown that both problems attain their solution in \mathscr{P}_{n}, the set of all $n \times n$ permutation matrices. Recall that the spectral radius of a nonnegative matrix is also known by the name of the Perron root and that the spectral theory for nonnegative matrices is also known as the Perron-Frobenius theory, see Berman and Plemmons [2].

Let \mathscr{N}_{n} be the set of $n \times n$ normal matrices with spectral radius 1 in $\mathbb{R}^{n, n}$. Since permutation matrices are, in particular, normal matrices with spectral radius 1 , we can immediately conclude that

$$
\begin{equation*}
\min _{N \in \mathscr{N}_{n}} \rho(A+N) \leqslant \min _{S \in \Omega_{n}} \rho(A+S) \quad \text { and } \quad \max _{S \in \Omega_{n}} \rho(A+S) \leqslant \max _{N \in \mathscr{N}_{n}} \rho(A+N) \tag{1.2}
\end{equation*}
$$

Let \mathscr{U}_{n} be the set of $n \times n$ real unitary (orthogonal) matrices. Clearly, $\mathscr{U}_{n} \subset \mathscr{N}_{n}$. In this note, for nonnegative matrices $A=\left(a_{i, j}\right) \in \mathbb{R}^{n, n}$ with $a_{i, j} \geqslant 1$, for all $i, j=1, \ldots, n$, we investigate the minimum and maximum spectral perturbation expressions, over the normal matrices of spectral radius 1 , which appear in (1.2). Note that for such matrices A, the matrix sums $A+N$ and $A+U$ are nonnegative, for all $N \in \mathcal{N}_{n}$ and for all $U \in \mathscr{U}_{n}$, respectively. In our main result, Theorem 2.2, we shall show that for such positive matrices A, whose entries are necessarily bounded below by 1 , the solution to both problems is attained in the set of the real unitary matrices. Namely, we establish that

$$
\begin{equation*}
\min _{N \in \mathscr{N}_{n}} \rho(A+N)=\min _{U \in \mathscr{U}_{n}} \rho(A+U) \quad \text { and } \quad \max _{N \in \mathscr{N}_{n}} \rho(A+N)=\max _{U \in \mathscr{U}_{n}} \rho(A+U) . \tag{1.3}
\end{equation*}
$$

Recalling that the Frobenius norm of a matrix in \mathscr{U}_{n} is \sqrt{n}, we can further write that

$$
\begin{equation*}
\min _{X \in \mathscr{X}_{n}} \rho(A+X) \leqslant \min _{U \in \mathscr{U}_{n}} \rho(A+U) \quad \text { and } \quad \max _{U \in \mathscr{U}_{n}} \rho(A+U) \leqslant \max _{X \in \mathscr{X}_{n}} \rho(A+X) \tag{1.4}
\end{equation*}
$$

where \mathscr{X}_{n} is the set of all $n \times n$ real matrices whose Frobenius norm is \sqrt{n}. In [8], Han et al. investigated the maximization problem of $\rho(A+X)$, where A is an $n \times n$ nonnegative matrix and $X \in \mathbb{R}^{n, n}$ varies over \mathscr{X}_{n}. It was shown that when A is (also) irreducible, the maximizing element is an rank one matrix in \mathscr{X}_{n}.

We develop our main results of this note in the next section.
We comment that much background material on nonnegative matrices and the Perron Frobenius theory can be found in the book by Berman and Plemmons [2]. Furthermore, a partial list of works which consider perturbation problems for nonnegative matrices can be found in the papers: Cohen [3], Deutsch and Neumann [4], Elsner [5], Friedland [6], Golub and Meyer [7], Han et al. [8], and Johnson et al. [9].

2. Main results

In this section we develop the main results of this paper which were as displayed in (1.3). An auxiliary lemma which will be essential to prove our results here is Lemma 2.1 in [10]. The lemma is a special case of the more general result, namely, Lemma 2.2 in [1].

Lemma 2.1 [10, Lemma 2.1]. Suppose that T_{1} and T_{2} are irreducible nonnegative matrices in $\mathbb{R}^{n, n}$ such that $\operatorname{rank}\left(T_{1}-T_{2}\right)=1$. Then the map $f_{T_{1}, T_{2}}$ defined by

$$
f_{T_{1}, T_{2}}(\alpha):=\rho\left(\alpha T_{1}+(1-\alpha) T_{2}\right), \quad \alpha \in[0,1]
$$

is either a strictly monotone function or a constant function on $[0,1]$.
Recall from Section 1 that \mathscr{N}_{n} denotes the set of $n \times n$ normal matrices with spectral radius 1 in $\mathbb{R}^{n, n}$, while \mathscr{U}_{n} denotes the set of $n \times n$ orthogonal matrices. The main result of our paper is as follows:

Theorem 2.2. Let $A \in \mathbb{R}^{n, n}$ be a positive matrix such that $A+N \geqslant 0$, for all $N \in \mathscr{N}_{n}$. Then

$$
\begin{equation*}
\min _{U \in \mathscr{U}_{n}} \rho(A+U)=\min _{N \in \mathscr{N}_{n}} \rho(A+N) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{U \in \mathscr{U}_{n}} \rho(A+U)=\max _{N \in \mathscr{N}_{n}} \rho(A+N) \tag{2.2}
\end{equation*}
$$

Proof. We shall prove here only the claim in (2.1) as the claim in (2.2) follows similarly. Furthermore, continuity arguments allow us to assume that $A+N$ is nonnegative irreducible for all N in \mathscr{N}_{n}.

Suppose that (2.1) is false. Then there exists a normal matrix $N_{0} \in \mathcal{N}_{n}$ such that

$$
\rho\left(A+N_{0}\right)=\min _{N \in \mathscr{N}_{n}} \rho(A+N)<\min _{U \in \mathscr{U}_{n}} \rho(A+U) .
$$

In fact, if there is more than one normal matrix yielding the above minimum, let us assume that we have chosen N_{0} which has the maximum number of eigenvalues, say p, with modulus one. Clearly, $p<n$. As N_{0} is not only normal, but also real, there is an orthogonal matrix W such that

$$
N_{0}=W\left(A_{1} \oplus \cdots \oplus A_{k}\right) W^{*}
$$

where each A_{i} is either a 1×1 real matrix or 2×2 real matrix of the form $\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$, with the modulus of eigenvalue(s) of A_{1} is (are) strictly less than one.

Suppose, first, that A_{1} is a 1×1 real matrix with a real entry a. Then $-1<a<1$. Set

$$
N_{1}:=W\left([1] \oplus A_{2} \oplus \cdots \oplus A_{k}\right) W^{*} \quad \text { and } \quad N_{2}:=W\left([-1] \oplus A_{2} \oplus \cdots \oplus A_{k}\right) W^{*} .
$$

Then both N_{1} and N_{2} are normal and, together, have $p+1$ eigenvalues of modulus one. Furthermore, because of the choice of N_{0}, we have that

$$
\begin{equation*}
\rho\left(A+N_{0}\right)=\min _{N \in \mathcal{N}_{n}} \rho(A+N)<\min \left\{\rho\left(A+N_{1}\right), \rho\left(A+N_{2}\right)\right\} . \tag{2.3}
\end{equation*}
$$

Observe that $N_{0}=\alpha N_{1}+(1-\alpha) N_{2}$, where $\alpha=\frac{a+1}{2}$. Let $T_{i}=A+N_{i}$, for $i=0,1,2$, in which case

$$
T_{0}=\alpha T_{1}+(1-\alpha) T_{2}
$$

and

$$
T_{1}-T_{2}=N_{1}-N_{2}=W\left([2] \oplus 0_{n-1}\right) W^{*}
$$

is a rank one matrix. As, by our assumptions T_{1} and T_{2} are nonnegative and irreducible matrices, Lemma 2.1 is applicable and hence the map $f_{T_{1}, T_{2}}$ is either strictly monotone or a constant function on $[0,1]$. Thus,

$$
\min \left\{\rho\left(A+N_{1}\right), \rho\left(A+N_{2}\right)\right\}=\min \left\{f_{T_{1}, T_{2}}(1), f_{T_{1}, T_{2}}(0)\right\} \leqslant f_{T_{1}, T_{2}}(\alpha)=\rho\left(A+N_{0}\right)
$$

But this contradicts to (2.3).
Suppose next that A_{1} is a 2×2 matrix of the form $\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$. Note that A_{1} has complex eigenvalues $a \pm i b$. Let $r=\sqrt{a^{2}+b^{2}}$. Then $0<r<1$. Define

$$
B_{1}:=\left[\begin{array}{cc}
c & d \\
-b & a
\end{array}\right], \quad B_{2}:=\left[\begin{array}{cc}
-c & -d \\
-b & a
\end{array}\right]
$$

and

$$
B_{3}:=\left[\begin{array}{cc}
c & d \\
-d & c
\end{array}\right], \quad B_{4}:=\left[\begin{array}{cc}
c & d \\
d & -c
\end{array}\right], \quad B_{5}:=\left[\begin{array}{cc}
-c & -d \\
-d & c
\end{array}\right], \quad B_{6}:=\left[\begin{array}{cc}
-c & -d \\
d & -c
\end{array}\right]
$$

with $c=a / r$ and $d=b / r$. Note that B_{3}, B_{4}, B_{5}, and B_{6} are real normal with eigenvalues of modulus one. Furthermore,

$$
A_{1}=\alpha B_{1}+(1-\alpha) B_{2}, \quad B_{1}=\alpha B_{3}+(1-\alpha) B_{4}, \quad \text { and } \quad B_{2}=\alpha B_{5}+(1-\alpha) B_{6}
$$

for $\alpha=\frac{1+r}{2}$. Now, for $i=1, \ldots, 6$, let $N_{i}:=W\left(B_{i} \oplus A_{2} \oplus \cdots \oplus A_{k}\right) W^{*}$. Note that the matrices N_{3}, N_{4}, N_{5}, and N_{6} are real normal with $p+2$ eigenvalues of modulus one. Thus, due to the choice of N_{0}, we can write that

$$
\begin{equation*}
\rho\left(A+N_{0}\right)=\min _{N \in \mathcal{N}_{n}} \rho(A+N)<\min \left\{\rho\left(A+N_{i}\right): i=3,4,5,6\right\} \tag{2.4}
\end{equation*}
$$

Now let $T_{i}=A+N_{i}$, for $i=0,1, \ldots, 6$. Note that the T_{i} 's are irreducible nonnegative matrices and that

$$
T_{0}=\alpha T_{1}+(1-\alpha) T_{2}, \quad T_{1}=\alpha T_{3}+(1-\alpha) T_{4}, \quad \text { and } \quad T_{2}=\alpha T_{5}+(1-\alpha) T_{6}
$$

for $\alpha=\frac{1+r}{2}$ with $0<\alpha<1$. Also, for $(i, j) \in\{(1,2),(3,4),(5,6)\}$,

$$
T_{i}-T_{j}=W\left(\left(B_{i}-B_{j}\right) \oplus 0_{n-2}\right) W^{*}
$$

are rank one matrices. But then, by Lemma 2.1, the maps $f_{T_{1}, T_{2}}, f_{T_{3}, T_{4}}$, and $f_{T_{5}, T_{6}}$ are monotone functions. Thus,

$$
\begin{aligned}
& \min \left\{\rho\left(T_{1}\right), \rho\left(T_{2}\right)\right\}=\min \left\{f_{T_{1}, T_{2}}(1), f_{T_{1}, T_{2}}(0)\right\} \leqslant f_{T_{1}, T_{2}}(\alpha)=\rho\left(T_{0}\right), \\
& \min \left\{\rho\left(T_{3}\right), \rho\left(T_{4}\right)\right\}=\min \left\{f_{T_{3}, T_{4}}(1), f_{T_{3}, T_{4}}(0)\right\} \leqslant f_{T_{3}, T_{4}}(\alpha)=\rho\left(T_{1}\right), \\
& \min \left\{\rho\left(T_{5}\right), \rho\left(T_{6}\right)\right\}=\min \left\{f_{T_{5}, T_{6}}(1), f_{T_{5}, T_{6}}(0)\right\} \leqslant f_{T_{5}, T_{6}}(\alpha)=\rho\left(T_{2}\right) .
\end{aligned}
$$

Then from (2.4),

$$
\rho\left(T_{0}\right)<\min \left\{\rho\left(T_{3}\right), \rho\left(T_{4}\right), \rho\left(T_{5}\right), \rho\left(T_{6}\right)\right\} \leqslant \min \left\{\rho\left(T_{1}\right), \rho\left(T_{2}\right)\right\} \leqslant \rho\left(T_{0}\right)
$$

a contradiction. Our proof is now complete.
As a consequence of Theorem 2.2, the authors' previous work in [10], and the work in [8], we can state the following chain of perturbation inequalities:

Theorem 2.3. Let $A=\left(a_{i, j}\right)$ be an $n \times n$ positive matrix whose entries are bounded below by 1. Then:

$$
\begin{align*}
\min _{X \in \mathscr{X}_{n}} \rho(A+X) & \leqslant \min _{U \in \mathscr{M}_{n}} \rho(A+U)=\min _{N \in \mathcal{N}_{n}} \rho(A+N) \\
& \leqslant \min _{P \in \mathscr{P}_{n}} \rho(A+P)=\min _{S \in \Omega_{n}} \rho(A+S) \tag{2.5}
\end{align*}
$$

and

$$
\begin{align*}
\max _{S \in \Omega_{n}} \rho(A+S) & =\max _{P \in \mathscr{P}_{n}} \rho(A+P) \leqslant \max _{N \in \mathscr{N}_{n}} \rho(A+N) \\
& =\max _{U \in \mathscr{U}_{n}} \rho(A+U) \leqslant \max _{X \in \mathscr{X}_{n}} \rho(A+X) . \tag{2.6}
\end{align*}
$$

Furthermore, the maximum in the rightmost expression in (2.6) is achieved at a rank 1 positive matrix (whose Frobenius norm is \sqrt{n}).

We close the paper with an example illustrating our results. Let

$$
A=\left[\begin{array}{ll}
4 & 4 \\
1 & 1
\end{array}\right]
$$

As A has constant column sums equal to 5 , it easily follows that $\rho(A)=5$. Furthermore adding any 2×2 doubly stochastic matrix to A, will result in a matrix whose column sums are a constant 6 and so

$$
\max _{P \in \mathscr{P}_{2}} \rho(A+P)=\max _{S \in \Omega_{2}} \rho(A+S)=6
$$

Next, numerically we can find the $\max _{U \in \mathscr{U}_{n}} \rho(A+U)$ occurs at

$$
U \approx\left[\begin{array}{cc}
0.9239 & -0.3827 \\
0.3827 & 0.9239
\end{array}\right]
$$

so that

$$
6.1168=\rho(A+U) \approx \max _{U \in \mathscr{U}_{n}} \rho(A+U)
$$

Thus we see that in general the extremum of $\rho(A+U)$ as U ranges over the $n \times n$ real unitary matrices can differ from the extremum that $\rho(A+P)$ attains over the $n \times n$ permutation matrices. Finally, consider the rank 1 matrix

$$
X=\frac{\sqrt{2}}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \in \mathscr{X}_{2}
$$

As $A+X$ has constant column sums equal to $5+\sqrt{2}$,

$$
\rho(A+X)=5+\sqrt{2} \approx 6.4142>6.1168=\rho(A+U)
$$

Furthermore, it can be ascertained from [8] that $\rho(A)+\sqrt{2}$ is the maximum value that $\rho(A+X)$ can attain over \mathscr{X}_{n}. This example shows that the inequalities in (2.5) and (2.6) can be strict.

References

[1] J. Axtee, L. Han, D. Hershkowitz, M. Neumann, N.S. Sze, Optimization of the spectral radius of a product for nonnegative matrices, Linear Algebra Appl., in press, doi:10.1016/j.laa.2007.05.025.
[2] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM Publications, Philadelphia, 1994.
[3] J.E. Cohen, Derivatives of the spectral radius as a function of a non-negative matrix, Math. Proc. Cambridge Philos. Soc. 83 (1978) 183-190.
[4] E. Deutsch, M. Neumann, Derivatives of the Perron root at an essentially nonnegative matrix and the group inverse of an M-matrix, J. Math. Anal. Appl. 102 (1984) 1-29.
[5] L. Elsner, On convexity properties of the spectral radius of nonnegative matrices, Linear Algebra Appl. 61 (1984) 31-35.
[6] S. Friedland, Convex spectral functions, Linear and Multilinear Algebra 9 (1981) 299-316.
[7] G.H. Golub, C.D. Meyer Jr., Using the QR-factorization and group inversion to compute, differentiate, and estimate the sensitivity of stationary probabilities for Markov chains, SIAM J. Algebra Discrete Methods 7 (1986) 273-281.
[8] L. Han, M. Neumann, M.J. Tsatsomeros, Spectral radii of fixed Frobenius norm perturbations of nonnegative matrices, SIAM J. Matrix Anal. Appl. 21 (1999) 79-92.
[9] C.R. Johnson, R. Loewy, D.D. Olesky, P. van den Driessche, Maximizing the spectral radius of fixed trace diagonal perturbations of nonnegative matrices, Linear Algebra Appl. 241-243 (1996) 635-654.
[10] M. Neumann, N.S. Sze, Optimization of the spectral radius of nonnegative matrices, operators and matrices, in press.

[^0]: * Research supported in part by NSA Grant No. 06G-232.
 * Corresponding author.

 E-mail addresses: neumann@math.uconn.edu (M. Neumann), sze@math.uconn.edu (N.-S. Sze).

