
Theoretical Computer Science 230 (2000) 1–37
www.elsevier.com/locate/tcs

Fundamental Study

P-su�cient statistics for PAC learning k-term-DNF
formulas through enumeration

B. Apolloni ∗, C. Gentile
Dipartimento di Scienze dell’ Informazione, Universit�a di Milano, Via Comelico 39-41,

I-20135 Milan, Italy

Received June 1996; revised May 1998
Communicated by B. Rovan

Abstract

Working in the framework of PAC-learning theory, we present special statistics for accom-
plishing in polynomial time proper learning of DNF boolean formulas having a �xed number
of monomials. Our statistics turn out to be near su�cient for a large family of distribution
laws – that we call butter
y distributions. We develop a theory of most powerful learning for
analyzing the performance of learning algorithms, with particular reference to trade-o�s between
power and computational costs. Focusing attention on sample and time complexity, we prove
that our algorithm works as e�ciently as the best algorithms existing in the literature – while
the latter only take care of subclasses of our family of distributions. c© 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Intuitively, learning in the probably approximately correct (PAC) model [35] amounts
to constructing a routine c, not yet available in our software library, on the sole basis
of (a) a rough description of the routine functionality, and (b) a set of examples of
how the routine has to behave. For instance, for an unknown boolean function c we
are given:
(a1) a set of boolean variables {x1; : : : ; xn} that are the arguments of c.
(a2) a vague description of c. Thus, in the case of disjunctive normal forms (DNF), c
is assumed to be representable by a boolean formula which is a disjunction of k terms,
each term being a conjunction of some of the above variables, or their negations.
(b) a set of input–output pairs of c that constitute examples of what c computes. Say,
for x1 = 1; x2 = 0; : : : ; xn = 1 c computes 0, for x1 = 1; x2 = 1; : : : ; xn = 1 c computes
1, and so forth.
Our aim is to approximate c by a boolean function h that is similar to c, in the

following sense: upon replacing c by h , the probability of getting a wrong output in
the next computations is very small.
More formally, the main ingredients of a PAC learning procedure are as follows:

• a probability space (X ;F; P), where
X is the set of the possible outcomes of a source of random data,
F is a �-algebra on X ,
P is a (possibly unknown) probability measure de�ned over F;

• a family C of subsets c of X , belonging to F. Every c is called a (target; concept)
and C is a concept class;

• a labelled random sample X c
m consisting, for each c, of pairs

(Xi; �c(Xi)); i = 1; : : : ; m;

called examples. Here X1; : : : ; Xm are randomly chosen elements of X , and �c : X 7→
{0; 1} denotes the indicator function of c.
The task of learning amounts to the computation of a statistic on X c

m, which identi�es
a region h in F yielding a good estimate of (an accurate hypothesis on) c. The
probability measure Perror of the symmetric di�erence c÷h between c and h is assumed
to be the accuracy parameter � of the estimate. By a learning algorithm we mean an
algorithm A that generates hypotheses whose error probability Perror converges to 0 in
probability.
While previous approaches were aimed at asymptotically perfect learning [34] (cor-

responding to the particular case �=0), Valiant’s approach [35] allows us to compute
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Fig. 1 Learning the class C of monomials having exactly two non-negated variables on the three-dimensional
boolean cube.

c = x1x2; X c
m = {((1; 0; 0); 0); ((0; 1; 0); 0); ((0; 0; 1); 0); ((1; 1; 1); 1); ((0; 0; 1); 0);

((0; 1; 0); 0); ((1; 1; 1); 1); ((0; 1; 0); 0); ((0; 1; 0); 0); ((0; 0; 1); 0)}
h = x2x3; c ÷ h = {(1; 1; 0); (0; 1; 1)}

sharp estimates of the sample size needed to achieve a preassigned accuracy � and
con�dence � as a function of certain combinatorial indices of the complexity of C . By
measuring the running time needed to compute the statistic h from the sample X c

m we
can make precise the notion of global feasibility of the learning task for C .
In the example of Fig. 1, the black box point (0,1,1) and the grey sphere point (1,1,0)

are mislabelled by the hypothesis h = x2x3. Let us equip the learning algorithm A with
a �xed but otherwise arbitrary lexicographic order and stipulate that A outputs the �rst
hypothesis within C that does not contradict the examples. The above mislabelling
occurs because the points (0,1,1) and (1,1,0) are not members of the sample X c

m used
in learning the target concept c = x1x2. Thus the labels of (0,1,1) and (1,1,0) are
unknown to A.
How big is our mistake in the above approximation? According to the strict phi-

losophy of PAC learning, big mistakes are not frequent. Indeed our mislabelling only
can have a big impact if the assignments (0,1,1) or (1,1,0) were likely to be used as
an input of the unknown monomial. To �x ideas, assume c is a key classi�er in a
database, and the keys (0,1,1) and (1,1,0) never appear in the ten records randomly
drawn from it. Then we may reasonably expect that (0,1,1) and (1,1,0) are rather
infrequent keys in the database. If records are drawn with the same distribution law,
the probability of further meeting (0,1,1) and (1,1,0) and consequently misclassifying
them is small. Summing up, it is unlikely to draw a labelled sample that misses points
of relevant probability, which yields a large probability Perror. In Section 2 we shall
recall techniques allowing us to manage these probabilities.
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As is well known, every boolean function has an equivalent DNF reduction. A DNF
formula is probably the most common tool used by human beings for giving an imme-
diate description of a set of objects by specifying a number of very simple alternative
properties possessed by those objects. In particular, k-term-DNF formulas like in the
example above might represent the class of all the realistic above descriptions, dealing
with a preassigned number k of such alternatives. Thus, results on the learnability of
these formulas have both computational and philosophical consequences.
Adopting the usual dichotomy polynomial = feasible vs. non-polynomial = unfea-

sible, it turns out that PAC learning of k-term-DNF is a very hard task: here the main
di�culties are not due to the size of the labelled sample, but rather, to the problem
of computing a hypothesis from a labelled sample. Let us parametrize our class by
the number n of propositional variables. Then from a purely statistical point of view,
sample size m will be su�cient, provided m polynomially depends on the relevant
parameters n, 1/� and 1/�. However, unless NP=R [5], the problem of computing
an accurate hypothesis h from the given m examples is hard (in fact, NP-hard) for
every preassigned k¿2 [27]. Stated otherwise, up to well-established conjectures on
the status of NP-hard problems, no learning algorithm exists whose running time is
polynomial in n; 1/� and 1/�.
These negative results hold when we are faced with the problem of representing

hypotheses by k-term-DNF formulas (as is done in proper learning). One might de-
cide to give up this natural way of describing the hypotheses looking for other rep-
resentations, e.g., using less concise k-CNF formulas (conjunction of clauses with
at most k propositional variables). Then more powerful descriptional tools become
available – allowing polynomial-time learning algorithms [27]. However, this does not
constitute a shortcut to proper learning: for, CNF-to-DNF conversion is typically un-
feasible. The same happens if we assume hypotheses to be described by O(nk−1)-
term-DNF(n) formulas, or by decision lists (for more information see [9] and [28],
respectively.)
Looking for proper learning results, researchers have made a great deal of e�ort

towards computational feasibility by reducing the generality of the problem. This leads
in a natural way to consider special classes of sample distributions, that are both
well-shaped for designing e�cient learning algorithms and su�ciently expressive to
formalize actual learning problems of the real world.
As proved in [22], if no restrictions are made on sample distributions, then learning

remains NP-hard, even assuming the concept class to consist of monotone formulas
(formulas where the negation symbol never occurs), or else, �-formulas (formulas
where each propositional variable occurs at most once). On the other hand, k-term-
�DNF formulas are properly and polynomially learnable when positive (1-labelled)
examples, as well as negative (0-labelled) examples, separately follow the uniform
distribution [22]. This is the so-called two-distribution model. Yet for uniform distri-
butions, monotone O(log(n))-term-DNF formulas are properly and polynomially learn-
able by positive examples only [31], while interesting results dealing with non-proper
learning algorithms for k-term- DNF formulas are given in [25, 39].
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Naturally enough, the homogeneity and symmetry properties of the uniform distri-
bution allow us to easily predict and control relevant parts of the target formula. As
a result, certain terms can be disregarded during the computation of the �nal hypoth-
esis. Moreover, constant probability spread over the whole sample space corresponds
to maximum entropy distribution – the latter seldom applying in everyday operational
contexts.
Therefore, various generalizations of the uniform distribution assumption have been

proposed in the literature aimed at preserving the mentioned bene�ts through some sort
of smoothness constraints. For instance, in the so-called q-bounded distributions, the
ratio of the measure of any two points in the sample space is bounded by a quantity q
– possibly di�erent from 1. See [15, 30] for proper learnability results for k-term-DNF
formula in this setting. Weaker results (for the purpose of our paper) are obtained in
[19] for product distributions. In this case, homogeneity comes from the assumption
that the coordinates of the sample space points are stochastically independent. However,
it should be remarked that learning in this context is not proper.
All distributions mentioned so far are p-smooth, in the sense that, for any pair of

points of unit Hamming distance, the ratio of their measures is suitably bounded. The
algorithm proposed for these distributions in [32] properly PAC learns Fk -term formu-
las. By de�nition, Fk -term formulas constitute the class formed by arbitrary boolean
functions of k many monomials; hence, in the subfamily of k-term-DNF formulas one
further assumes that monomials are connected by disjunction. These formulas cannot
be properly learnt by the algorithm of [32] in its basic version. Moreover, two separate
polynomially sized samples of positive and negative examples are required.
Also the present paper pursues the aim of extending the family of treatable dis-

tributions for learning k-term-DNF formulas. As we shall see, our extension includes
p-smooth distributions, when we work within the conventional PAC framework re-
quiring the learning algorithm to compute hypotheses with arbitrarily small accuracy
� and con�dence � in feasible time. If we relax the PAC learnability requirements by
binding � and � to be not smaller than the inverse of any polynomial in the number n
of boolean attributes, then we are also able to include families of uniform distributions
on subsets of the sample space. This weaker version of learnability looks reasonable in
many operational contexts when the overall running time is bounded by a polynomial
in n anyway.
The distinguishing feature of the family of butter
y distributions proposed in this

paper is the following. Let us imagine the 2n di�erent assignments to the variables
x1; : : : ; xn in the sample space X = {0; 1}n as a stack of elastic wires. Let us squeeze
the stack in correspondence with some of those variables, previously grouped in the
center of the wires. We obtain a butter
y-shaped picture representing the support of the
monomial speci�ed by such variables. Let us associate with the butter
y the probability
measure of this support. By squeezing the stack in correspondence with further variables
we obtain a new smaller butter
y, whose probability measure does not have any abrupt
jumps: for, the ratio between the probability measures of the two butter
ies is suitably
bounded. In addition, if the measure of the �rst butter
y is negligible, no assumptions
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are made on this ratio. This bound, along with the number of additional squeezed
positions parameterize the members of the butter
y family.
Using this family of distributions we are able to hit the target of performing proper

PAC learning of k-term-DNF formulas in polynomial time for a constant k¿1. Our
algorithm uses labelled examples from a unique sample space.
Summing up ideas from [1, 8], and arguing along the lines of [4], we can describe

our main idea as follows:
Let c be an unknown formula that we want to learn within a given class C . We �rst

enumerate all formulas of C . We then draw a set of examples of how c behaves on
random inputs and, for each listed formula, we use this set to test if the formula can
be considered an accurate estimate of c in the PAC model. This procedure provides
a learning algorithm if, eventually, precisely one formula is accepted as a hypothesis.
Further, we say that the procedure is feasible if the cardinality of the enumerated list
is polynomial. This second condition will not be satis�ed by the problem considered
in this paper. Therefore we resort to enumerating discriminant subsets of the sample
space, possibly containing the supports of the monomials of c. In order to ful�ll the
�rst condition we draw some special kind of su�cient statistics. In this respect, the
nice properties of our butter
y distributions, are to the e�ect that the frequencies with
which the examples fall into the mentioned discriminating subsets nearly constitute (in
a technical sense which will be made precise) a su�cient statistic for the distribution
law of the probability error Perror. For stressing the fact that a polynomial number
of them is su�cient for accomplishing the whole learning procedure, we call these
statistics p-su�cient.
In this probabilistic framework we design a polynomial time statistical query (SQ)

[20] algorithm that translates into a PAC algorithm requiring polynomial resources
too. Speci�cally, we develop two versions of the algorithm, respectively dealing with
monotone and non-monotone formulas. Both versions use polynomial resources for
a suitable range of the parameters of the butter
y family. These resource bounds
are preserved under various kinds of errors, possibly occurring in the labelled
sample.
Our bounds are as good as those proven for other algorithms that were developed

for proper learning our present target class under some near-uniform distributions.
An exception is given by [31] only in regards of time complexity. However, our
algorithm still requires polynomial resources when applied to further useful distribution
laws.
To make a comparison between the statistical performance of our algorithm and the

ideal fully enumerative learning procedure, we extend to learning statistics results of
point estimation theory. We establish the uniqueness of optimal learning procedure (in
the mean square error sense), and we discuss possible trade-o�s between optimality
and feasibility of learning algorithms.
Our paper is organized as follows: in Section 2 we de�ne our learning problem;

after introducing all relevant background material concerning the SQ model, we for-
malize the notion of relaxed PAC learning and sketch a theory on the most powerful
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learning algorithms. In Section 3 we describe the class of distribution laws and re-
call some results from discriminant theory. Our algorithm is presented in Section 4,
together with an analysis of its performance. We collect a few concluding remarks in
Section 5.

2. Preliminaries

Let us start from the formal de�nition of PAC learning. To complete the formal
framework previously introduced, we must describe some representation issues.
A distinguishing feature of the PAC model is the evaluation of the learning task

in terms of its computational complexity. For this purpose it is useful to parameterize
learnability results both by (1) the dimension of the domain and (2) some natural
descriptional complexity of the current target concept:
(1) We think of X as a parameterized family of domains X =

⋃
nXn, where, for

instance, Xn = Rn, the n-dimensional Euclidean space, or Xn = {0; 1}n , the n-
dimensional boolean hypercube. In such cases n can be roughly interpreted as the
description length of the examples which are supplied to the learning algorithm.

(2) According to the previous point, we set C =
⋃

nCn, where Cn is a concept class
over Xn. We assume that the concepts of C are described in terms of a repre-
sentation R = 〈R; L〉 consisting of a set of strings L and a mapping R from C to
2L that associates each concept c of C with a set of strings in L (i.e., with a set
of di�erent ways of representing c through R). We denote by LR(c) the length
of the shortest string in L representing c. We simply write L(c) when R is clear
from the context.

Here we assume that the domain points X ∈ X and the concepts c ∈ C are e�ciently
encoded with some standard scheme (e.g., [17]). For instance , for boolean functions
n is the number of boolean arguments of c and L(c) can be assumed to be the circuit
complexity (see, e.g., [40]) of c. The speci�c representation conventions we adopt for
the learning problem considered in this paper are described in Section 2.1. Throughout
the present paper n will be considered as a known parameter of the learning problem.
The pair of indices n and LR(c) is used in general to de�ne learning according to

the following de�nition.

De�nition 1 (Valiant [35]; Blumer et al. [10]). Let us consider a concept class C =⋃
nCn on an n-indexed probability space (Xn;Fn; Pn), where Pn belongs to a family Pn

of probability measures on Fn, possibly the family of all the probability measures on
Fn. Let R = 〈R; L〉 be a representation of C and {X c

m} be the set of labelled samples
of size m for a given c ∈ C . Let P(m)n be the measure on the m-fold product probability
space (X (m)n ;F(m)

n ; P(m)n ). A PAC learning algorithm A is a function A : {X c
m} → L

such that for every 0¡ �, �61 there is a non-negative integer m◦ such that for every
c ∈ Cn and P ∈ Pn, for every sample m¿m◦, denoting h = A(X c

m), the probability
Perror = Pn(�c(X ) 6= �h(X )) is bounded by: P

(m)
n (Perror ¡ �)¿ 1− �.
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If the above-mentioned function exists the class C is said to be PAC learnable
(learnable, for brevity) w.r.t. P using R. If m◦ is polynomial in 1/�, 1/� and n we
say that the sample complexity of A is polynomial. If A has running time polynomial
in the same arguments plus L(c), then C is called polynomially learnable and A is
said to be a polynomial time learning algorithm for C w.r.t. P using R.
In the special case where P is the family of all the probability measures on F it is

customary to call A a distribution-free learning algorithm for C .

For brevity, from now the n-indexing of C and the probability space (X ;F; P)
will be understood. In what follows, we will consider such representations that every
string of L represents a concept of C (proper learning). In this case basic theorems [3,
11] state that, in order to learn, all that A needs is to observe a su�cient number of
labelled examples of the goal function and output a contradiction-free hypothesis. These
theorems introduce the notion of consistent hypothesis, namely a hypothesis that gives
the examples the same labels of the target concept. Moreover, these theorems yield a
very narrow gap between the lower and upper bound on the number of examples that
have to be observed for a distribution-free learning of a class C . These bounds depend
on the following well-known combinatorial complexity index of C .

De�nition 2 (Vapnik [37]). Let C be a concept class and S a �nite subset of X ; �C (S)
= {S ∩ c|c ∈ C}, and #�C (S) its cardinality. The Vapnik–Chervonenkis dimension
of C (shortly, dVC(C)) is the largest integer d such that max{#�C (S) | #S = d}
= 2d. If no such d exists, then dVC(C) is assumed to be in�nite. 1

The next theorem deals with sample complexity bounds for the subfamily of well-
behaved concept classes. This is a mild additional measurability property of a concept
class introduced by Shai Ben-David (see [11]). As a matter of fact, almost all con-
cept classes of concrete interest, including the one concerned in this paper, enjoy this
property.

Theorem 1. For a well-behaved concept class C on a probability space (X ;F; P) and
a labelled sample X c

m for c ∈ C ; let a consistent hypothesis be an h ∈ C such that
�c(X )= �h(X ) for each element X of the sample. Then; for every (possibly unknown)
probability measure P onF; for 0¡�; �¡1=2; if m¿max{4=� log(2=�); 5:5dVC(C)=�}
any function A : {X c

m} → C that outputs a consistent hypothesis is a distribution-free
learning algorithm for C [3].
For 0¡�61=8; 0¡�¡ 1=100; if dVC(C)¿2 and m¡ max{((1 − �)=�) log(1=�);

(dVC(C) − 1)=32�} then there exists a probability measure P on X such that no
function of X c

m is a learning algorithm for C [14].

As shown by Vapnik and Chervonenkis in their pioneering paper [38], we can di-
vide the learning job into two subtasks: an algorithmic one aimed at discovering a

1 Since we parameterize a concept class C =
⋃

n
Cn by n; the reader should consider dVC(C) as the

function of n dVC(Cn).
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consistent hypothesis and a statistic one aimed at inferring the probability measure of
the symmetric di�erence c÷h from the fact that the frequency with which the sampled
points fall there is zero.
The SQ model introduced by Kearns [20] arises quite naturally from this viewpoint.

Here the learning algorithm uses the statistical properties of the labelled samples di-
rectly. In this sense the SQ model introduces a metaphor of the oracle STAT(c; P) with
which the learning algorithm interacts by asking queries of the form 〈 ; �〉, where  
is a function from {(X; �c(X ))} to {0; 1} and � ∈ [0,1] is an accuracy parameter. The
query 〈 ; �〉 is intended as a request for the value P = P( (X; �c(X )) = 1). In other
words, we assume that some property  of the random variable (X; �c(X )) is relevant
to our learning task and we check the probability P . From a labelled sample we might
obtain a con�dence interval for P . In its place STAT(c; P) returns an approximation
P′
 such that |P − P′

 | ¡ � with certainty. Consequently, the SQ model looks for
an algorithm that assures P(c ÷ h) ¡ �. The model is formalized in the following
de�nition.

De�nition 3 (Kearns [20]). Let C be a concept class on (X ;F; P), P ∈ P, represented
by R = 〈R; L〉: C is polynomially learnable from statistical queries w.r.t. P using R
if there exists an algorithm A and polynomials p(; ; ); q(; ; ) and r(; ; ) such that for
every c ∈ C , P ∈ P, and 0¡ �61 the following holds:
If A is given inputs �, n and L(c) and access to STAT(c; P) then

(1) for every query 〈 ; �〉 made by A,  can be evaluated in time q(1=�; n;L(c)) and
1/� is bounded by r(1=�; n;L(c));

(2) A has running time bounded by p(1=�; n;L(c)) and outputs a hypothesis h; rep-
resented through R, such that P(c ÷ h)¡ �.

It is not surprising that almost every concept class that is polynomially PAC learnable
is also SQ learnable. However, one can exhibit such learning tasks that show that the
last model is less powerful than the PAC model [20].
An SQ learning algorithm translates into a PAC learning algorithm that is robust to

noisy examples. This, of course, gives rise to larger deviations of the estimators we
employ. We consider two kinds of errors.
(a) Classi�cation noise (Angluin and Laird [2]). Here we assume that the indicator

function of c changes into a Bernoullian variable of parameter �c(X )(1 − �) + (1 −
�c(X ))�, with 06� ¡1/2, for each X independently from the other items in the sample.
In other words, we might imagine that the sampled point (X; �c(X )) is sent to us by
means of an unreliable messenger who tosses a coin with bias � and 
ips the label of
X whenever it turns heads.
This labelling error is called classi�cation noise. Every concept class that is PAC

learnable is also learnable with any �xed amount � of classi�cation noise less than the
information theoretic limit = 1

2 [2]. A polynomial dependency on (1− 2�b)−1 is added
to the sample complexity [2, 21], where �b is a known upper bound on �.
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(b) Malicious errors (Kearns [21]; Valiant [36]). There are two changes with respect
to the previous model. When tossed heads, the messenger:
• can corrupt the values of both X and �c(X ) in the sampled item;
• can behave as a malicious adversary. He can decide how to modify X and whether
or not to 
ip �c(X ), according to a strategy based on the knowledge of �, �, n, c; P
and the internal state of A.
The best upper bound on the error rate � (the coin bias, as above) that preserves

learnability equals �=(1+�) [21, 2], for minimal assumptions on the concept class (also
satis�ed by k-term-DNF formulas).
Focusing on oracles with �nite query repertory, the robustness of the SQ model vs.

these errors is stated by the following theorems. 2

Theorem 2 (Kearns [20]). Let C be a concept class on (X ;F; P), P ∈ P; represented
by R. If C is polynomially learnable w.r.t. P using R in the SQ model by algorithm A;
then C is polynomially PAC learnable w.r.t. P using R with classi�cation noise rate
�6�b ¡ 1

2 . In greater detail; let us call query space Q the set of queries  that can be
asked the oracle and � a lower bound on the approximation error requested by A on
the asked queries. Then for �nite Q there is an algorithm that learns C in polynomial
time w.r.t. P using R; whose sample complexity is O(1=(�(1− 2�b))2 log(#Q=�) +
1=�2 log(1=(��(1− 2�b)))).

Theorem 3 (Decatur [13]). Let C be a concept class on (X ;F; P); P ∈ P; represented
by R. If C is polynomially learnable w.r.t. P using R in the SQ model; then C is
polynomially PAC learnable w.r.t. P using R with malicious error rate � = 
�; where
06
 ¡ 1 and � is de�ned as in Theorem 2: In more detail; for a �nite query space
Q; there exists an algorithm that learns C in polynomial time w.r.t. P using R; whose
sample complexity is O(1=(�− �)2 log(#Q=�));

In order to cover a larger set of learning problems occurring in practice, in the fol-
lowing de�nition we provide a weaker version of learnability. Owing to the asymptotic
character of the de�nition, for de�niteness, we shall explicitly mention the n-index.

De�nition 1′. Let us consider a concept class C =
⋃

nCn on an n-indexed probability
space (Xn;Fn; Pn), where Pn ∈ Pn, a family of probability measures on Fn. Let R =
〈R; L〉 be a representation for C . A poly-relaxed (PAC) learning algorithm A is a
function A : {X c

m} → L such that for every polynomial p(.) and 1 ¿�; �¿1=p(n),
there is a non-negative integer m◦ such that for every c ∈ Cn and Pn ∈ Pn, for every
sample size m¿m◦ , denoting h = A(X c

m), the probability Perror = Pn(�c(X ) 6= �h(X ))
is bounded by: P(m)n (Perror ¡ �)¿ 1− �, for n large enough.

2 In later sections we will make use of Theorems 2 and 3 in the form quoted in the main text. As a matter
of fact, they stay true even for in�nite Q, once we use dVC(Q) instead of log #Q in the sample complexity
bounds. See [20] for details.
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If m◦ is polynomial in n we say that the sample complexity of A is polynomial. If
A has running time polynomial in n and L(c), then we say that C is polynomially
poly-relaxedly (PAC) learnable w.r.t. P using R and we say that A is a polynomial
time poly-relaxed (PAC) learning algorithm for C w.r.t. P using R.

The reader can easily restate De�nition 3 and Theorems 2 and 3 in terms of this
relaxed notion of learnability, just letting � and � be the inverse of any polynomial
and absorbing the polynomiality in 1/� and 1/� into the polynomiality in n.
Of course, any polynomial time learning algorithm for C w.r.t. P = ∪nPn is also a

polynomial time poly-relaxed learning algorithm for C w.r.t. P. In Section 3 we will
point out interesting cases where only this relaxed notion of learnability takes place.

2.1. The learning problem

First of all, let us introduce some notation. Given a set of n propositional variables
V = {x1; : : : ; xn}, a literal lj is a non-negated or a negated propositional variable. We
denote by xci and lcj the negated variable xi and literal lj, respectively.
A monomial (or term) � =

∧
li∈set(�)li is the conjunction of a set set(�) of literals.

Both a ∧ b and ab denote the conjunction of two literals or two terms a and b. An
assignment of values v = (v1; : : : ; vn) to V satis�es � if for each li in � either li = xi
and vi = 1 or li = xci and vi = 0.
A k-term-DNF(n) formula c is the disjunction of at most k terms on V . The pa-

rameterized class k-term-DNF is de�ned as k-term-DNF =
⋃

nk-term-DNF(n). We
will usually denote terms by ti and their union either as c = t1 + t2 + · · · + tr or as
c = t1∪ t2∪· · ·∪ tr or as {t1; t2; : : : ; tr}, depending on various algebraic and algorithmic
interpretations of the formula. c is satis�ed by v if at least one monomial is satis�ed
by v. c is monotone when no literal represents a negated variable.
For a given probability distribution P on Xn = {0; 1}n, and a subset B⊆Xn, P(B)

denotes the measure of B w.r.t. P. For subsets B1; B2⊆Xn we denote the measure
P(B1 ∩ B2) by P(B1; B2).
For any set of literals L = {l1; : : : ; lk} we de�ne ��L =

∧
li∈Ll

c
i ; for any set B⊆Xn

we denote by B↓L the set of points of B satisfying all the literals of L. Moreover, we
call restriction of B on L any set B↓M with M ⊆L. We denote that a set B′ is such a
restriction by B′6LB.
When no ambiguity arises, we will abuse these notations by identifying a boolean

formula with its support, i.e., with the set of assignments of values v on which the
output is 1. Thus:
– v ∈ � means that v satis�es �;
– P(c) is the probability of the set of assignments making c true;
– �↓L is the set of assignments satisfying both � and all the literals of L;
– �′6L� means �′ = �∧ (∧li∈Mli), for some M ⊆L.
We want to learn the class C of k-term-DNF formulas through a representation

R that associates with each concept c the string representing c in the above settled
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notation. We will exhibit an algorithm A that outputs hypotheses h according to De�-
nition 1 (De�nition 1′) for each n (n large enough) and a constant k¿1 using small
samples and short running times. For this algorithm we prove that its sample and time
complexities are polynomial functions of n; 1=� and 1=� (polynomial functions of n).
In fact L(c) = O(n) in the adopted representation; therefore, its contribution to the
task complexity disappears.
As mentioned in the introduction, by virtue of Theorem 1 learning this class re-

quires a polynomial sample size, since dVC(k-term-DNF(n)) = O(n). But the time
needed to distribution-free learn this class is presumably non-polynomial (under stan-
dard complexity-theoretic assumptions), as shown in [27]. Therefore to make the job
feasible we come to learn w.r.t. a special, although wide, family of probability distri-
butions on X . This allows us to �nd special statistics that: (i) are quickly computable
and (ii) are highly e�cient when the sample comes from the selected family of distri-
butions. We will use these statistics as building blocks of the learning algorithm.
For a given c ∈ C , the output of this algorithm is not a quantitative variable but a

domain h of the �-algebra F, which satis�es a constraint on the probability measure
P(c÷ h). Searching for this domain within a given class is essentially a computational
task, where results from Computer Science can help. Checking that the probability
constraint is satis�ed is a statistical inference problem. Its main formal step is the de-
termination of the minimum sample size that guarantees a �xed approximation threshold
on the estimate of P(c÷ h) with a preassigned con�dence. Now, this size depends on
the employed estimator which, in turn, identi�es the class of domains within which we
look for our hypothesis. The last job may be feasible or not, depending on the com-
plexity of this class. The trade-o� between sample size and computational complexity
which naturally arises can be outlined as follows.
In principle, for a given c; we may plan to enumerate all the items h of C and

consider the related symmetric di�erences c÷h. For each of these domains we have that
the frequency ’ with which the sample items fall into them is a Uniformly Minimum
Variance Unbiased Estimator (UMVUE) of P(c÷h). Therefore for any �xed h, ’ =0
is a good critic region for testing the statistical hypothesis P(c ÷ h) ¡ � (i.e., h is a
good approximation of c) against the complementary hypothesis. Then we expect that
a procedure based on this test, for example “pick the �rst h with � = 0”, is extremely
cheap w.r.t. the sample size, still remaining in the scope of Theorem 1. Nevertheless this
procedure has high computational costs because the number of concepts in C is large.
Our short-cut consists in grouping h′s through minimal su�cient statistics [24]. This

allows us to state lower bounds for the distribution law of P(c÷ h) within the group.
The number of these statistics as well as the groups of hypotheses is polynomial, thanks
to the clustering functionality of the discriminants (Section 3.2) that are the arguments
of these statistics. The pre�x ‘p’ in the name p-su�cient statistics we gave them stems
from this feature.
In order to appreciate the quality of the resulting algorithm, below we state some

lemmas and theorems concerning certain quality indices, mainly connected to the ca-
pacity of drawing the information content of the sample.
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2.2. A side theory for the most powerful learning algorithms

Let us start by formally specifying some de�nitions and lemmas from Statistics
Theory [29].

De�nition 4. Let Y be a random variable of density f(y) ∈ �(y), and let the sample
Y1; : : : ; Ym be drawn from Y . A set of statistics {Si = gi(Y1; : : : ; Ym); i = 1; : : : ; n} is a
set of joint su�cient statistics if and only if the conditional distribution fY1 ;:::;Ym|S1 ;:::;Sn
(y1; : : : ; ym|s1; : : : ; sn) of Y1; : : : ; Ym given that Si = si, i=1,: : :,n, does not depend on
which f(y) within �(y) generated the sample.

De�nition 5. Let Y be a random variable of density f(y) ∈ �(y), and let the sample
Y1; : : : ; Ym be drawn from Y . Let Z = g(Y1; : : : ; Ym) be a given function. A set of
statistics {Si = gi(Y1; : : : ; Ym); i = 1; : : : ; n} is a set of joint su�cient statistics for Z
if and only if for any z the conditional distribution fZ|S1 ;:::;Sn(z|s1; : : : ; sn) of Z given
that Si = si; i = 1; : : : ; n, does not depend on which f(y) within �(y) generated the
sample.

De�nition 6. A set of joint su�cient statistics S1; : : : ; Sn (for Z) is su�cient and min-
imal if it is a function of any other set of joint su�cient statistics (for Z).

De�nition 7. A set of joint su�cient statistics (for Z) is complete if and only if the
expected value E(h(S1; : : : ; Sn)) of any function h(.) equals zero ∀f(y) ∈ �(y), only
if P(h(S1; : : : ; Sn) = 0) = 1 ∀f(y) ∈ �(y).

Focusing on the variance of the estimator of P(c÷h) as a relevant quality parameter
of a learning algorithm, we de�ne a UMVULP as follows:

De�nition 8. Given a concept class C on (X ;F; P), a learning procedure A is a
family of statistics on {X c

m}. A is an unbiased procedure if for each c ∈ C and t ∈
(0,1) there exists an m(t) such that for each h ∈ A((X1; �c(X1)); : : : ; (Xm(t); �c(Xm(t))))
we have E(P(c ÷ h))¡t. A is a Uniform Minimum Variance Unbiased Learning
Procedure (UMVULP) if: (i) A is unbiased and (ii) for each A′ and each h′ ∈
A′((X1; �c(X1)); : : : ; (Xm; �c(Xm))); m6m(t) such that E(P(c ÷ h)) = E(P(c ÷ h′)), we
have V(P(c ÷ h))6V (P(c ÷ h′)), where V(.) denotes the variance.

Theorem 4. Let C be a concept class on (X ;F; P); with P from the class of all
absolutely continuous or all purely discrete distribution functions on X .
If dVC(C) ¡ ∞ then there exists a unique learning procedure for C with output

{h}⊆C ; which is symmetric in its arguments and unbiased for every P within the
above class. This procedure is the unique UMVULP.
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Proof. In [16, 23] it has been shown that in the probabilistic space (Y ;F′; P′) with
the same properties, any function G(Y ) that has an unbiased estimator independent
of P′ has a unique estimator that is unbiased and symmetric in the sample items.
This estimator has uniform minimum variance among all unbiased estimators, i.e.,
it is symmetric and UMVUE. These results directly apply to the probabilistic space
whose elements are the pairs (X; �c(X )), when we want to estimate E(P(c÷h)) through
P(c÷h), where P is a function that incidentally coincides with the unknown distribution
law of X .
Indeed, P(c ÷ h) is symmetric in the sample items if and only if h is such. More-

over, by Theorem 1, the �niteness of dvc(C) implies the existence of a learning pro-
cedure A and a function m(t) such that h ∈ A((X1); �c(X1)); : : : ; (Xm(t); �c(Xm(t)))
is symmetric and E(P(c÷ h))¡ t, for all t ∈ (0,1). Thus A is unbiased and P(c÷h)
is a symmetric and unbiased estimator of E(P(c ÷ h)), and it is the unique UMVUE
as well.

Since the unbiasedness of A implies the �niteness of dVC(C), in the distribu-
tion-free case if C is learnable then it is learnable through the UMVULP. For speci�c
distribution laws the following holds.

Theorem 5. Let C be a concept class on (X ;F; P) and A be a learning procedure
with output {h} such that E(P(c ÷ h) ¡ t for t ∈ (0; 1); h ∈ A(X c

m) and m =
m(t) is a proper sample size; with P within a class �. Let Si = gi(Y1; : : : ; Ym); Yj =
(Xj; �c(Xj)); i = 1; : : : ; n; j = 1; : : : ; m be a set of joint su�cient complete statistics for
P(c÷h) such that P(c÷h) = g(S1; : : : ; Sn). Then A is the unique UMVULP for C .

Proof. (1) Let h′ be as in De�nition 8. Then we have E(P(c ÷ h))= E(P(c ÷ h′)).
(2) Let us assume that P(c ÷ h′) = g′(S1; : : : ; Sn). Then by the completeness of {Si =

gi(Y1; : : : ; Ym); i = 1; : : : ; n} we have P(c ÷ h) = P(c ÷ h′) with probability 1.
Therefore in this case we have V(P(c ÷ h)) = V(P(c ÷ h′)).

(3) Let us assume that there is no g′ such that P(c ÷ h′) = g′(S1; : : : ; Sn). Now
P(c ÷ h) = g(S1; : : : ; Sn) = E(P(c ÷ h)|S1; : : : ; Sn) = E(P(c ÷ h′)|S1; : : : ; Sn) for
the completeness of {Si = gi(Y1; : : : ; Ym); i = 1; : : : ; n}. From the Rao-Blackwell
theorem [41] on E(P(c ÷ h)|S1; : : : ; Sn) we have V(P(c ÷ h))6V (P(c ÷ h′)).

De�nition 9. Given a concept class C on (X ;F; P), a learning procedure A is the
uniformly cheapest one if and only if, for each c; �; �, and minimum value m(�; �) = m
such that P(m)(P(c÷h)¡ �)¿ 1−� for each h ∈ A(X c

m), no A′ 6=A and m′(�; �) =
m′ with m′6m exist such that P(m

′)(P(c÷ h′)¡ �)¿ 1− � for some h′ ∈ A′(X c
m′).

Is the UMVULP also the uniformly cheapest procedure? In general no. Actually, we
can state that the UMVULP is a family of PAC learning algorithms, due to the bound
on E(P(c÷h)). Moreover, we see by inspection that if the distribution law of P(c÷h)
satis�es some regularity conditions for each h ∈ A(X c

m), as in the case of Gaussian or
Beta distribution, then we can rely on the UMVULP as the cheapest family of PAC
algorithms.
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Hence the UMVULP is a good landmark in designing learning algorithms. As a
matter of fact, any batch procedure, where we refer to the whole sample regardless
of any ordering, is UMVULP in the distribution-free case. Concerning the two well-
known algorithms proposed in [35] the one for learning k-CNF is symmetric w.r.t. the
sample. On the contrary, a hypothesis generated by the k-term-DNF learning algorithm
strongly depends on the order of the sample items, thus proving not optimal in the
above sense even if the special oracle required by the algorithm is available.
Our ideal enumerative procedure is UMVULP. But, as we have already said, it is too

expensive. The procedure we propose tries to barter the dependence on the distribution
law 3 to some minimality of the employed statistics. Namely the statistics we use are
near su�cient, in the sense that they allow us to approximate only from below the
distribution law of P(c ÷A(X c

m)).

3. Butter
y distributions and related su�cient statistics

Let us consider a sample space constituted by the boolean hypercube Xn = {0; 1}n
and let us represent its points as n bit strings, namely the 2n di�erent assignments to
the variables x1; : : : ; xn .
The support of a monomial can be considered to have a butter
y shape, accord-

ing to the �guration mentioned in the introduction. A non-empty intersection of two
monomials gives rise to a new butter
y with a longer squeezed string. In this paper we
look for a family of distribution laws for which this intersection constitutes a suitable
representation of both the monomials, in the sense that it allows us to draw su�cient
statistics w.r.t. the probability measures of both these monomials.

3.1. Butter
y distributions

A peculiarity of our distributions is that if the sets of variables that are grouped in
the center of two butter
ies di�er only by a small fraction, then the ratio between the
measures of the two butter
ies is nicely bounded. Formally:

De�nition 10. Let n; k ∈ N and q∗ = poly(n) (i.e., polynomial in n). We say that the
distribution P on Xn is a butter
y distribution with parameters k and q∗ ( for short,
P is but( k; q∗) ) if there exists a function �61/spoly(n) (i.e., superpolynomial in n),
� ∈[0,1], such that for every monomial � on V = {x1; : : : ; xn} and for each set I of at
most k literals, if �↓I 6= ∅ and P(�)¿�=k then P(�↓I )¿P(�)=q∗ for n large enough.

Basically, the distributions belonging to the butter
y family are those that allow us
to check (from one side) the relevance of a monomial just by checking the probability

3 Indeed each SQ learning procedure is symmetric in the examples, but the unbiasedness proof of our
learning procedure is restricted to special distribution laws.
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measure of some of its subsets. This family is not narrow. Here we list some relevant
members and non-members.

Examples of butter
y distributions
(a) p-smooth distribution [32]
For a given 0¡ p61, a distribution P on Xn is said to be p-smooth if for any v1; v2 ∈
Xn of Hamming distance one it holds that P(v1)¿pP(v2), where p = 1/poly(n). Now,
given an arbitrary monomial � and a set I of at most k literals with �↓I 6= ∅, let us con-
sider for each v ∈ �↓I the set A� of all points of Xn di�ering from v only in the assign-
ments to some literals of I ; their Hamming distance from v is at most k, their number
is at most 2k . Consequently, for each v′ ∈ A�, P(�)¿pkP(�′) and P(�)¿pkP(A�)=2k .
Finally, since the A�’s induce a partition of �, we have that P(�↓I )¿P(�)(p=2)k ,
which, simply putting � = 0, 4 proves that P is but (k; (2=p)k) for a constant k:
(b) q-bounded distribution [6]
For a given q¿1, a distribution P on Xn is said to be q-bounded if, for any v1; v2 ∈
Xn; P(v1)6qP(v2). A q-bounded distribution is a p-smooth distribution. In particular
P is but (k; q2k) for q2k= poly(n) and � = 0.
(c) Product distribution [19]
A set Xn is said to have a product distribution P if (Xn;F; P) is described by a
random vector B = (B1; : : : ; Bn); where Bi; i = 1; : : : ; n, are independent Bernoullian
variables of parameters ri, where 0¡r6ri61− r ¡ 1. A product distribution is a p-
smooth distribution. In particular P is but(k; q∗) for q ∗ 6(min{r; 1− r})−k =poly(n)
and � = 0.
Since we have set �=0 in all previous examples, the reader may be reasonably

wondering about the use of � in the de�nition of butter
y distributions. A main property
of these distributions is that they allow zero probability holes in Xn, provided that the
probability is fairly distributed among the remaining points. When the probability P(�)
of a monomial � is very close to 0 (say, P(�) = 1=2n with n large), it may happen
that, while � does contain points of positive probability, a restriction �↓I does not,
even if �↓I 6= ∅. The requirement �61=s poly(n) is meant as a suitable bound on �,
to bound the measure of these odd monomials from above. Indeed, all we need to
check according to De�nition 1′ is the existence of a function s that goes to ∞ faster
than any polynomial. For this s we can set �(n)61=s(n) in De�nition 10. In later
sections we will relate � to the accuracy parameter � by means of inequalities of the
form “�(n)6�”. This � can be reasonably set to 1/poly(n), according to the notion of
poly-relaxed learning algorithms introduced in De�nition 1′ . The rest of this section
illustrates the point.
(d) Uniform distribution on subsets of Xn. The uniform distribution on the whole

Xn is a special case of both product and q-bounded distributions. Here we consider
some special restrictions of the support of the random variable.

4 Throughout the paper we will write “�=0” as an abbreviation for “�(n) = 0∀n” ; whereas, every
inequality involving �(n), such as �(n)6� should be understood to hold for n large enough.
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(d.1) Let P be the uniform distribution over the odd-parity points of Xn (i.e., the
points that have an odd number of components set to one). The number of such points
is 2n−1. Let n ¿ k and consider the family of monomials � of l ¡ n− k literals. Each
� contains exactly 2n−l−1 points of odd parity, thus its measure is 2n−l−1=2n−1 = 2−l.
For a set I of k ′6k literals, if �↓I 6= ∅ then P(�↓I )¿2n−l−k . Thus if n ¿ k then P is
but (k; 2k) for �(n)=k ¿ 2−(n−k).
(d.2) Let P� be the family of distributions that are uniform over the points of Xn

having at most bn�c components set to one and zero elsewhere, with 0¡ � ¡1/2. In
the appendix we show the following :

Lemma 1. For each � ∈ (0; 1=2) and P ∈ P� if n is chosen so large that for a constant
k we have bn�c ¿ k ¿ 1; then P is but(k;O(n2k)) for [en=(k − 1)]k−1�bn�c ¡ �(n)=k;
where e is the base of the natural logarithm.

Examples of non-butter
y distributions
(e) Let P be the probability distribution on Xn that assigns measure 1/2 to the point
v∗ = (0; 0; 0; : : : ; 0) and measure 1/(2n+1−2) to the remaining points. Let � = xc1x

c
2x

c
3 · · ·

xcn−1. Obviously P(�)¿1=2, as v∗ ∈ �. Assume k¿2 (which implies 1/2 ¿�(n)=k).
If I = {xn}, the monomial �↓I = �∧xn = xc1x

c
2x

c
3 · · · xcn−1xn has measure P(�↓I ) =

1=(2n+1 − 2). Therefore P(�↓I )=P(�)61=(2n − 1), where 2n − 1 is not a polynomial
function in n. We conclude that if k¿2 then P is not a butter
y distribution.
A further negative example will be supplied later in Section 3.2.
Even from a strictly operational point of view, the butter
y family does not appear

trivially reducible to another already studied distribution family. In particular, let us
consider the following dominance relation.

De�nition 11 (Benedek and Itai [7]). Given two probability spaces (X ;F; P1),
(X ;F; P2) and 
¿1; P1 is said to 
-dominate P2 if and only if for every A ∈ F

we have P2(A)6
P1(A).

It is easy to prove that the SQ learnability of a concept class C in a given probability
space (X ;F; P) extends to any P′
-dominated by P, for 
 polynomial in the relevant
parameters of the class C and the SQ algorithm. On the other hand, the following
lemma – whose proof is reported in the appendix – states that not all the members
of the butter
y family can be fairly dominated by distributions from among those
mentioned in this section.

Lemma 2. For each � ∈ (0; 1=2); P ∈ P� and n large enough; P is not 
-dominated
by a p-smooth distribution; for any p and any 
 = poly(n).

Remark 1. Note that P� is not a purely arti�cial distribution class. If we consider
monotone formulas, for instance, P ∈ P� becomes the uniform distribution law of the
incomplete assignments with � limiting the number of assigned values.
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For our speci�c learning problem, a broad interpretation of the role played by �; k and
q∗ in butter
y distribution is the following: k is an upper bound on the number of terms
of the actual target formula; q* and � represent the interaction between the distribution
on Xn and the class of k-term-DNF(n) formulas. With reference to examples (a)–(c),
we call the interaction fair when we do not need to introduce a lower bound on �
to get a butter
y distribution. Stated otherwise, we can set � = 0. With reference to
examples (d.1), (d.2), we call the interaction unfair when we do need to impose a
lower bound on �. This latter kind of interaction bounds the accuracy Perror obtainable
by our algorithm from below. However this lower bound, which is a sort of admittance
fee for many distribution laws, can still be considered reasonable, since it is of the form
1/poly(n). Here we get polynomial time algorithms only in the poly-relaxed sense.

3.2. Discriminants and notation

In line with some ideas that appear for instance in [1, 8, 15], we present the following
de�nitions and results:

De�nition 12. Given a k-term-DNF(n) c = t1 + t2 + · · · + tk′ ; k ′6k, a discriminant 5

for a term ti is a collection of at most k ′ − 1 literals L = {lj; j = 1; : : : ; k ′′6k ′ − 1}
without complementary pairs such that for every tr 6= ti there is a literal of tr belonging
to L and no literal of ti is in L.

For example, if c = t1 + t2 + t3; t1 = x1x2xc3; t2 = x3x4x5, t3 = x1x4, a discriminant
for t1 is L = {x4; x5}, another one is L = {x4}.

Remark 2. The discriminant provides a mechanism for focusing on a single term of
the target formula. Let Lc be the set of the negations of the literals in L. If L is a
discriminant of a term ti in c and, during sampling Xn, we draw a point v such that
v ∈ c↓Lc , then this point satis�es only term ti in c: Indeed, every term in c shares a literal
with L, except for ti . For instance, if c = x1 + xc2; L = {xc2}; v1 = (1; 1); v2 = (1; 0),
then v1 ∈ c↓Lc and it satis�es only the �rst term, v2 does not spur any term of c:

Thus, we can associate with each discriminant L of t a monomial ��L, i.e., a butter
y
whose squeezed part contains the binary values satisfying the negations of the literals
in L. By de�nition, t↓Lc = ��L ∩ t 6= ∅ and it is a butter
y too whose squeezed part is
at most k − 1 bits longer than the squeezed part of t. If the probability distribution P
on Xn is a butter
y, we might deduce a lower bound on P(t↓Lc ) through P(t). This
is the key point of the learning algorithm we will present in the next section. In fact,
we will show a statistic for inferring about P(t↓Lc ). This statistic proves su�cient for
stating lower bounds on the distribution function of the variable P(c ÷ h).

5 The word ‘discriminant’ comes from Angluin’s paper [1] where she de�ned a slightly di�erent notion
of it. By abuse of terminology we use the same word here.
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In the sequel we will also make use of the two following weaker notions of
discriminant.

De�nition 13. Given a k-term-DNF(n) c, a subformula c′ of c is a disjunction of terms
in c. A (weak) discriminant L of c′ is a collection of at most k − 1 literals without
complementary pairs, such that for every term tr in c and not in c′ there is a literal of
tr belonging to L, and no literal of L appears in a term of c′. L is a false discriminant
for c if it is a set of at most k literals without complementary pairs such that for every
term tr of c there is a literal in tr belonging to L.

Note that according to our notational conventions for ��L, De�nitions 12 and 13 can
be restated through the following conditions:
– discriminant: ��L has 6k − 1 literals, ��L 6= ∅ and t↓Lc= c↓Lc ;
– weak discriminant: ��L has 6k − 1 literals, ��L 6= ∅ and c

′
↓Lc
= c↓Lc ;

– false discriminant: ��L has 6k literals, ��L 6= ∅ and c↓Lc = ∅.
Obviously, since the learning algorithm does not know c, it does not know the

discriminants of the terms of c as well. However, we can state the following lemmas:

Lemma 3 (Blum and Rudich [8]; Flemmini et al. [5]). (a) If a k-term-DNF(n) for-
mula c is made only of prime implicants (i.e.; there is no term ti in c that can be
removed without changing �c and there is no literal that can be removed from any ti
in c without changing �c) then every term of c admits a discriminant.
(b) If c 6= Xn then c admits at least one false discriminant.

Lemma 4. For given k and n; the number of possible discriminants (even weak or
false) for a term or a subformula of all the k-term-DNF (n) formulas is ¡ (2en=k)k .

Proof. Any unordered selection of k out of 2n literals without complementary pairs is
a possible discriminant. Then, the number of discriminants is less than

∑k
l=0

(2n
l

)
¡

(2en=k)k [33].

Before closing this section, let us present another example of a non-butter
y distri-
bution:
(f) Uniform distribution on the support of a k-term-DNF formula
Given a k-term-DNF (n) formula c = t1+ t2+ · · ·+ t′k ; k

′6k, such that c 6= Xn, let us
consider a probability distribution P that is uniform over all the points of Xn satisfying
c. Let us focus on the monomial (without literals) � = Xn and on a false discriminant L
of c. Obviously P (�) = 1. Now, �↓Lc 6= ∅ and c↓Lc = ∅, by de�nition. This means that
no point of measure greater than zero satis�es �↓Lc . Then, despite P(�) = 1; P(�↓Lc ) = 0
holds and no butter
y parameter can �ll the ‘in�nite’ multiplicative gap between these
two probabilities.
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4. The learning algorithm

Let us �nally describe the k-term-DNF learning algorithm for butter
y distributions.
The key hypothesis that makes the algorithm feasible is that the given distribution P
on Xn is of but(k,q*) kind, where k is an upper bound on the actual number of terms
of the DNF to be learnt and q* is a known 6 polynomial in n. The role of the function
� is immaterial in the case of fair interactions, since we are allowed to set � to 0. By
contrast, for unfair interactions � must be compared to the �nal accuracy parameter �.
The algorithm we present in this section accomplishes proper learning for both fair and
unfair interactions: speci�cally, in the �rst case the learning task follows De�nition 1,
and in the second case De�nition 1′.
We will specialize the algorithm for both the non-monotone case (Section 4.2.1) and

the monotone case (Section 4.2.2).

4.1. Survey of the algorithm

The structure of the algorithm is shown below, where the parts in square brackets
apply only to the monotone case.

DISCRIMINANT LEARNING
for each selection of k ′6k − 1 literals li without complementary pairs

L = {l1; : : : ; lk′}
if EMPTY (L) = ‘ok’
then tcand[; ttest] = INFER SUBTERM (L);

hlarge=PRUNE ({tcand});
hend=FILTER (hlarge[; {ttest}]);
return (hend);
end (DISCRIMINANT LEARNING)

The algorithm starts enumerating all possible sets L of at most k − 1 literals without
complementary pairs. Viewing L as a candidate discriminant of a term of the target
formula c, the subroutine EMPTY accepts L if it discriminates subformulas of non-
negligible measure. Then INFER SUBTERM cumulates, at the end of the enumeration,
a set of monomials {tcand}[∪{ttest}] that include all the relevant terms of c. This set
is processed by subroutines PRUNE and FILTER for dropping exceeding monomials,
leaving at most k terms in the �nal set hend, namely the above relevant ones together
with (possibly) some very small residual monomials, which do not a�ect the accuracy
of the estimation.
PRUNE operates on every monomial suggested by INFER SUBTERM and FILTER

extracts the �nal hypothesis from the whole set of remaining terms. These subroutines

6 In Section 4.3 we will remove the requirement that q* be known in advance.
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act in a completely di�erent way depending on whether the concept that they deal with
is monotone or not.
Namely, the strategy followed in the latter case is just to clean {tcand} by removing

those monomials t whose di�erence t−c appears too high, and then to �nd in a purely
combinatorial way a subset h of at most k terms that minimizes the measure of the
symmetric di�erence c ÷ h.
On monotone c, we recognize that no restriction of terms of c is generated by any

inference of our algorithm. This fact allows us to identify the terms of c as the minimal
restrictions of the monomials in {tcand}. Here special care must be paid in deciding
about the relevance of the monomials, in order to have in {tcand}, for each monomial
�, a term t of c such that t is a restriction of �. This is achieved through the auxiliary
set {ttest}.
The main job of most of these subroutines might be described as a series of queries

to an oracle STAT(c,P) as described in Section 2.

4.2. Procedure description and analysis

We have two goals: (a) to show that the algorithm selects a right formula, (b) to
prove that this job is polynomial. We will start by checking the job of the subroutines
w.r.t. the �rst goal, dealing with non-monotone and monotone formulas in two di�er-
ent subsections. In the next section we will bound the resources used by the whole
algorithm in both cases.
In regard to notation, in the pseudocode of the routines below we will write x=

query (〈 ; �〉) to denote the answer of STAT (c,P) to query 〈 ; �〉.

4.2.1. Non-monotone formulas
• EMPTY

The goal of EMPTY is to make INFER SUBTERM consider only signi�cantly large
subformulas.

EMPTY(L)
P′ = query(〈v ∈ c↓Lc ; �1=2kq

∗〉);
if P′ ¿ �1=2kq∗ then return (‘ok’)

else return (‘wrong’)
end (EMPTY)

Lemma 5. Let P be a but(k; q∗) distribution on Xn, t∗ be a term of probability
measure ¿�1=k of a k-term-DNF (n) formula c and L be a discriminant of t∗. If
�(n)6�1 then EMPTY (L) =‘ok’.

Proof. Simply note that, since L is a discriminant of t∗, then P(c↓Lc ) = P(t∗↓Lc )¿�1=kq∗.
Therefore P′ ¿ �1=kq∗ − �1=2kq∗ = �1=2kq∗.
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Table 1
The probability model of the oracle STAT(c,P) answering INFER SUBTERM queries

xci =∈ Lc xi =∈ Lc xi ∈ Lc xci ∈ Lc

xci =∈ t∗ xci ∈ t∗ xi =∈ t∗ xi ∈ t∗

P(t∗↓Lc
; vi = 1) ¿

�1
kq∗ 0 ? ¿

�1
kq∗ ¿

�1
kq∗ 0

P(t∗↓Lc
; vi = 0) ? ¿

�1
kq∗ ¿

�1
kq∗ 0 0 ¿

�1
kq∗

• INFER SUBTERM
The inferential core of the procedure is realized as follows:

INFER SUBTERM(L)
Tcand = {x1; : : : ; xn; xc1; : : : ; xcn} − L;
for i = 1,: : : ; n

if xci 6∈ L then P′ = query(〈v ∈ c↓Lc ; vi = 1; �1=2kq
∗〉);

if P′¿�1=2kq∗ then Tcand = Tcand − {xci };
if xi =∈ L then P′ = query(〈v ∈ c↓Lc ; vi = 0; �1=2kq

∗〉);
if P′¿�1=2kq∗ then Tcand = Tcand − {xi};

tcand = ∧li∈Tcand−Lc li
return (tcand);
end(INFER SUBTERM).

Lemma 6. Let P be a but(k; q∗) distribution on Xn; t∗ be a term of probability
measure ¿�1=k of a k-term-DNF (n) formula c; L be a discriminant of t∗ and
tcand = INFER SUBTERM(L). If �(n)6�1 then t∗6Lc tcand.

Proof. According to the butter
y hypothesis, the probability model of Table 1 holds.
In this table the probability of the cells labelled by ‘?’ depends on the membership of
the complementary literal in set (t∗).
If li ∈ L then li 6∈ set(t∗), by the de�nition of discriminant. If li 6∈ L then the above

model implies that, due to its accuracy, STAT (c; P) sharply discriminates about the
membership of li in set (t∗) as long as li 6∈ Lc. Here we also note that, since L
is a discriminant of t∗ then c↓Lc = t∗↓Lc and thus the events {v ∈ c↓Lc ; vi = j} and
{v ∈ t∗↓Lc ; vi = j}, j = 0,1, are equivalent. So we can correctly decide to exclude
xci =∈ (L ∪ Lc) from t∗ when P′ = query (〈v ∈ c↓Lc ; vi = 1; �1=2kq∗〉)¿�1=2kq∗, as
is indicated in the test of the subroutine. Indeed, if xci ∈ set (t∗) then we would
have P(v ∈ c↓Lc ; vi = 1) = 0 and therefore P′ ¡ �1=2kq∗. On the other hand, this
threshold is not too high, since xci =∈ set(t∗) implies P(v ∈ c↓Lc ; vi = 1)¿�1=kq∗ and
then P′ ¿ �1=kq∗ − �1=2kq∗ = �1=2kq∗. An analogous proof works for xi.
From the last two columns of Table 1 we can see that if li ∈ Lc we cannot decide

the membership of li through INFER SUBTERM queries. Therefore for that case we
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adopt the strategy of removing all the literals belonging to Lc from Tcand, and then
checking all the monomials coming from adding all the subsets of Lc to set(tcand).

• PRUNE
For a given discriminant L of t∗, set (tcand) contains all the literals of t∗, except ev-
ery li ∈ Lc. Therefore we add to the inferred monomials each restriction tres of tcand
obtained by adding subsets of Lc to set (tcand). Then we keep only those monomials
whose di�erence t-c is small enough (P′ ¡ �1=2k).

PRUNE(h)
hlarge = ∅;
for each tcand ∈ h

L = {l1; : : : ; lk′} such that tcand= INFER SUBTERM(L);
Lc = {lc1; : : : ; lck′};
for each subset M of Lc

tres = tcand ∧ (
∧

lci∈M lci )
P′=query(〈v ∈ tres − c; �1=2k〉);
if P′ ¡ �1=2k then hlarge = hlarge ∪ {tres};

return (hlarge);
end(PRUNE)

Lemma 7. If tres is a term of c then tres ∈ PRUNE({tcand}); if P(tres − c)¿�1=k then
tres =∈PRUNE({tcand}):

Proof. By inspection, given the accuracy of the query and the fact that P(tres− c) = 0
whenever tres is a term of c.

• FILTER
After PRUNE, hlarge is a set of at most 2k−1Nk terms, where Nk is the total number of
discriminants allowed by the class of k-term-DNF (n). By Lemma 4, Nk ¡ (2en=k)k .
In hlarge we can �nd:
(1) all the terms of c having measure ¿�1=k;
(2) further terms t such that P(t − c)¡ �1=k.
Therefore, due to the items under (1) above, the problem of picking at most k terms
that ful�ll c is a set-covering problem that admits at least one solution with waste
¡ �1. FILTER solves this problem in a purely enumerative way.

FILTER (h)
for each ti1; : : : ; tik′ ∈ h; 06k ′6k

htrial = ti1 + · · ·+ tik′ ;
P′(htrial) = query(〈v ∈ c − htrial; �1〉);

P′(hend) = minhtrialP
′(htrial);

return (hend)
end (FILTER)
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Lemma 8. Let P be a but(k; q∗) distribution on Xn. Then for �(n)6�1 FILTER (hlarge)
returns a k-term-DNF(n) formula hend such that P(c ÷ hend)¡ 4�1 as hypothesis.

Proof. Since for each trial htrial is made up of at most k terms, we have that P(htrial−
c)¡ �1, by Lemma 7. Hence P(hend − c)¡ �1.
Let h∗ be the htrial for which P(c − htrial) is minimized. Since hlarge contains all

the terms t∗ of c such that P(t∗) ¿�1=k then P(c − h∗) ¡ �1. The query accuracy
allows us to write |P′(htrial) − P(c − htrial)| ¡ �1 for each htrial, so P(c − hend) ¡
P′(hend) + �16P′(h∗) + �1 ¡ P(c − h∗) + 2�1 ¡ 3�1.

Remark 3. It is easy to see that in the case of non-monotone formulas EMPTY is
not necessary and PRUNE might come to add all the restrictions of the monomials
suggested by INFER SUBTERM. In fact FILTER is able to extract the �nal hypothesis
even from the resulting larger set of monomials. Nevertheless the above optional actions
actually allow us to reduce the search space of FILTER, thus adding e�ciency to the
whole procedure.

4.2.2. Monotone formulas
If we restrict ourselves to monotone DNF formulas, the learning task can be per-

formed more e�ciently.
Now a discriminant is a collection of at most k − 1 non-negated variables. As we

will show in Corollary 1, this fact makes our inference tools never underestimate the
relevant terms of c. However, purely syntactical rules have to be applied in order to
remove further monomials not belonging to c from the set of the inferred terms. The
resulting hypothesis h is always included in c, possibly missing some terms of negligible
probability measure. As usual for monotone formulas, the absence of overestimating
errors allows us to restrict the subject of our queries to the sole support of c (positive
examples), if the examples are error-free. We still do need to refer to the whole sample
space in the case of noisy examples.
In the sequel we give slightly modi�ed versions of EMPTY and INFER SUBTERM,

and new versions of PRUNE and FILTER. Their names carry a su�x “.M ” to denote
that they refer exclusively to monotone formulas.
• EMPTY.M
Now the subroutine makes two tests, whose di�erence lies only in the threshold on the
size of accepted subformulas.

EMPTY.M(L)

ag = ‘wrong’;
P′ = query(〈v ∈ c↓Lc ; �1=8k

4(q∗)2〉);
if P′¿3�1=8k4(q∗)2 then 
ag = ‘ok’;
if P′¿3�1=4k2q∗ then 
ag = ‘okk’;
return(
ag)
end (EMPTY.M)
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Lemma 9. Let P be a but(k; q∗) distribution on Xn; c′ a subformula of a k-term-
DNF(n) formula c; L a discriminant of c′. Then for �(n)6�1=2k3q∗ :
(1) if EMPTY.M(L) = ‘wrong’ then P(c′)¡ �1=2k3q∗;
(2) if EMPTY.M(L) = ‘okk’ then P(c′)¿�1=2k2q∗;
(3) if EMPTY.M(L) = ‘ok’ then P(c′)¿�1=4k4(q∗)2;
(4) if c′ is a single term and P(c′)¿�1=k then EMPTY.M(L)= ‘okk’.

Proof. Let c′ = ti1 + · · ·+ tik′ ; k ′6k; L = {xjk′′}; k ′′6k ′ − 1.
First of all, we note that, as L is a discriminant of c′, c↓Lc = c′↓Lc

.
(1) Assume that P(c′)¿�1=2k3q∗: c↓Lc = c′↓Lc

= (ti1 + · · · + tik′) ∧ ��L = ti1 ∧ ��L +
· · · + tik′ ∧ ��L. Since P(c′)¿�1=2k3q∗ then there exists a term t∗ij of c′ such that
P(t∗ij)¿�1=2k4q∗. Since P is but (k; q∗) with �(n)6�1=2k3q∗ we have P(c↓Lc )¿
P(t∗ij ∧ ��L) = P(t∗ij↓Lc)¿�1=2k4(q∗)2. Then P′ ¿ �1=2k4(q∗)2 − �1=8k4(q∗)2 =
3�1=8k4(q∗)2 and EMPTY.M(L) 6= ‘wrong’, a contradiction.

(2) Assume that P(c′) ¡ �1=2k2q∗. Then, obviously, P(c′↓Lc
) ¡ �1=2k2q∗, hence P′

¡ �1=2k2q∗ + �1=8k4(q∗)2 ¡ 5�1=8k2q∗ and EMPTY.M(L) 6= ‘okk’, a contradic-
tion.

(3) Assume that P(c′) ¡ �1=4k4(q∗)2. Then P(c′↓Lc
) ¡ �1=4k4(q∗), hence P′ ¡

�1=4k4(q∗)2 + �1=8k4(q∗)2 = 3�1=8k4(q∗)2 and EMPTY.M(L) 6= ‘ok’, a contra-
diction.

(4) Since P(c′)¿�1=k then P(c′↓Lc )¿�1=kq∗ and P′ ¿ �1=kq∗ − �1=8k4(q∗)2¿7�1=8kq∗

and EMPTY.M(L) = ‘okk’.

• INFER SUBTERM.M
We will make two changes to the previous version:
(i) the case xci =∈ L does not apply;
(ii) we produce two sets, {tcand} and {ttest}. Their di�erence lies both in the discrim-
inants and in the threshold used to select their items. The use of the new set {ttest}
will be clear in FILTER.M.

INFER SUBTERM.M(L)
tcand = Xn

Tcand = {x1; : : : ; xn} − L;
Ttest = {x1; : : : ; xn} − L;
for i = l; : : : ; n
ifxi =∈ L then

P′ = query(〈v ∈ c↓Lc ; vi = 0; �1=4k
3(q∗)2〉);

if P′¿�1=4k3(q∗)2 then Tcand = Tcand − {xi};
P′′ = query(〈v ∈ c↓Lc ; vi = 0; �1=8k

5(q∗)3〉);
if P′′¿�1=8k5(q∗)3 then Ttest = Ttest − {xi};

ttest = ∧li∈Ttest li;
if EMPTY.M(L) = ‘okk’ then tcand = ∧li∈Tcand li;
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return (tcand ; ttest);
end (INFER SUBTERM.M)

Lemma 10. Let P be a but(k; q∗) distribution on Xn; c′ a subformula of probability
measure ¿�1=2k2q∗ of a monotone k-term-DNF(n) formula c and L a discriminant
of c’. Then for �(n)6�1=2k2q∗ there exists a term t∗ of c′ such that P(t∗)¿�1=2k3q∗

and set(t∗)⊇ set(tcand generated by INFER SUBTERM.M(L)).

Proof. Since P(c′)¿�1=2k2q∗; there exists a term t∗ of c′ such that P(t∗)¿�1=2k3q∗.
Since P is but (k; q∗); with �(n)6�1=2k2q∗, then P(c↓Lc )¿P(t∗↓Lc )¿�1=2k3(q∗)2. So,
for every variable xi =∈ set (t∗); P′ = query(〈v ∈ c↓Lc ; vi = 0; �1=4k3(q∗)2〉) is large
enough for deleting xi from Tcand. Then set (t∗)⊇ set (tcand):

An analogous lemma holds for Ttest. Let us summarize:

Corollary 1. Let P be a but(k; q∗) distribution on Xn; t∗ a term of probability measure
¿� of a monotone k-term-DNF (n) formula c and L a discriminant of t∗.
• If � = �1=2k2q∗ and �(n)6� then t∗ = (tcand generated by INFER SUBTERM.M(L)).
• If �= �1=4k4(q∗)2 and �(n)6� then t∗=(ttest generated by INFER
SUBTERM.M(L)).

• In both cases no L generates a restriction of the concerned t∗.

Proof. The claim follows directly from Lemma 6, since if L is a discriminant of a
relevant term then the sole allowed restriction of tcand[ttest] is tcand[ttest] itself, and from
Lemma 10, due to the features of discriminants of subformulas containing relevant
terms.

• PRUNE.M
PRUNE.M removes from {tcand} all monomials that can be found too large. Namely
it compares each tcand with all the remaining monomials of this set, deleting those that
include (even not strictly) tcand.

PRUNE.M(h)
for each t ∈ h
for each t′ ∈ h− {t}
if set(t)⊇ set(t′) then h = h− {t′}

return(h)
end(PRUNE.M)

Lemma 11. Let P be a but(k; q∗) distribution on Xn and c be a monotone k-term-
DNF(n) formula. Then; for �(n)6�1=2k2q∗; hlarge = PRUNE.M({tcand}) can be parti-
tioned into the following two sets:
(1) all the prime implicants of c of measure ¿�1=k;
(2) further monomials that include terms t∗ of c such that �1=2k3q∗6P(t∗)¡ �1=k.
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Proof. Without loss of generality, we assume that c is made up of prime implicants
only.
The items under (1) above are guaranteed to belong to hlarge by the fact that if

t* ∈ c; P(t∗)¿�1=k and L is a discriminant of t∗, then EMPTY.M(L) = ‘okk’ by
Lemma 9. Thus t∗ ∈ {tcand generated by INFER SUBTERM.M} does not get deleted
in PRUNE.M by any restriction of t∗ (Corollary 1).
As far as the remaining items of PRUNE.M({tcand}) are concerned, Lemma 10 states

that each tcand inferred by INFER SUBTERM.M includes some term t∗ of c such that
P(t∗)¿�1=2k3q∗. Due to Corollary 1 each monomial � such that P(�)¿�1=k either
belongs to c or is pruned by a t∗ ∈ c.

• FILTER.M
FILTER.M picks from {ttest} the monomials of c of measure ¿�1=2k3q∗ that are in-
cluded in the monomials of the second part of hlarge (see Lemma 11). Then FILTER.M
adds the former monomials to and removes the latter monomials from hlarge. The whole
job is accomplished by simply comparing the monomials t of hlarge with the monomials
t′ of {ttest}: each time set (t′)⊇ set (t); t is replaced by t′ in hlarge.
What remains at the end is just the �nal hypothesis the procedure DISCRIMI-

NANT LEARNING generates for c.

FILTER.M(h; h′)
for each t ∈ h
for each t′ ∈ h′

if set(t′)⊇ set(t) then t = t′

return(h)
end(FILTER.M)

Lemma 12. Let P be a but(k; q∗) distribution on Xn and c be a monotone k-term-
DNF(n) formula. For �(n)6�1=4k4(q∗)2 FILTER.M outputs as hypothesis a monotone
k-term-DNF(n) formula h such that P (c÷h)¡ �1.

Proof. By Corollary 1 and Lemma 9, for each t∗ such that t∗ ∈ c and P(t∗)¿�1=2k3q∗

no restriction of t∗ belongs to {ttest}. Hence each monomial � of point 2 of Lemma 11
gets removed by FILTER.M and replaced by a single term included in � and belonging
to c. Therefore, by Corollary 1 on {tcand}, all that is left in h after FILTER.M is the
collection of all the terms of c of probability measure ¿�1=k, plus other terms of c of
measure ¿�1=2k3q∗. Thus P(c − h)¡ �1; P(h− c) = 0, hence P(c ÷ h)¡ �1.

4.3. The cost of learning k-term-DNF(n)

In summary, we have proved that our DISCRIMINANT LEARNING procedure com-
putes accurate hypotheses both in the monotone and in the non-monotone case.
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As already mentioned, accuracy is to be intended in the sense of De�nition 1 or of
De�nition 1′ according to whether � = 0 in the de�nition of but (k; q∗) or not. Theorem
6, as well as Corollaries 2 and 3 below, deal with the weaker notion of learnability
by De�nition 1′: Clearly enough, all these results can be reformulated as learnability
results in the sense of De�nition 1 for � = 0 with no essential modi�cations: one
simply makes head that the asymptotical behavior of the function � does not a�ect the
complexity of our algorithms. Thus also in case of fair interactions we can establish
these results with exactly the same complexity bounds.

Theorem 6. Let P be the family of but(k; q∗) probability distributions on Xn; with
q* known. Then the class of k-term-DNF formulas is polynomially poly-relaxedly
SQ-learnable w.r.t. P using k-term-DNF representation; and the class of monotone
k-term-DNF formulas is polynomially poly-relaxedly SQ-learnable w.r.t. P using
monotone k-term-DNF representation.
The time to evaluate the queries to the oracle, the inverse of the accuracy of its

answers and the time complexity of the learning algorithm is bounded respectively
by
– O(nk); O(kq∗=�) and O(k2k

2
(e=k)k

2+knk2+1+(4e=k)knk+2) in the non-monotone case;
and
– O(k); O(k5(q∗)3=�);O(k(e=k)knk+2 + n2k+1(e=k)2k) in the monotone case.

Proof. The three upper bounds are easily proved by inspection. In more detail:
• non-monotone formulas
By Lemma 8, the required accuracy � is obtained by our algorithm for �1 = �=4.

– query complexity. This parameter is O(k), O(k), O(n), O(nk) and, therefore, still
O(nk) in the queries raised by EMPTY, INFER SUBTERM, PRUNE, FILTER and
the whole procedure, respectively.

– accuracy. Its tightest value is �=8kq∗ (recall that �1 = �=4).
– time complexity of the algorithm. Let us assume that accessing the STAT oracle
requires constant time and that generating a discriminant requires time O(n). Let
TEm be the running time of EMPTY, TIS that of INFER SUBTERM, TPr that of
PRUNE and TFil that of FILTER. Then for the global running time � we have � =
O[nNk(TEm + TIS) + TPr + TFil], where TEm = O(k), TIS = O(nk), TPr = O(nNk2k)

and TFil = O
(∑k

i=0

(Nk
i

))
O(nk) = O(k2k

2
(e=k)k

2+knk2+1).
• Monotone formulas
By Lemma 12, the required accuracy � is achieved by our algorithm for �1 = �:
– query complexity. Now only the �rst two subroutines query the oracle. So the query
complexity is O(k).

– accuracy. Now its tightest value is �=8k5(q∗)3.
– time complexity of the algorithm. Upon the same assumptions and notations as in
the non-monotone case, we have �:M = O[nNk(TEm:M+TIS:M)+TPr:M+TFil:M], where
TEm:M = O(k); TIS:M = O(nk); TPr:M = O(nN 2

k ) and TFil:M = O(nN 2
k ).
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Corollary 2. Let P be the family of but(k; q∗) probability distributions on Xn; with q∗

known. Then the class of k-term-DNF formulas is polynomially poly-relaxedly PAC
learnable w.r.t. P using k-term-DNF representation and the class of monotone k-term-
DNF formulas is polynomially poly-relaxedly PAC learnable w.r.t. P using monotone
k-term-DNF representation; with classi�cation noise rate � such that 06�6�b ¡ 1=2
by an algorithm that uses:
• In the case of non-monotone formulas;
a sample of size

m = O(k4(q∗)3=(�2(1− 2�b)4) log (n=�) + 1=�2 log [kq∗=��(1− 2�b)]) (1)

and a running time �′ = O(knk+1m1 + �m2); where m1 = O([k4(q∗)3=(�2(1 − 2�b)4)]
log (n=�)); m2 = O([k2q∗=(�(1− 2�b))]2 log (n=�) + 1=�2 log [kq∗=��(1− 2�b)]) and � is
the same as in Theorem 6.
• In the case of monotone formulas;
a sample of size m = O(k11(q∗)7=[�2(1−2�b)4] log (n=�)+1=�2 log [k5(q∗)3=��(1−2�b)])
and a running time �′:M = O(knk+1m+ �:Mm2); where
m2 = O(k11(q∗)6=[�2(1 − 2�b)2] log (n=�) + 1=�2 log [k5(q∗)3=��(1 − 2�b)]); and �:M is
the same as in Theorem 6.

Proof. We prove only the non-monotone case, the proof of the latter being similar.
The claim follows from the following facts:
(i) the sample complexity is that of Theorem 2 plus a term which will be clear in a

moment,
(ii) by Lemma 4, the cardinality of the query space Q is O(2k

2
(e=k)k

2+knk2+(4e=k)knk+1);
(iii) the accuracy � of STAT(c; P) is O(�=kq∗),
(iv) the running time concerns two actions: (a) estimation of the actual labelling error

rate �;(b) translation of the DISCRIMINANT LEARNING procedure through the
simulation of the oracle STAT(c; P). 7

(a) Estimation of �. In [20] we read that Theorem 2 holds if accuracy � = O(�(1−
2�b)2) is achieved with con�dence �=#Q on the estimation of �.

Lemma 13. Let �c(X ) be the noisy label of X. If c 6= Xn then for any set L of at
most k literals such that ��L 6= ∅ then P ˜(�c(X ) = 1|X ∈ ��L)¿�: The equality occurs
if and only if L is a false discriminant of c; P ˜ accounting for the randomness of the
noisy labelling.

7 Point (iv) has already been solved by Kearns in a general context where he has evaluated the sample
complexity of Theorem 2. Here we propose a special procedure for estimating �, which is just tailored for
our learning problem. This procedure is a bit more expensive in sample complexity than Kearns’. Therefore,
we add this cost in (1) to the one reported in Theorem 2. Nevertheless, we prefer our estimate because it
requires a much smaller computational time.
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Proof. Recall that the labelling error is independent of X . Let L be any set of at most
k literals such that ��L 6= ∅: Then

P ˜(X ∈ ��L; �c(X ) = 1)

= P ˜(X ∈ ��L; �c(X ) = 1|�c(X ) is correct) (1− �)

+P ˜(X ∈ ��L; �c(X ) = 0|�c(X ) is incorrect) �

+(P(X ∈ c↓Lc)�− P(X ∈ c↓Lc)�)

= P(X ∈ ��L)�+ P(X ∈ c↓Lc)(1− 2�):

So P ˜(�c(X ) = 1|X ∈ ��L) = � + P(X ∈ c↓Lc |X ∈ ��L)(1 − 2�), where the last term is
0 if and only if L is a false discriminant. Moreover, since we are dealing with a but
(k; q∗) distribution, P(Xi ∈ ��L)¿1=q

∗ for each ��L 6= ∅. Thus the conditional probability
on the right side of the last equation cannot be made unde�ned by the impossibility
of the conditioning event.

Lemma 14. Let �̂ be an estimate of �; and ’
Xc
m
(E) be the frequency of the event E

in drawing a labelled sample X c
m . Let

�̂ = min
L
{’

Xc
m
(�c(X ) = 1|X ∈ ��L)};

where the minimum is taken over all L such that L is a set of at most k literals with
��L 6= ∅. Then for a sample size m1 = O((k4(q∗)3=[�2(1−2�b)4]) log (n=�)); �̂ estimates
� with accuracy � = O(�(1− 2�b)2); with con�dence �=#Q, and it costs O(knk+1m1)
time units.

Proof. If c 6= Xn the claim follows directly from the use of Cherno�’s bounds [12] in
Lemma 13. If c = Xn then c does not admit false discriminants. Nevertheless, in this
case a trivial estimate of � is �̂ = 1−’

Xc
m
(�c(X ) = 1), and the above accuracy can be

obtained with a smaller sample and time bounds than in the case c 6= Xn.
Thus, in the worst case (c 6= Xn), for each subset L of at most k literals with
��L 6= ∅ −O((en=k)k) in number – we need to check the membership of m1 examples
in ��L. Each check costs k units of computation.
In total, the time necessary to estimate � is O(knk+1m1).

Proof of Corollary 2 (conlusion)
(b) Simulation of DISCRIMINANT LEARNING procedure. Theorem 2 assures that

a sample of size m2 is su�cient for computing an answer of STAT(c; P) to any instance
from Q with accuracy � = O(�=kq∗) and con�dence �=#Q. Thus we essentially scale
the resources appraised in Theorem 6 for obtaining the analogous costs of PAC learning
by this quantity.
Summing up the cost of the two mentioned actions, we obtain the claim of the

corollary.
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Actually the estimation of � requires a di�erent algorithm depending on whether
c 6= Xn or not. We can start assuming the former case, and we possibly shift to the
latter whenever we come to a conclusion that the error of the resulting hypothesis h
is too large. The additional cost of this procedure is disregardable.

Corollary 3. Let P be the family of but(k; q∗) probability distributions on Xn, with
q∗ known. Then:
• the class of non-monotone k-term-DNF formulas is polynomially poly-relaxedly
PAC learnable w.r.t. P using k-term-DNF representation with malicious error rate
� = O(�=kq∗) by an algorithm that needs m′ = O((k2q∗=�)2log(n=�)) examples and
O(m′�) running time; where � is as in Theorem 6;

• the class of monotone k-term-DNF formulas is polynomially poly-relaxedly PAC
learnable w.r.t. P using monotone k-term-DNF representation with malicious error
rate � = O(�=k5(q∗)3) by an algorithm that needs m′′ = O((k11(q∗)6=
�2)log(n=�)) examples and O(m′′�:M) running time; where �:M is as in Theorem 6.

Proof. The proof can be obtained by an analogous use of Theorem 3 in place of
Theorem 2, except for an estimate of the malicious error rate, which is unnecessary
here.

It is easy to show that under a uniform distribution and in presence of malicious
errors, monotone monomials (1-term-DNF) can be learnt only for error rate � = O(�).
The knowledge of q∗ is crucial in INFER SUBTERM for sizing both the tests and

their accuracy.
The extension of the previous results to the case where q∗ is unknown can be

performed by a well-known generate and test scheme [26]. We start running the whole
DISCRIMINANT LEARNING algorithm on a low value of the unknown parameter.
Then we progressively increase it until we get a positive answer from a procedure,
which tests, with a proper set of new examples, the accuracy of the output hypothesis.
The average sample and time complexity of this strategy – which might loop forever
with probability 0 – essentially increases by a factor q∗ compared to the case where
this parameter is known in advance. For more detail see for instance [15].

4.4. Comparison with the state of the art

The e�ciency ratings available in the literature about the concerned learning task
are not easily comparable, since they refer to di�erent featured goals, both in terms of
distribution laws and concept representations. To our knowledge, the references closest
to our framework are the following:
In [15] the authors describe an algorithm for learning non-monotone k-term-DNF(n)

formulas working for q-bounded (and with minor changes product) distributions and
samples made of both positive and negative examples. Its sample complexity is
O((kq2k =�)log(n=�)) and its running time is O(((2n)k

2
q=�)log(n=�)) .
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In [31] Sakai and Maruoka show a learning algorithm for monotone k-term-DNF(n)
formulas working on positive examples only, with sample complexity m = O[(28k =�)(r+
log (d=�))] and time complexity O(dm), where r = O[(1=� + 2kk2)2log(1=�)]; d =
O(nk2 + k3).
These kinds of results concern learning models where no (classi�cation or malicious)

errors corrupt the examples. Thus, for comparison purposes, we can rescale our results
by replacing �2 with � in the expressions for sample and time complexity of Corollaries
2 and 3. This is a known way [20] of passing from noisy to error-free examples.
Within this framework, since q-bounded and product distributions are butter
y distri-

butions with � = 0, we have proved essentially the same bounds for DISCRIMINANT-
LEARNING in the non-monotone case as those proved for the algorithm in [15]. On
the other hand, in Section 4.2.1 we worked with a wider family of distribution laws,
even with respect to De�nition 1.
To learn monotone formulas, when the sample is error-free, the PAC release of our

proposed SQ algorithm can come to use only positive examples. This derives from the
absence of overestimating errors, as mentioned in Section 4.2.2.
In comparison, Sakai and Maruoka’s procedure has better time complexity, since its

running time is poly (2k ; n; 1=�; log(1=�)) (note that it still preserves polynomiality for
k = O(log n)), thanks to the stringent probabilistic assumptions they make about the
sample space. This allows them to infer the discriminants of the relevant terms of the
target formula c directly, instead of simply enumerating all of them. Namely, their
algorithm progressively builds every candidate discriminant with variables appearing in
some relevant term of c, and at the same time avoids adding irrelevant variables (that
do not appear in any term of c). In the case of uniform distribution the separation
between these two kinds of variables can be easily done, since now P(v ∈ c ↓{xi}
|v ∈ �{xi}) is equal to 1/2 for an irrelevant variable xi and is signi�cantly less than
1/2 otherwise. But similar gaps do not exist upon weaker assumptions, neither, for
instance, for q-bounded distributions.
Looking at related frameworks, we quote the paper [19] which deals with monotone

k�-DNF formulas (k�-DNF(n) formulas are DNF(n) formulas, where each variable
can appear at most k times where k is a �xed constant. Obviously monotone k-term-
DNF(n)⊆ monotone k�-DNF(n) ) and the recent paper [32] which deals with functions
of k terms and shares some ideas with our approach. The former paper refers to product
distributions while the latter to p-smooth distributions.
Both papers require two separate polynomially sized samples of positive and negative

examples and are based on restriction techniques, but neither of them seems to be
directly adaptable to get proper k-term-DNF learning results.
Even though the algorithms we proposed are neither the cheapest (see De�nition

9) nor instances of a UMVULP (see De�nition 8 and footnote 3), our approach is
more statistically based. Our approach relies to a greater extent on statistical induction
(queries) for �nding relevant regions of the sample space. This makes us to focus our
search for the terms of the target formula there, rather than to use the structure of the
probability space for addressing the navigation toward these relevant regions in advance.
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We remark that the algorithms designed until now for polynomial and proper learning
of k-term-DNF formulas [15, 31] refer to uniform, q-bounded and product distributions.
By Lemma 2, these distributions cannot dominate the whole family of butter
y dis-
tributions. Rather, if we rely on the relaxed notion of learnability in De�nition 1′,
a wide class of probability distributions prove feasible for learning k-term-DNF for-
mulas. Consider, in particular, the distribution family of Section 3.1, part (d.2) and
Remark 1. DISCRMINANT LEARNING can be translated into a PAC algorithm that
yields polynomial and proper poly-relaxed learning of monotone k-term-DNF formulas
from samples of partial assignments uniformly drawn from a set of examples with a
non-negligible number of assigned values.

5. Conclusions and open problems

We have proposed an algorithm that performs proper learning of k-term-DNF for-
mulas in feasible time, under weak assumptions.

These assumptions concern the distribution law of the set of examples on which
the learning is based. Accordingly, we have de�ned the family of butter
y distribution
laws, along with a relaxed notion of learnability, covering many real learning instances.
The butter
y family describes many useful probabilistic models and assures the feasi-
bility of our algorithm, when its parameters lay in a suitable range.
The importance of the result is both in the use of k-term-DNF formulas in boolean
algebra and in the wide applicability of the assumed context.
Our algorithm:
(i) is based on near- and p-su�cient statistics; it barters the variance minimality to

the polynomial time computability of the estimator;
(ii) tolerates errors in line with the SQ algorithms;
(iii) has sample and time complexity as low as the best available bounds, with a sole

exception under very stringent assumptions;
(iv) proves feasible in many probability spaces, according to a reasonable relaxed

version of the PAC learning paradigm.
There are at least two plausible extensions of the method we have illustrated in this

paper:
(i) treating larger classes of representations, typically O(log n)-term DNF;
(ii) dealing with larger distribution families.
Both problems are challenging. Such learnability results, which we would consider
highly relevant, should exploit properties of the interaction between DNF formulas and
underlying distributions that are somewhat subtler than those we have shown here.
The general aim of this paper has been to establish a connection between Computa-

tional Learning Theory (which is usually within the scope of Computer Science) and
Statistics Theory. We point out that the hypotheses produced by learning algorithms are
interesting non-parametric statistics, and we used the results of this branch of Statistics
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Theory to improve results in Learning. In this sense we have stressed the importance of
the minimality of su�cient statistics, de�ned the class of Uniform Minimum Variance
Unbiased Learning Procedures, given some characteristics of this class and shown that
for a given concept class there exists a unique UMVULP when P ranges within the
class of all absolutely continuous or all purely discrete distribution functions.

Appendix A

This appendix contains the proofs of Lemmas 1 and 2, whose statements are recalled
here with reference to the distribution family P� de�ned in part (d.2) of Section 3.1.

Lemma A.1. Given the Boolean n-dimensional hypercube Xn and � ∈ (0; 1=2); if n is
chosen so large that for constant k we have bn�c¿k ¿ 1 then P ∈P� is but(k;O(n2k))
for

[en=(k − 1)]k−1�bn�c ¡ �=k; (A.1)

where e is the base of natural logarithms.

Proof. The cardinality of the support of P in Xn equals
∑bn�c

i=0

(n
i

)
, where it is easy to

see that

(1=�)bn�c ¡
(

n
bn�c

)
¡

bn�c∑
i=0

(
n
i

)
: (A.2)

Let t be a monomial on V of l literals of which u are non-negated and z = l− u are
negated variables. If P(t)¿�=k then u6bn�c− k. Indeed, let us assume u ¿ bn�c− k.
This means that the number of points in the support of P satisfying t is such that

bn�c−u∑
i=0

(
n− l

i

)
6

k−1∑
i=0

(
n− l

i

)
¡

(
e(n− l)
k − 1

)k−1
;

where the last inequality derives from [33].
By (A.2) each item of the support of P has probability ¡ �bn�c, so (A.1) yields

P(t)¡ [e(n− l)=(k − 1)]k−1�bn�c6[en=(k − 1)]k−1�bn�c ¡ �=k;

a contradiction.
Let I be a set composed of only one literal not belonging to set(t). We will distin-

guish two cases.
Case 1: z6n− bn�c − 1 (namely, n− l− 1¿bn�c − u):

If the literal in I is a non-negated variable and t↓I 6= ∅ then

P(t↓I )=P(t) =
∑bn�c−u−1

i=0

(n−l−1
i

)
∑bn�c−u

i=0

(n−l
i

) :
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Now, set

A=
bn�c−u−1∑

i=0
(i!(n− l− 1− i)!)−1; B =

bn�c−u∑
i=0

(i!(n− l− 1− i)!)−1;

C = ((bn�c − u)!(n− l− (bn�c − u))!)−1 :

It is easy to see that A=B¿1− (B=C)−1 and that

B=C = 1 +
bn�c−u−1∑

i=0

(bn�c − u)!(n− l− (bn�c − u))!
i!(n− l− i)!

¿
n− bn�c+ 2
n− bn�c+ 1 ;

so that we obtain

P(t↓I )=P(t) =
A

B(n− l)
¿ ((n− l)(n− bn�c+ 2))−1 = 1

O(n2)
:

A similar algebra occurs to realize that if the literal in I is a negated variable and
t↓I 6= ∅ then the above ratio is at least (n− l)−1.
Case 2: z¿n− bn�c (namely n− l6bn�c − u).

In this case, no matter what the literal contained in I is and provided t↓I 6= ∅, we have

P(t↓I )=P(t) =
∑n−l−1

i=0

(n−l−1
i

)
∑n−l

i=0

(n−l
i

) =
1
2
:

Therefore in both cases P(t↓I )=P(t) = 1=O(n2) and this equality can be trivially ex-
tended to the case I ⊆ set(t).
In case k¿#I ¿ 1, we can factorize the reduction from t to t↓I through a series of

#I reductions, each one involving a single literal of I . Here the hypothesis bn�c ¿ k
assures that each reduction produces a set whose probability is ¿ 0: each reduction de-
creases P(t↓I ) by a factor at most n2, so we can globally state that P(t↓I )¿P(t)=q∗; q∗ =
O(n2k); as claimed by the lemma.

Lemma A.2. For each � ∈ (0; 1=2) and P ∈ P�; if n is large enough P cannot be

-dominated by a p-smooth distribution Ps; for any p and any 
 = poly(n).

Proof.

(i) The number of points of non-zero probability w.r.t. P is
∑bn�c

i=0

( n
i

)
62nH (�), where

H is the binary entropy H (�) = −�log2� − (1 − �)log2(1 − �). Hence, for every
point � of Xn, if P(�)¿ 0 then P(�)¿1=2nH (�).

(ii) There exists a �0 ∈ Xn such that Ps(�0)61=2n, since Ps() is always greater than
zero. If P were 
-dominated by Ps then we would have 1=2nH (�) ¡ P(�0)6

Ps(�0)6
=2n which is false for any � ∈ (0; 1=2); 
 = poly(n) and n large enough.
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