A Characterization of Spherical Distributions

MORRIS L. EATON*

University of Minnesota

Communicated by P. R. Krishnaiah

It is shown that when the random vector X in \mathbb{R}^n has a mean and when the conditional expectation $E(u'X|v'X) = 0$ for all vectors $u, v \in \mathbb{R}^n$ which satisfy $u'v = 0$, then the distribution of X is orthogonally invariant. A version of this characterization is also established when X does not have a mean vector.

1. INTRODUCTION

In this paper, spherical distributions on \mathbb{R}^n are characterized in a couple of different ways. These characterizations arose in part from assumptions concerning error distributions in some linear model problems—see Toyooka [7], Kariya and Toyooka [5], and Eaton [3]. A discussion of this is given in Section 3.

To describe the main results here, recall that a random vector $X \in \mathbb{R}^n$ has a spherical distribution if $L(X) = L(\Gamma X)$ for all $n \times n$ orthogonal matrices Γ. Here, vectors in \mathbb{R}^n are written as columns and $L(X)$ denotes the distribution of X. For many properties of spherical distributions, see Cambanis, Huang, and Simons [1]. One characterization of spherical distributions is the following.

Theorem 1. Suppose the random vector $X \in \mathbb{R}^n$ has a mean vector. Assume that for each vector $v \neq 0$ and for each vector u which is perpendicular to v (that is, $u'v = 0$),

$$E(u'X|v'X) = 0.$$ \hspace{1cm} (1.1)

Then X is spherical and conversely.
When X does not have a mean vector, an alternative characterization is possible.

Theorem 2. Consider a random vector $X \in \mathbb{R}^n$. Assume that for each vector $v \neq 0$ and each u which is perpendicular to v,

$$
L(u'X | v'X) = L(-u'X | v'X).
$$

(1.2)

Then X is spherical and conversely.

The notation in (1.2) means the conditional distribution of $u'X$ given $v'X$ is the same as the conditional distribution of $-u'X$ given $v'X$. A slightly different version of Theorem 2 is described in Section 3. When X has a mean, then of course, (1.2) implies (1.1).

The results of Theorem 1 should be compared to characterizations of spherical distributions based on linear regression which appeared in Nimmo-Smith [6] and Hardin [4]. Also, the work of Vershik [8] is relevant.

2. Technical Details

Given a random vector X in \mathbb{R}^n,

$$
g(t) = \mathbb{E} \exp[it'X]
$$

(2.1)

is the characteristic function of X. Obviously, X is spherical iff

$$
g(t) = g(\Gamma t)
$$

(2.2)

for all Γ in the orthogonal group O_n.

Proof of Theorem 1. Since X has a mean vector, the gradient of g exists and is given by

$$
\nabla g(t) - i\mathbb{E}X \exp[it'X].
$$

(2.3)

When (1.1) holds, an easy conditioning argument yields

$$
\mathbb{E}\{u'X \exp[iu'X]\} = 0
$$

(2.4)

for all u perpendicular to $v \neq 0$. But (2.4) is equivalent to

$$
u' \nabla g(v) = 0.
$$

(2.5)

To show X is spherical, (2.5) is now used to verify (2.2) when $t \neq 0$. Since t and Γt have the same length, say $\|t\| = r$, there exists a smooth curve c
mapping \((0, 1)\) into \(\{ x \mid \| x \| = r \}\) such that \(c(x_1) = t\) and \(c(x_2) = \Gamma t\) for some \(x_1, x_2 \in (0, 1)\). Since \(\| c(x) \|^2 = r^2\) for \(x \in (0, 1)\)

\[(\dot{c}(x))'c(x) = 0 \quad \text{for all} \quad x \in (0, 1) \tag{2.6}\]

where \(\dot{c}(x)\) is the vector of derivatives of the curve \(c\). Using (2.5) and (2.6) we have

\[
\frac{d}{dx} g(c(x)) = (\dot{c}(x))' \nabla g(c(x)) = 0
\]

for \(x \in (0, 1)\). Thus \(g(c(x))\) is constant in \(x\) so (2.2) holds and hence \(X\) is spherical.

The converse is well known and a proof can be found in Cambanis, Huang, and Simons [1].

Proof of Theorem 2. It is an easy argument which shows that (1.2) is equivalent to

\[
g(au + bv) = g(-au + bv) \tag{2.7}
\]

for all \(a, b \in \mathbb{R}^1\) and \(u\) which are perpendicular to \(v \neq 0\). Continuity shows (2.7) holds when \(v = 0\). To verify (2.2), consider \(t\) and \(\Gamma t\), and set \(v = \frac{1}{2}(\Gamma t + t)\). With \(u = \frac{1}{2}(\Gamma t - t)\), \(u'v = 0\) and

\[
u + v = \Gamma t, \quad -u + v = t.
\]

Thus, (2.7) yields (2.2) so \(X\) is spherical. Again, the converse is trivial.

3. A Linear Model Application

The linear model problem which gave rise to Theorems 1 and 2 is the following: Consider a linear model on \(\mathbb{R}^n\), \(Y = \mu + \varepsilon\), where \(\mu\) is in a known linear subspace \(M\) and the error vector \(\varepsilon\) has a mean of zero and a covariance \(\Sigma\) which belongs to a known set \(\gamma\) of positive definite matrices. When \(\Sigma\) is known, the Gauss–Markov estimator of \(\mu\) is

\[
\hat{\mu} = P_X Y \tag{3.1}
\]

where \(P_X\) is the projection onto \(M\) whose null space is \(\Sigma(M^\perp)\) (see Eaton [2, 3] for a discussion). It is often the case that \(\Sigma\) is not known and must be estimated from the data \(Y\). Typically such estimators \(\tilde{\Sigma}\) satisfy

(i) \(\tilde{\Sigma}(y) = \tilde{\Sigma}(y + x)\) for \(y \in \mathbb{R}^n, x \in M\),

(ii) \(\tilde{\Sigma}(-y) = \tilde{\Sigma}(y)\) for \(y \in \mathbb{R}^n\),
and such estimators are called *residual type estimators* in Eaton [3]. A common statistical method is to use

$$\tilde{\mu} = \bar{P} Y$$ \hspace{1cm} (3.2)

as an estimator of \(\mu \), where

$$\bar{P} = P_\Sigma$$ \hspace{1cm} (3.3)

and \(\Sigma \) is a residual-type estimator. When \(L(\varepsilon) = L(-\varepsilon) \), it is easy to show that

$$L(\tilde{\mu} - \mu) - L(\mu)$$

so when \(\tilde{\mu} \) has an expectation (which it may not), then \(E\tilde{\mu} = \mu \). When \(\tilde{\mu} \) has a covariance, the usual Gauss–Markov theorem suggests that

$$\text{Cov}(\tilde{\mu}) \leq \text{Cov}(\mu)$$ \hspace{1cm} (3.4)

where \(\text{Cov}(\cdot) \) denotes covariance matrix; that is, \(\text{Cov}(\tilde{\mu}) - \text{Cov}(\mu) \) is non-negative definite.

It is shown in Eaton [3] that a sufficient condition for (3.4) to hold is that

$$E(P_\Sigma \varepsilon | Q_\Sigma \varepsilon) = 0,$$ \hspace{1cm} (3.5)

where \(Q_\Sigma = I - P_\Sigma \). Set \(X = \Sigma^{-1/2} \varepsilon, P = \Sigma^{-1/2} P_\Sigma \Sigma^{1/2} \), and \(Q = I - P \). Since \(\Sigma \) is non-singular by assumption, (3.5) is equivalent to

$$E(PX | QX) = 0.$$ \hspace{1cm} (3.6)

It is easily verified that \(P \) is an orthogonal projection of rank \(k \) equal to the dimension of the regression subspace \(M \). That (3.6) holds for spherical \(X \)'s which have a mean is well known.

Now, assume that (3.6) holds for all rank \(k \) orthogonal projections \(P \). The claim is that Theorem 1.1 is applicable so that \(X \) is spherical. To see this, consider \(v \neq 0 \) and \(u \) which is perpendicular to \(v \). Pick a projection \(P \) of rank \(k \) such that \(Pu = u \) and \(Qu = v \). Since \(v'X = v'QX \), we can write

$$E(u'X | v'X) = E\{ (u'PX | v'QX) \} = E(u'E(PX | v'QX) = u'E[E(PX | QX) | v'QX]$$

which is zero by (3.6). Thus \(X \) is spherical so \(\varepsilon = \Sigma^{1/2}X \) is elliptical by definition (\(\varepsilon \) is *elliptical* if it is a linear transformation of a spherical random vector).
The implication of the above argument is that a natural sufficient condition for a non-linear version of the Gauss–Markov theorem to hold is (3.5). But if (3.5) holds for all regression subspaces of a fixed dimension, then the error vector must be elliptical.

ACKNOWLEDGMENT

I would like thank one of the referees whose comments lead to a better presentation of this material.

REFERENCES