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In this paper we consider the problem of estimating E[(Y − E[Y | X])2] based on a
finite sample of independent, but not necessarily identically distributed, random variables
(Xi, Yi)Mi=1. We analyze the theoretical properties of a recently developed estimator. It is
shown that the estimator hasmany theoretically interesting properties, while the practical
implementation is simple.
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1. Introduction

Let (Zi)Mi=1 = (Xi, Yi)
M
i=1 be independent identically distributed (i.i.d.) random variables with values in<

d
×< and assume

that the variables are generated by the model

Y = f (X)+ r (1)

for homoscedasticmean zero noise r independent ofX and the residual varianceV = Var[r]. Estimating the residual variance
V is a well-known problem in statistics and especially for the case d = 1 many estimators exist. The most straightforward
idea is to first approximate f using a regression estimate withM samples f̂M :

1
M

M∑
i=1

(Yi − f̂M(Xi))2

and use the resulting function to approximate the residuals. However, to see the difficulties arising when d > 2, notice that
because of

E[(Y − f̂M(X))2] = E[(f (X)− f̂M(X))2] + V ,

the rate of convergence is determined by the estimate of f . Assume now that the variables X and r are bounded. Then a
classical result of Stone [1] implies that for any nonparametric regression estimator, there exists a sequence (fM) such that
each function in the sequence has the same Lipschitz constant and

lim inf
M→∞

M2/(2+d)E[(fM(X)− f̂M(X))2] > 0,
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with f̂M the approximation of fM based on the sample (Zi)Mi=1. Thus, already for d = 3, the error is of orderM
−2/5. However,

in [2] it has been shown that the Lipschitz continuity implies that the rateM−1/2 is achievable when d ≤ 4.
A better idea is to estimate V directly without the intermediate step of approximating f or use some kind of a bias

correction. For d = 1, difference based methods are known to obtain low biases [3,4]. Other approaches include the use of
U-statistics [5], least squares [6] and kernel estimators [7]. However, the case d > 1 is much less studied and for example
the generalization of difference based methods for higher dimensional problems with random covariates is not obvious.
This problem is addressed elegantly in [8], where a locally linear estimator is derived and shown to achieve the optimal rate
M−1/2 up to the dimension eight, even though statistical efficiency is not addressed.
A natural generalization of the model (1) is introducing heteroscedasticity in the noise, that is,
Var[Y |X] = V (X)

for some variance function V (x). In the literature it has been shown that the conditional variance function V (x) can be
estimated efficiently from data andmanymethods and theoretical results exist both for the cases d = 1 and d > 1 [9–15]. It
is clear that estimating thewhole function is a significantlymore difficult task than estimating the variance of homoscedastic
noise. However, in many application areas, estimating the simpler quantity

E[V (X)] = E[(Y − f (X))2] (2)
is of equal interest. The usefulness of this expectation comes from the fact that it is the minimum mean squared error
achievable by a regression estimator and thus a natural criterion for example in the feature selection problem [2]
and in general to assess how good a prediction of Y is possible with X as the covariate. Even though Eq. (2) is a
straightforward generalization of (1), methods designed for direct estimation of homoscedastic noise variance cannot be
applied straightforwardly to the generalized problem. Previous work on estimating (2) includes [2,16].
In this work we analyze a method that estimates (2) using a nearest neighbor statistic, which has been introduced in

[17,18]. The method is shown to be consistent and the rate of convergence is analyzed. In contrast to the earlier works
[2,16], we are able to show under sufficient regularity and the condition d ≤ 4, the asymptotic bound (V̂M,k denotes the
nearest neighbor estimator)

lim sup
M→∞

ME

(V̂M,k − 1M
M∑
i=1

r2i

)2 ≤ g(k, d)σ 4 (3)

for a universal constant g(k, d) (to be specified later) decreasing in the free parameter k > 0. Here σ refers to an upper
bound on E[r4i |Xi]. The results are significant also in the theory of homoscedastic noise variance estimation, as for example
the corresponding asymptotic results in [5,7] apply only to the case d = 1. Compared to [2], the i.i.d. assumption is relaxed
on the covariates. In addition, the practical implementation of the method is straightforward, as it is based on the use of
nearest neighbors and contains only one free integer parameter, which does not affect the rate of convergence.

2. Residual variance estimation by nearest neighbors

2.1. A formal statement of the problem

The problem of residual variance estimation can be stated in a general form as estimating the optimal mean squared
error given a finite sample of data [2]. Our basic assumption is that the variables (Zi)∞i=1 are independent (but not necessarily
identically distributed as in the beginning of the introduction) and the stationarity condition that for some measurable
functionm,

m(x) = E[Yi|Xi = x] (4)
for all i. The model (1) still holds formally be setting ri = Yi− E[Yi|Xi], but in general r may well depend on X . Adopting this
notation, in this setting the Borel measurable functionmminimizes the mean squared cost

VM =
1
M

M∑
i=1

E[(m(Xi)− Yi)2] =
1
M

M∑
i=1

E[r2i ].

Then VM is the residual variance. Our definition contains heteroscedastic noise as a special case and also allows deterministic
covariates. For an estimator V̂M , we will be interested in the mean squared deviation given by

E[(VM − V̂M)2].
In addition, we will address statistical efficiency by proving the asymptotic bound (3) for our estimator.
For the theoretical analysis, we require all the time the moment condition

sup
i>0
E[Y 4i |Xi] ≤ K

4
Y (5)

for some constant KY > 0, which implies that |m(x)| ≤ KY and E[r4i |Xi] ≤ σ
4
≤ 16K 4Y .



E. Liitiäinen et al. / Journal of Multivariate Analysis 101 (2010) 811–823 813

2.2. A heuristic derivation of the estimator

The concept of nearest neighbor is well understood in the literature on computational geometry, machine learning and
statistics [19–21]. The nearest neighbor of the point Xi is defined simply as the point closest to it with respect to a similarity
measure. Using the Euclidean metric, the formal definition is

N[i, 1] = argmin
1≤j≤M,j6=i

‖Xi − Xj‖.

The kth nearest neighbor is defined recursively as

N[i, k] = argmin
1≤j≤M,j6=i,N[i,1],...,N[i,k−1]

‖Xi − Xj‖,

that is, the closest point after removal of the preceding neighbors. The corresponding distances are defined as

di,k,M = ‖Xi − XN[i,k]‖.

Notice that without additional assumptions, these definitions are not necessarily unique as it is possible that two points are
at the same distance from Xi. In that case one should use for example randomization [19], which leads to some additional
theoretical difficulties. To avoid the problem of ties, we make the assumption that for any three distinct indices i, l, j > 0

P(‖Xi − Xj‖ = ‖Xi − Xl‖) = 0, (6)

which holds for example when the data is sampled from a density with respect to the Lebesgue measure.
A simple, well-known nonparametric estimator of residual variance [2] is

VM ≈
1
2M

M∑
i=1

(Yi − YN[i,1])2. (7)

To clarify the logic behind the estimator, let us assume that the sample (Xi, Yi)Mi=1 is generated by the model Y = f (X) + r
for a smooth function f and independent noise r . Now it is reasonable to assume that the points Xi and XN[i,1] are close to
each other when the number of observations is high enough and we may approximate heuristically

VM ≈
1
2M

M∑
i=1

(ri − rN[i,1])2.

Using the assumption that the variables (ri)Mi=1 are independent of the variables (Xi)
M
i=1 and each other, wemay furthermore

write

E[VM ] ≈
1
2M

M∑
i=1

E[r2i ] +
1
2M

M∑
i=1

E[r2N[i,1]] = E[r
2
],

which is the residual variance. Thus clearly it is possible to prove that the estimator (7) is consistentwhen the output noise is
additive and heteroscedastic. A natural question is, if consistency holds also in amore general setting. The following example
from [22] shows that the conditions that are required for convergence are unsatisfying.

Example 2.1. Consider the set of univariate covariates consisting of two distinct parts, (X1i )
M1
i=1 and (X

2
i )
2M1
i=1 with X

1
i =

i
M1
,

X22i = X
1
i −

1
4M1
and X22i−1 = X

1
i +

1
4M1
. The regressands Y 1i corresponding to the variables X

1
i are set as zeromean independent

noise with unit variance, whereas for X2i the outputs are set to 0. We set Yi = Y
1
i when 1 ≤ i ≤ M1 and Yi = Y

2
i when

M1 < i ≤ M1 +M2. In this case, the approximation (7) gives 1
2M

∑M
i=1(YN[i,1] − Yi)

2
=
1
2 . However, the right answer is 1/3

and thus it is clear that the method is not consistent in this example.

The optimal regression functionm in Example 2.1 is 0 and thus trivially smooth. Consequently Example 2.1 shows that the
consistency of the estimator (7) requires conditions both on the optimal regression functionm and the conditional variance
function. The difficulties arise from the fact that rN[i,1] is in general not similarly distributed as ri. It would be possible to
extend the estimator for k > 1 by

VM ≈
1

(1+ k−1M )M

M∑
i=1

(
Yi −

1
kM

kM∑
j=1

YN[i,j]

)2
, (8)

where the assumption kM/M → 0 as M → ∞ is essential for consistency. However, even though it is possible to show
that the approximation (8) is able to give consistent estimates under general assumptions by using the results for k nearest
neighbor regression estimators [23,19], it is not without problems. One practical problem is the choice of kM , which would
be difficult, as for example cross-validation inevitably increases variance.
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It is of course possible to approximate m with a local polynomial or a neural network model instead of a simple locally
constant approximator. An alternative solution based on modified nearest neighbor graphs was introduced in [2]. In this
paper we analyze a slightly simpler method (originally proposed in [17,18] for k = 1) based onmodifying the approximator
(7) as

V̂M,k =
1
Mk2

M∑
i=1

(
k∑
j1=1

(Yi − YN[i,2j1])

)(
k∑
j2=1

(Yi − YN[i,2j2−1])

)
(9)

for a positive integer k. To understand the logic behind the estimator, assume that the functionm is continuous and k = 1.
Then a heuristic approximation and conditional independence yield

VM ≈ E[V̂M,k] =
1
M

M∑
i=1

E[(ri − rN[i,1])(ri − rN[i,2])] = E

[
1
M

M∑
i=1

r2i

]
,

which is the residual variance. Moreover, it can be seen that the quality of the estimate depends only on the smoothness of
m and therefore the estimator is able to solve Example 2.1.
In the next section we formalize the discussion and show that the estimator (9) is indeed consistent. Moreover, analysis

of the rate of convergence turns out to be relatively easy due to the simplicity of the method. Surprisingly it also turns out
that the new estimator tends to have (at least asymptotically) a smaller bias than the estimator (7) and the one in [2] even
in the additive heteroscedastic noise case. While the selection of the optimal value for the free parameter k is difficult, the
rate of convergence and consistency are obtained for any fixed value, which is an advantage, that many other noise variance
estimators do not share.
After observing that in fact,

E

[(
k∑
j1=1

(Y1 − YN[1,2j1])

)(
k∑
j2=1

(Y1 − YN[1,2j2−1])

)∣∣∣∣∣ X1
]
= E[r21 |X1], (10)

it seems that the estimator (9) provides a simple approximation to the conditional variance function E[r1|X1 = x] as
well. But unlike (9), the validity of the approximation (10) relies heavily on the choice of k. Thus while the generalization
is straightforward, the practical and theoretical problems concerning the estimation are rather different and remain an
unexplored topic.

2.3. Convergence properties

As a first case, we address consistency in the special case of i.i.d. covariates as stated in the next assumption.
(A1) The random variables (Zi)∞i=1 are identically distributed and conditions (4), (5) and hold (6).

In the following theoremwe show L2-convergence under assumption (A1). Despite its generality, our result is not surprising
as similar results exist for the nearest neighbor regression estimate, see for example [19].

Theorem 2.2. Suppose assumption (A1) holds and let k be a positive integer. Then the convergence in mean square

E[(V̂M,k − VM)2] → 0

holds as M →∞.

In addition to asymptotic convergence, it is of interest to investigate rates of convergence. It is clear, that some regularity
assumptions are needed as arbitrarily slow convergence is otherwise possible [24,2]. A common, sufficient and rather
realistic assumption is Holder continuity or the stronger differentiability condition ofm.

Definition 2.3. For 0 < γ ≤ 1, we define H(γ , c) as the class of bounded functions with the property

|f (x)− f (y)| ≤ c‖x− y‖γ . (11)

For 1 < γ ≤ 2, we require thatm ∈ H(1, c) and ∂im ∈ H(γ −[γ ], c) for 1 ≤ i ≤ d. Here ∂im refers to the partial derivatives
ofm.

The following two assumptions summarize the conditions needed for convergence analysis. Condition (A2) on themoments
of the covariates ismotivated by the theory of nearest neighbor regression estimates [23]. Let us also observe the fact, that the
continuity assumption (A3) needs to hold only in an appropriately chosen set of probability one depending on the context.
(A2) For some constants c1 > 0 and β2 > 2d,

sup
i>0
E[‖Xi‖β2 ] ≤ c1.

Moreover, conditions (4)–(6) hold.
(A3) There exist constants 0 < γ ≤ 2 and c2 > 0 such thatm ∈ H(γ , c2).
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In the rest of the paper, we denote by β a fixed number with 2d < β < β2. As a detail, notice that by Jensen’s inequality
and the choice c1 ≥ 1,

sup
i>0
E[‖Xi‖β ] ≤ c1.

Assumption (A3) implies the existence of a bounded gradient ‖∇m‖ ≤ c2 when γ ≥ 1.
The following theorem shows that the theoretically optimal rate of convergence O(M−1/2) is achieved as long as d ≤ 4.

Moreover, to demonstrate the effect of the parameter k, an upper bound for the constants is calculated when the covariates
are bounded. The quantity L(d) in the bound is defined as the minimum amount of cones (‖e‖ = 1)

C(e) = {x ∈ <d : eT x ≤ ‖x‖ cos 30◦}

needed to cover the space<d. For example, L(1) = 2 and L(2) = 6.

Theorem 2.4. Suppose assumptions (A2) and (A3) hold, let k be a positive integer and set α = min{d − d2/β, 2γ , 2},
γ̃ = min{d− d2/β, γ , 1}. Then there exist constants c4 and c5 depending on d, k, c1, c2, β2, σ , KY and γ such that

E

(V̂M,k − 1M
M∑
i=1

r2i

)21/2 ≤ c1/23 M−1/2 + c1/24 M−1/2−γ̃ /2d + c5M−α/d
with

c3 = (4k−3 + 2k−2 + 4L(d)k−2 + 2L(d)k−1)σ 4.

Moreover, if the variables (Xi)Mi=1 take values in the unit cube [−1/2, 1/2]
d with d > 1 and γ ≤ 1, then we may choose α = 2γ ,

γ̃ = γ ,

c4 = 24+γ+γ /ddγ kγ /dKYσ 2c2(4k2L(d)+ 2kL(d)+ 2k+ 1)

and c5 = 22γ+2γ /ddγ k2γ /dc
2γ
2 . In the case d = 1, these bounds hold for γ ≤ 1/2.

We obtain straightforwardly the following corollary.

Corollary 2.5. Suppose assumptions (A2) and (A3) hold, let k be a positive integer and set α = min{d− d2/β, 2γ , 2}. Then if
α > d/2,

lim sup
M→∞

ME

(V̂M,k − 1M
M∑
i=1

r2i

)2 ≤ g(k, d)σ 4
with

g(k, d) = 4k−3 + 2k−2 + 4L(d)k−2 + 2L(d)k−1. (12)

This corollary implies also that with an appropriate choice of k increasing with respect toM , the estimator is asymptotically
normal and behaves similarly as the optimal estimator 1M

∑M
i=1 r

2
i . However, the selection of the optimal k is by no means

easy; for a practical solution without analysis of consistency, see for example [5]. Moreover, it seems likely that a central
limit theorem can be proven also for a fixed k; see for example [20,8].

Remark 2.6. The proof of Theorem 2.4 shows that

|E[V̂M,k − VM ]| ≤ c5M−α/d.

As an example, notice that in the special case of covariates distributed in the unit cube with k = 1, γ = 1 and d = 2, we
have α = 2 and c5 = 16c22 . In practical inference problemswith a small number of samples available, small bias is important
as the variance tends to be much smaller than the actual residual variance and the variance of the regressand.

The rate of convergence in Theorem 2.4 is essentially the same as that obtained in [2]. The constants in Theorem 2.4 are
suboptimal due to simplicity; however, in any case the theorem gives useful bounds for the asymptotic variance and the
systematic error of the estimator.
Next we show that with bounded covariates, the bias actually goes to zero faster thanM−2/d (with a fixed k) when d ≥ 3.

This result is used to generalize Corollary 2.5 to the case d = 4. It is interesting, that most estimators based on locally
constant approximations, for example (7) and the modification [2], have a bias of order O(M−1/2)when d = 4, whereas our
estimator is able to achieve o(M−1/2). The following relatively weak condition is needed.

(A4) The distributions of the variables (Xi)∞i=1 are absolutely continuous with respect to the Lebesgue measure with a
common density p.



816 E. Liitiäinen et al. / Journal of Multivariate Analysis 101 (2010) 811–823

Theorem 2.7. Suppose assumptions (A1)–(A4) hold with Xi ∈ [−1/2, 1/2]d for all i > 0. If γ > 1 and 3 ≤ d ≤ 4, then

lim sup
M→∞

M2/d|E[V̂M,k] − VM | = 0

and

lim sup
M→∞

ME

(V̂M,k − 1M
M∑
i=1

r2i

)2 ≤ g(k, d)σ 4
for the function g(k, d) defined in Eq. (12).

It is likely that under sufficient regularity conditions on the covariates, it would be possible to obtain the rate O(M−1/2)
even in dimension 5. For example, the conditions used in [25] would probably be sufficient. However, this type of restrictive
conditions would be hard to verify in practice.

3. Some properties of nearest neighbors

3.1. How many points can share the same nearest neighbors?

In this section, our goal is to shortly investigate some properties of nearest neighbors needed for our theoretical analysis.
We start by addressing the question, how many points can share the same k first nearest neighbors. The following upper
bound gives a sufficient answer to this problem. In what follows, by B(x, r)we denote the open ball with center x and radius
r . A similar proof can be found in [20].

Theorem 3.1. For any k > 0 and 0 < j ≤ M the number of points in (Xi)Mi=1 that have the point Xj among their k first nearest
neighbors is almost surely bounded by kL(d).

Proof. Fix the point Xj and for vectors ‖e‖ = 1, define the cones

C(e) = {x ∈ <d : eT (x− Xj) ≤ cos 30◦‖x− Xj‖}.

Notice that for z, y ∈ C(e), we have the geometrically intuitive bound

(z − Xj)T (y− Xj) ≥
1
2
‖z − Xj‖‖y− Xj‖. (13)

Let us now make the counterassumption that there exists k + 1 points (Xji)
k+1
i=1 ⊂ C(e) that have Xj among their k nearest

neighbors. Recalling Eq. (6), we may assume that ‖Xjk+1 − Xj‖ > ‖Xjk − Xj‖ > · · · > ‖Xj1 − Xj‖. Then by inequality (13) we
have for any 1 ≤ i ≤ k,

‖Xjk+1 − Xji‖
2
≤ ‖Xjk+1 − Xj‖

2
+ ‖Xji − Xj‖

2
− ‖Xjk+1 − Xj‖‖Xji − Xj‖

< ‖Xjk+1 − Xj‖
2

the last inequality being strict. Thus we may conclude that Xj cannot be among the k nearest neighbors of the point Xjk+1
leading to a contradiction.
As the final step, recall that wemay cover the space<d with L(d) cones of degree 30◦. Then each point in the sample falls

into one of these cones and we may conclude that Xj can be among the k nearest neighbors of at most kL(d) points. �

As the bound involving L(d) is essentially deterministic, it is expected to be conservative in practice. Thus it would be of
interest to derive probabilistic bounds, for example under i.i.d. sampling, which might turn out to considerably tighter.

3.2. Bounds on the moments of nearest neighbor distances

In this section we examine the empirical moments

δM,k,α =
1
M

M∑
i=1

min{1, dαi,k,M}. (14)

In [23], a probabilistic technique is used to bound δM,k,α; however, here we derive a geometric, essentially deterministic
bound. Similar, slightlyweaker geometric results using a different technique canbe found in [26]. Bounds on δM,k,α are useful,
because, as will be seen later, they are related to the rate of convergence of a class of nonparametric statistical estimators.
In what follows, by B(x, r)we denote the open ball with center x and radius r .
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Theorem 3.2. Suppose that Xi ∈ [−1/2, 1/2]d almost surely for any i and let 0 < α ≤ d. Then

1
M

M∑
i=1

dαi,k,M ≤ 2
αdα/2kα/dM−α/d. (15)

Proof. Denote by Sd the volume of the unit ball. Notice that for α = d, Eq. (15) can be written as an integral of a sum of
indicator functions:

1
M

M∑
i=1

ddi,k,M ≤
1
M
2dS−1d

∫
B(0,
√
d)

M∑
i=1

I(x ∈ B(Xi, di,k,M/2))dx. (16)

The sum inside the integral could be bounded straightforwardly by Theorem 3.1. However, this would lead to unnecessarily
bad constants as it can be shown that the sum is actually always at most k. To see this, choose any x ∈ <d and make
the counterassumption that there exists k + 1 points, denoted by Xi1 , . . . , Xik+1 (the indices being distinct), such that
x ∈ B(Xij , dij,k,M/2) for j = 1, . . . , k + 1. Let (ij, ij′) be the pair that maximizes the distance ‖Xij − Xij′ ‖. Under these
conditions the triangle inequality yields

‖Xij − Xij′ ‖ <
1
2
dij,k,M +

1
2
dij′ ,k,M .

On the other hand,

‖Xij − Xij′ ‖ =
1
2
‖Xij − Xij′ ‖ +

1
2
‖Xij − Xij′ ‖

=
1
2
max

1≤j′≤k+1
‖Xij − Xij′ ‖ +

1
2
max
1≤j≤k+1

‖Xij − Xij′ ‖

≥
1
2
dij,k,M +

1
2
dij′ ,k,M

leading to a contradiction and the desired conclusion. Now we have

1
M

M∑
i=1

ddi,k,M ≤ 2
ddd/2kM−1.

The case α < d follows straightforwardly from the case α = d, because Jensen’s inequality implies

1
M

M∑
i=1

dαi,k,M ≤

(
1
M

M∑
i=1

ddi,k,M

)α/d
. �

The following theorem extends Theorem 3.2 to the case of unbounded covariates following the ideas introduced in [23].

Theorem 3.3. Suppose assumption (A2) holds and fix 0 < α < d− d2/β2. Then there exists a constant c independent of M and
k with

E[δM,k,α] ≤ ckα/dM−α/d.

Proof. The proof is based on the idea of dividing the space <d into bounded sets (for example hypercubes) and then
examining the samples in each cube separately. For a vector of integers a = (a1, . . . , ad), define Sa as the cube Sa =
[a1 − 1/2, a1 + 1/2] × · · · × [ad − 1/2, ad + 1/2]. Set Ia as the random set of indices {0 < i ≤ M : Xi ∈ Sa} and
denote by |Ia| its cardinality. Theorem 3.2 yields the upper bound

MδM,k,α ≤
∑
a

∑
i∈Ia

min{1, dαi,k,M} ≤ ck
α/d
∑
a

I(‖Ia‖ > 0)|Ia|1−α/d

for some constant c independent of k andM . By Chebyshev’s inequality and assumption (A2) we may estimate for a 6= 0

E[|Ia|] =
M∑
i=1

P(Xi ∈ Sa) ≤
M∑
i=1

P(‖Xi‖ ≥ ‖a‖∞/2)

≤ 2β2
M∑
i=1

E[‖Xi‖β2 ]

‖a‖β2∞
≤
2β2c1M

‖a‖β2∞
. (17)
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Jensen’s inequality implies that E[|Ia|1−α/d] ≤ E[|Ia|]1−α/d, which together with inequality (17) yields the upper bound

ME[δM,k,α] ≤ ckα/dM1−α/d + 2β2−β2α/dc
1−α/d
1 ckα/dM1−α/d

∑
a6=0

‖a‖−β2+β2α/d
∞

.

Recalling that α < d− d2/β2 we have∑
a6=0

‖a‖−β2+β2α/d
∞

≤

∑
a6=0

‖a‖−d−ε
∞
≤ cd

for some constant cd depending only on the dimension d. Here ε > 0 ensures that the sum is finite. �

Next we examine (14) when assumption (A1) holds without assuming the moment condition (A2). In this case it is possible
to show convergence to zero, even though the speed of convergence may be arbitrarily slow.

Theorem 3.4. Suppose assumption (A1) holds. Then for any α > 0 and k > 0,

E[δM,k,α] → 0

as M →∞.

Proof. For any ε > 0, we may choose J > 0 such that for i > 0, P(Xi ∈ [−J, J]d) > 1 − ε. Then we define (X̃i)
MJ
i=1 as

the sample consisting of those vectors in (Xi)Mi=1 that fall in the hypercube [−J, J]
d. Correspondingly δ̃J,k,α is defined as the

average α-moment of the distance to the kth nearest neighbor in this new sample. Then we may estimate

E[δM,k,α] ≤ P(Xi 6∈ [−J, J]d)+ E[δ̃J,k,α] ≤ ε + E[δ̃J,k,α].

However, by Theorem 3.2, the latter term in the right hand side becomes arbitrarily small asM →∞ and thus the proof is
complete. �

3.3. An asymptotic property of nearest neighbor distributions

Consider the point Xi and its nearest neighbor XN[i,1] under i.i.d. sampling. Then the behavior of the unit vector

Xi − XN[i,1]
‖Xi − XN[i,1]‖

(18)

is essentially governed by the behavior of the probability distribution in the neighborhood of Xi. However, given enough
samples, it is reasonable to assume that the distribution is locally almost constant. This on the other hand implies that the
vector (18) is asymptotically approximately uniformly distributed on the unit circle. Our goal here is to formalize this idea
and prove a result, which is needed in the proof of Theorem 2.7. Moreover, it is probable that the rather deep uniformity
property has potential applications in other fields of statistical estimation.

Lemma 3.5. Suppose assumptions (A1)–(A4) hold and define

ωx0(r) = 1−
∫
B(x0,r)

p(x)dx.

Then the distribution of the variables XN[i,1], . . . , XN[i,k] conditional on Xi is given by the density

p(xi,1, . . . , xi,k|Xi) = k!
(
M − 1
k

)
ωXi(‖Xi − xi,k‖)

M−k−1
k∏
j=1

p(xi,j) (19)

defined for ‖xi,1 − Xi‖ < ‖xi,2 − Xi‖ < · · · < ‖xi,k − Xi‖.

Proof. Let (lj)kj=1 be a set of distinct indices between 1 andM excluding i. Then

P(N[i, 1] = l1, . . . ,N[i, k] = lk|Xi, (Xlj)
k
j=1 = (xi,j)

k
j=1) = ωXi(‖Xi − xi,k‖)

M−k−1. (20)

Eq. (19) follows by multiplying (20) by
∏k
j=1 p(xi,j) and taking the sum over the sets (lj)

k
j=1. See also [21]. �

The following theorem is the main result in this section. The proof is rather long, but straightforward.

Theorem 3.6. Suppose assumptions (A1)–(A4) hold with γ > 1 in (A3) and Xi ∈ [−1/2, 1/2]d for all i > 0. Then for fixed
j2 > j1 > 0, d ≥ 3 and any i > 0,

lim sup
M→∞

M2/d|E[(m(XN[i,j1])−m(Xi))(m(XN[i,j2])−m(Xi))]| = 0.
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Proof. Choose L ≥ 1, 0 < ε < 1 and define the events

AM = {di,j2,M ≤ LM
−1/d
}

BM =
{
p(Xi) ≤ L,

∫
B(Xi,LM−1/d)

|p(x)− p(Xi)|dx ≤ ε(L+ 1)−2j2−1M−1
}

CM = AM ∪ BM .

It is well known that almost all points in<d are Lebesgue points for p [27]. Thus

M
∫
B(Xi,LM−1/d)

|p(x)− p(Xi)|dx→ 0 (21)

almost surely as M → ∞ for a fixed L. On the other hand, by Theorem 3.3 we may choose L ≥ 1 such that P(di,j2,M >

LM−1/d)+ P(p(Xi) > L) ≤ ε. With such a choice of L, we have by Eq. (21) for the complement of CM ,

P(CCM) ≤ 2ε, (22)

whenM is large enough. Set bi,j = m(Xj)−m(Xi) and notice that by Lipschitz continuity

|bi,N[i,j1]bi,N[i,j2]| ≤ min{4K
2
Y , c

2
2d
2
i,j2,M}.

By Holder’s inequality, Eq. (22), Theorem 3.2 and the previous remark, we can control the behavior at the complement of
CM by (I denotes the indicator function of an event)

E[|bi,N[i,j1]bi,N[i,j2]|I(C
C
M)] ≤ (c

2
2 + 4K

2
Y )E[min{1, d

2
i,j2,M}I(C

C
M)]

≤ 4dj2/d2 (c22 + 4K
2
Y )ε

1−2/α2M−2/d, (23)

where 2 < α2 < d. Next, using the gradient ofm, define∆(Xi, Xj) = ∇m(Xi)(Xj− Xi) and notice that taking c2 ≥ 1, we may
use assumption (A3) and the mean value theorem to estimate

I(CM)|bi,N[i,j1]bi,N[i,j2] −∆(Xi, XN[i,j1])∆(Xi, XN[i,j2])| ≤ 3c
2
2L
4M−2/d−(γ−[γ ])/d, (24)

which goes to zero faster thanM−2/d. Thus on CM , nonlinearities are negligible.
To proceed, define the setΞx ⊂ <d×j2 by

Ξx = {0 < ‖xi,1 − x‖ < ‖xi,2 − x‖ . . . < ‖xi,j2 − x‖ ≤ LM
−1/d
}.

The definition of BM implies the inequality

I(BM)
∫
B(Xi,LM−1/d)

p(x)dx ≤ (L2 + 1)M−1. (25)

Next it is important to notice that the function ∆(x, y) integrates to zero with respect to the uniform measure on the unit
sphere with center x (as a function of y). Using Lemma 3.5, inequality (25) and this remark we have

|E[I(CM)∆(Xi, XN[i,j1])∆(Xi, XN[i,j2])|Xi]| = |E[I(AM)∆(Xi, XN[i,j1])∆(Xi, XN[i,j2])|Xi]I(BM)|

≤ j2!
(
M − 1
j2

) ∣∣∣∣∣
∫
Ξx

∆(Xi, xi,j1)∆(Xi, xi,j2)ωXi(‖Xi − xi,j2‖)
M−j2−1p(Xi)

∏
1≤j≤j2,j6=j1

p(xi,j)dxi,1:j2

∣∣∣∣∣
+ j2!

(
M − 1
j2

)
c22 I(BM)L

2M−2/d
(∫
B(Xi,LM−1/d)

p(x)dx
)j2−1 ∫

B(Xi,LM−1/d)
|p(x)− p(Xi)|dx

≤ j2!c22εM
−2/d, (26)

where the inequality
(
M−1
j2

)
≤ M j2 is used. Now the proof is finished by combining inequalities (23), (24) and (26) as ε can

be chosen arbitrarily small. �

4. Conclusion

From the practical point of view, the product estimator is attractive because while the number of neighbors k introduces
a degree of freedom, consistency holds even for fixed values. Moreover, the rate of convergence is invariant of the choice of
k as long as it is kept fixed. These properties together with consistency for heteroscedastic noisemake themethod attractive
compared to many other residual variance estimator, especially those based on the use of kernels.
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It was shown that if k is allowed to increase slowly, the optimal asymptotic variance can be achieved. The fact that this
property holds even in four dimensions indicates a faster rate of convergence than the worst-case bounds would indicate.
A full analysis of the symmetry argument in Theorem 3.6 is a topic of future research.

Appendix

A.1. Useful lemmas

The rather complicated form of nearest neighbor graphs makes it more difficult to apply the strong law of large numbers
as the classical theory does not apply as such. However, the following lemma solves this problem in a satisfying way. The
proof is based on Theorem 3.1, which bounds the degree of interaction in the nearest neighbor graph. The notation E[·|XM1 ]
means the conditional expectation with respect to the σ -algebra generated by the variables (Xi)Mi=1.

Lemma A.1. For a fixed k > 0, let h(z1, z1,1, . . . , zi,k) be a measurable function and define the random variables hi =
h(Zi, ZN[i,1], . . . , ZN[i,k]). Assume that for all i > 0, E[hi|XM1 ] = 0, E[h

2
i |X

M
1 ] ≤ U

2
1 and

1
M

∑M
i=1 E[h

2
i |X

M
1 ]
1/2
≤ U2 for some

random variables U1,U2 measurable with respect to the σ -algebra generated by the variables (Xi)Mi=1. Then we have

E

 1
M

M∑
i=1

hi

)2∣∣∣∣∣∣ XM1
 ≤ U1U2(k(k+ 1)L(d)+ k+ 1)

M

almost surely.

Proof. Set S(i) = {i,N[i, 1], . . . ,N[i, k]} and define the sets

I(j) = {0 < i ≤ M : S(i) ∩ S(j) 6= ∅}.

Conditioned on the sample (Xi)Mi=1, the variables hi and hj are independent whenever i 6∈ I(j). Thus by Holder’s inequality,

E

[
M∑
i=1

hihj

∣∣∣∣∣ XM1
]
=

∑
i∈I(j)

E[hihj|XM1 ] ≤
∑
i∈I(j)

E[h2i |X
M
1 ]
1/2E[h2j |X

M
1 ]
1/2

≤ |I(j)|U1E[h2j |X
M
1 ]
1/2.

By Theorem 3.1, any point in the set S(j) can be among the k first nearest neighbors for at most kL(d) points. Thus we may
conclude that |I(j)| ≤ k(k+ 1)L(d)+ k+ 1. Now the proof is finished by writing

E

 1
M

M∑
i=1

hi

)2∣∣∣∣∣∣ XM1
 = 1

M2

M∑
i=1

M∑
j=1

E[hihj|XM1 ]

≤
U1U2(k(k+ 1)L(d)+ k+ 1)

M
. �

Next we show that V̂M,k can be divided into a sum of three random variables, which have different convergence properties.

Lemma A.2. The estimator V̂M,k can be decomposed as V̂M,k = S1 + S2 + S3 with

E

(S1 − 1M
M∑
i=1

r2i

)2 ≤ (4k−3 + 2k−2 + 4L(d)k−2 + 2L(d)k−1)σ 4
and (with the notation bi,j = m(Xi)−m(Xj))

S2 =
1
k2M

M∑
i=1

(
k∑
j1=1

bi,N[i,2j1]

)(
k∑
j2=1

ri − rN[i,2j2−1]

)
+
1
k2M

M∑
i=1

(
k∑
j1=1

ri − rN[i,2j1]

)(
k∑
j2=1

bi,N[i,2j2−1]

)

S3 =
1
k2M

k∑
j1,j2=1

M∑
i=1

bi,N[i,2j1]bi,N[i,2j2−1].
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Proof. Wemake the following choice of S1:

S1 =
1
k2M

M∑
i=1

(
k∑
j1=1

ri − rN[i,2j1]

)(
k∑
j2=1

ri − rN[i,2j2−1]

)
.

The terms in the sum can be expanded as

1
k2

(
k∑
j1=1

ri − rN[i,2j1]

)(
k∑
j2=1

ri − rN[i,2j2−1]

)
=
1
k2

k∑
j1=1

k∑
j2=1

(r2i − rirN[i,2j1] − rirN[i,2j2−1] + rN[i,2j1]rN[i,2j2−1]). (27)

To analyze the sum (27), we define the sets

Ii,j = {1 ≤ l ≤ M : {i, j} ⊂ {l,N[l, 1], . . . ,N[l, 2k]}}

and the random variables (ai,j)1≤i<j≤M by collecting the constants corresponding to each term rirj in the sum (27). Then S1
can be written in a more simple way as

S1 −
1
M

M∑
i=1

r2i =
1
k2

∑
1≤i<j≤M

ai,jrirj. (28)

Using Theorem 3.1, the variable |ai,j| can be bounded by |Ii,j| ≤ 2+ 2kL(d). In addition, notice that we must have∑
1≤i<j≤M

|ai,j| ≤ (2k+ k2)M, (29)

because the sum S1 − 1
M

∑M
i=1 r

2
i has (2k+ k

2)M terms, when written in the form of Eq. (27). Conditioned on the variables
(Xi)Mi=1, the variables ai,j are constants and thus we have by conditional independence

E[ai,jai′,j′ rirjri′ rj′ |XM1 ] = 0,

when (i, j) 6= (i′, j′), and by Holder’s inequality

E

 1
k2

∑
1≤i<j≤M

ai,jrirj

)2∣∣∣∣∣∣ XM1
 = 1

k4
∑

1≤i<j≤M

a2i,jE[r
2
i r
2
j |X

M
1 ]

≤
2σ 4 + 2σ 4kL(d)

k4
∑

1≤i<j≤M

|ai,j|

≤ (4k−3 + 2k−2 + 4L(d)k−2 + 2L(d)k−1)σ 4. �

A.2. Proof of Theorem 2.2

Recall that |bi,j| ≤ 2KY , E[(ri − rN[i,k])2|XM1 ] ≤ 2σ
2 and

E

[(
k∑
j1=1

bi,N[i,2j1]

)(
k∑
j2=1

ri − rN[i,2j2−1]

)
+

(
k∑
j1=1

ri − rN[i,2j1]

) (
k∑
j2=1

bi,N[i,2j2−1]

)∣∣∣∣∣ XM1
]
= 0.

Using these observations together with Lemma A.1 implies that E[S22 ] → 0 as M → ∞ in Lemma A.2. Thus we need to
show that asymptotically E[S23 ] → 0, or equivalently, by the boundedness of m, E[|S3|] → 0. Let us first assume that m is
continuous with a compact support and consequently uniformly continuous. Then for any ε > 0, we may choose δ > 0
such that ‖x− y‖ < δ implies |m(x)−m(y)| < ε. Then for any i > 0,

E[|S3|] ≤ 4K 2Y P(di,2k,M > δ)+ ε2. (30)

By Theorem 3.4, P(di,2k,M > δ)→ 0 asM →∞ and thus the claim is proven under the continuity assumption. The general
case follows by a density argument as we may choose a continuous compactly supported m̃ such that for any ε > and all
i > 0, E[(m(Xi)− m̃(Xi))2] < ε.
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A.3. Proof of Theorem 2.4

Without losing generality, we assume γ ≤ 1. Under the conditions of the theorem, |bi,N[i,k]| ≤ 2KY and

|bi,N[i,k]| ≤ (2KY + c2)min{1, d
γ

i,k,M},

which relates the proof to the bounds derived in Section 3.2. The term S2 can be bounded using Lemma A.1, Theorem 3.3
and the triangle inequality by

E[S22 ] ≤ 16(2KY + c2)(4k
2L(d)+ 2kL(d)+ 2k+ 1)KYσ 2δM,2k,γM−1

≤ c4M−1−γ̃ /d,

for some constant c4. In a corresponding way,

|S3| ≤ (2KY + c2)2δM,2k,α ≤ c5M−α/d.

When the covariates are bounded and 2γ ≤ d, we may approximate straightforwardly |bi,N[i,k]| ≤ c2d
γ

i,k,M and use
Theorem 3.2 to estimate

|S3| ≤ 22γ+2γ /ddγ k2γ /dc22M
−2γ /d

with a similar inference for S2.

A.4. Proof of Theorem 2.7

The first claim is a consequence of Lemma A.2 and Theorem 3.6 because

E[S1] = E[S2] = 0.

To prove the second claim, we need to prove that the variance of S3−E[S3] goes to zero faster thanM . This will be done using
the well-known Efron–Stein inequality. Let us assume for simplicity that k = 1. For the indicator functions I(di,2,M > ε),
we have by Theorem 3.3

1
M

M∑
i=1

|bi,N[i,1]bi,N[i,2]|I(di,2,M > ε) ≤ 4KY
1
M

M∑
i=1

I(di,2,M > ε) = O(M−1).

Set

S̃(1)3 =
1
M

M∑
i=1

bi,N[i,1]bi,N[i,2]I(di,2,M ≤ ε)

and notice that by the triangle inequality

E[(S3 − E[S3])2]1/2 ≤ E[(S̃
(1)
3 − E[S̃

(1)
3 ])

2
]
1/2
+ 2E[(S3 − S̃

(1)
3 )

2
]
1/2

= E[(S̃(1)3 − E[S̃
(1)
3 ])

2
]
1/2
+ o(M−1/2).

By choosing ε small enough, we may assume that each term in the sum S̃3 is smaller than δ > 0. Next define the variable
S̃(2)3 by replacing X1 by a similarly distributed independent copy X

′

1. In this definition, the variables (Xi)
M
i=2 are kept intact;

thus S̃(2)3 is similarly distributed as S̃3.
As the perturbation can affect only those points, which have X1 (correspondingly X ′1) among their two nearest neighbors

in the original sample or in the modified sample {X ′1} ∪ {Xi}
M
i=2, we have by Theorem 3.1

(S̃3 − S̃
(2)
3 )

2
≤ Cδ2M−2,

for a constant C depending only on the dimensionality d. Then the well-known Efron–Stein inequality [28] implies that

Var[S̃S] ≤ Cδ2M−1.

As δ can be chosen arbitrarily small, the proof is completed.
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