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Abstract
Recognizing human activities in their daily living enables the development and widely usage of
human-centric applications, such as health monitoring, assisted living, etc. Traditional activity
recognition methods often rely on physical sensors (camera, accelerometer, gyroscope, etc.) to
continuously collect sensor readings, and utilize pattern recognition algorithms to identify
user's activities at an aggregator. Though traditional activity recognition methods have been
demonstrated to be effective in previous work, they raise some concerns such as privacy,
energy consumption and deployment cost. In recent years, a new activity recognition approach,
which takes advantage of body attenuation and/or channel fading of wireless radio, has been
proposed. Compared with traditional activity recognition methods, radio based methods utilize
wireless transceivers in environments as infrastructure, exploit radio communication characters
to achieve high recognition accuracy, reduce energy cost and preserve user's privacy. In this
paper, we divide radio based methods into four categories: ZigBee radio based activity
recognition, WiFi radio based activity recognition, RFID radio based activity recognition, and
other radio based activity recognition. Some existing work in each category is introduced and
reviewed in detail. Then, we compare some representative methods to show their advantages
and disadvantages. At last, we point out some future research directions of this new
research topic.
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Fig. 1 Sensor deployment of RadioSense [40].
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1. Introduction

Activity recognition aims to accurately detect human's daily
activities based on a predefined activity model [1]. It is a
hot research topic in the field of ubiquitous computing and
widely used in many human-centric applications, such as
health and fitness monitoring [2–10], assisted living [11–17],
context-enabled games and entertainment [18–20], social
networking [21,22] and sport tracking [23–25].

To recognize human activities, physical sensors (camera,
accelerometer, gyroscope, etc.) are often deployed in envir-
onments, attached on objects or worn on human bodies to
continuously collect sensor readings. Then, based on pre-
defined pattern recognition models, the activity types are
identified at an aggregator for upper layer applications.
These sensor based methods are called traditional activity
recognition methods in this paper. They can be roughly
divided into three categories: (1) wearable motion sensor
based methods [26], which utilize on-body motion sensors
(accelerometer, gyroscope, etc.) to sense the movements of
body parts, such as [4,5,11,27–32]; (2) camera sensor based
methods [33], which take advantage of camera to record the
video sequence and recognize the activities using computer
vision algorithms. According to the camera type, the video
may be RGB video (e.g. [34,35]), depth video (e.g. [19,36]) or
RGB-D video (e.g. [37,38]); (3) environmental variable based
methods, which use physical sensors (pressure, proximity,
RFID, etc.) to infer human activities from the status of used
objects or change of environmental variables, such as
[16,17,39]. Although traditional activity recognition methods
obtain good performances and are widely accepted, they
require specific sensing modules and raise some concerns
such as privacy, energy consumption and deployment cost.

In recent years, a new radio based activity recognition
approach has emerged. As the existence and movement of
human body in a radio field may attenuate the radio strength
and change the communication patterns (e.g. channel fading)
between the transmitter and receiver, radio based activity
recognition takes advantage of body attenuation and/or the
characters of channel fading to discriminate human activities
or gestures. Compared with traditional activity recognition
methods, radio based activity recognition methods only
exploit wireless communication features. Thus, no physical
sensing module is needed. This accordingly relaxes the device
deployment requirement, reduces the energy consumption
for sensing and data transmission, and protects user's privacy.

For radio based activity recognition methods, the wire-
less radio types include ZigBee [40], WiFi [41], RFID [42],
etc. As different radio data may have different characters
and processing steps, we roughly divide the radio based
methods into four categories: ZigBee radio based activity
recognition, WiFi radio based activity recognition, RFID
radio based activity recognition, and other radio based
activity recognition. In this paper, we first introduce and
review some related work in each category. Then, some
representative methods are compared to show their advan-
tages and disadvantages. At last, we discuss some future
research directions of this new research topic.

The rest of this paper is organized as follows. ZigBee
radio based activity recognition is reviewed in Section 2.
Section 3 introduces WiFi radio based activity recognition.
Section 4 describes RFID radio based activity recognition.
Other radio based activity recognition is presented in
Section 5. Section 6 shows the comparison of radio based
activity recognition methods. Section 7 presents future
research directions. Conclusion is drawn in Section 8.
2. ZigBee radio based activity recognition

ZigBee is a low-cost, low-power, wireless mesh network
standard [43]. It is widely used in wireless sensor network,
e.g. body sensor network [44–48]. Qi et al. [40] propose
RadioSense, a prototype system of ZigBee radio based
activity sensing. Fig. 1 and 2 show the sensor deployment
and system architecture of RadioSense, respectively. Radio-
Sense contains three main components: (1) two dedicated
on-body sensor nodes placed at user’s wrist and ankle. They
work as radio transmitters. (2) A sensor node placed at the
center of user's body. It is the base station of body sensor
network and works as the radio receiver. (3) A laptop works
as an aggregator. At the aggregator, the time and the
Received Signal Strength Indicator (RSSI) value of each
arrival message are recorded.

With the observation that different human activities
result in different wireless communication patterns
between the sensor nodes and the base station, RadioSense
extracts packet delivery ratio (PDR) feature from message
arrival patterns and 18 statistical features (the max, min,
max–min, mean, var, median, mean crossing rate, values of
the RSSI histogram with 10 bins, and interquartile range)
from RSSI values for each sensor node. Then, the feature
selection algorithm with sequential forward strategy [49] is
used to select the best features. Based on the selected
features, the support vector machine (SVM) based classifi-
cation model is trained for online testing. Fig. 3 shows the
runtime accuracy of classifying seven activities for three



Fig. 2 System architecture of RadioSense [40].

Fig. 3 The runtime accuracy of classifying seven activities for
three subjects [40].

Tab. 1 Activity group description. 4–7,10 are in group
(i), 15,17–19,22,25,26 are in group (ii), 1–3,9,11,12,14
are in group (iii), 16,23,24 are in group (iv), 8,13 are in
group (v), 20,21 are in group (vi). 1–14 are performed
standing while 15–26 are performed sitting [51].

Description Description

1 Standing 14 Arms stretched forward
2 Walking1 15 Sitting
3 Walking2 16 Hands on knee
4 Arms folded 17 Arms folded under chest
5 Arms in pocket 18 legs crossed
6 Bicep curl1 19 Leg on table
7 Bicep curl2 20 Arms stretched on couch
8 Arms behind head 21 Hands behind head
9 Hands to face 22 Sleeping in chair
10 Praying hands 23 Hands on table
11 Leaning against wall 24 Sleeping on table
12 Quadriceps stretch 25 Leg stretch forward
13 Arms in the air 26 Legs tucked under seat

Fig. 4 Floor plan of the office room with deployed nodes [53].
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subjects. The total accuracies of subject 1, 2, and 3 are
86.3%, 92.5% and 84.2%, respectively. This indicates that
RadioSense obtains comparable accuracy as traditional
activity recognition methods.

RadioSense takes advantage of body attenuation and path
loss of wireless radio in body sensor network. Some
researchers [50] observe that “the energy from transmitted
waves does not penetrate the human body for frequencies
within the 2–6 GHz range. The energy rather diffracts
around the body and thus path losses are not related to
direct Line-of-Sight (LOS) paths through the body but rather
paths along the body [51]”. Ekure et al. [51] present
theoretical analysis of radio based activity sensing in body
sensor network. The following equation in [52] is used to
model the path loss for the channel along the human body.

P¼ 3:2� 10� log10 dð Þ� ��9:3 ð1Þ
With similar sensor deployment in Fig. 1, the shortest

distances around the body between the transmitters and
the receiver are measured for 8 individuals while they
perform 6 groups of activities, which are shown in Tab. 1.
Then, based on the calculated path loss values, the
statistical features are extracted for classification model
training and testing. The experimental results demonstrate
the effectiveness of above path loss model around the
human body.

Efforts from Qi et al. [40] and Ekure et al. [51] are
suitable for body sensor network that contains several on-
body sensor nodes. Scholz et al. [53] deploy IEEE 802.15.4
wireless nodes in office room environment and recognize
human activities through detecting the RSSI fluctuation in
two different manners: (1) device-bound activity recogni-
tion, i.e. with one on-body wireless node; and (2) device-
free activity recognition, i.e. without on-body node.

As shown in Fig. 4, eight fixed nodes are deployed in the
room. One mobile node (5) is attached on the hip of the
subject. The RSSI values for all links are recorded when the
subject performs several activities, including walking (W),
standing (St), sitting (S), sitting and typing (S+T), lie (L),
lying and waving (L+Wa), and being outside the room (O).
For device-bound activity recognition, features of all 8 links
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to the mobile node are extracted; for device-free activity
recognition, features of all 28 links of the sensor network
infrastructure are extracted. Ten-fold cross validation
experiments are conducted, and the results show that
device-bound and device-free activity recognitions obtain
accuracies of 89.6% and 89.4%, respectively. Besides, the
influences of network topology, subject and change of door
state (open, closed, half open) are also investigated in
this paper.

3. WiFi radio based activity recognition

Compared with ZigBee radio based activity recognition, WiFi
radio based activity recognition can take advantage of
existing WiFi infrastructure in an office building, shopping
mall, etc. Sigg et al. [54] propose a device-free and passive
activity recognition system that uses a mobile phone as WiFi
receiver to measure RSSI values. It extracts simple time-
domain features to recognize subject’s situations, activities
and gestures. Similar work is also introduced in [55]. Wang
et al. [41] utilize WiFi links between WiFi devices (including
WiFi access points, desktops, thermostats, refrigerators,
smartTVs, laptops, etc.) and collect fine-grained channel
state information (CSI) to identify location-oriented home
activities, in a device-free manner. RSSI measurement is a
packet-level estimator and represents the signal power over
a packet as a single amplitude. Comparatively, CSI is the
channel response at the receiver in frequency domain [56].
It “contains amplitude and phase measurements separately
for each orthogonal frequency division multiplexing (OFDM)
subcarrier [41]”. Wang et al. [41] collect subcarrier mea-
surements of daily home activities at specific locations and
take the CSI signal measurements as location-activity pro-
files. Through comparing online measurements with the
profiles, the proposed method can uniquely identify both
in-place activities (cooking, eating, washing dishes, brush-
ing teeth, taking a bath, watching TV, etc.) and walking
movements at home.

Adib et al. [57] propose an interesting work that explores
WiFi signals to detect and track moving objects behind the
walls, identify their relative locations and even recognize
some simple gestures, without wearing any on-body device.
The authors utilize MIMO interference nulling to eliminate
Fig. 5 Moving object tracking methods:
the reflections from static objects (e.g. the wall and static
objects behind the wall). The channels from two transmit
antennae to one receive antenna are measured first, then
the signals at the receive antenna are nulled to exclude the
reflections off static objects. To track the moving objects
using only one antenna, the authors borrow a technique
named inverse synthetic aperture radar (ISAR). Different
from antenna array based tracking method that captures
the target from spatially spaced antennae (as shown in
Fig. 5(a)), ISAR takes one measurement at a time and uses
consecutive measurements to emulate an inverse antenna
array (as shown in Fig. 5(b)).

Pu et al. [58] present a gesture recognition system named
WiSee through detecting the minute Doppler shifts and
multi-path distortions of WiFi signals originating from
human motion. To detect the very small Doppler shifts (a
few Hertz) of hand gestures, the authors propose to trans-
form the received WiFi signal into narrowband pulse by
“repeating an OFDM symbol and performing a large Fast
Fourier Transform (FFT) operation [58]”. Then, the WiSee
receiver can track the narrowband pulse to capture the
Doppler shifts. Besides, WiSee takes advantage of MIMO
capability to separate the wireless reflections from multiple
people through considering the reflections from each human
as signals from a wireless transmitter. Experimental results
demonstrate that WiSee obtains the average detection and
classification accuracy of 94% across nine whole-body ges-
tures (push, dodge, strike, pull, drag, kick, circle, punch
and bowling).

Chen et al. [59] use mobile phone to obtain WiFi signals
and segment continuous WiFi trace into stationary segments
and moving segments based on RSSI fluctuation detection.
All the stationary segments are clustered to extract fre-
quent visiting locations in one’s daily living. Besides, Wang
et al. [60] utilize WiFi radio to track human queues in a
coffee shop and an airport. With extracted unique WiFi
signal patterns, the time periods of waiting, service and
leaving can be distinguished.

4. RFID radio based activity recognition

Kellogg et al. [42] propose a wireless signals (e.g. TV
transmissions) based gesture recognition system named
(a) antenna array and (b) ISAR [57].
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AllSee. AllSee has a specially designed receiver that uses an
envelope detector to extract amplitude information, as
shown in Fig. 6. Through eliminating power-intensive analog
components such as oscillators by using passive and low-
power analog components (diodes, resistors, and capaci-
tors), “AllSee consumes three to four orders of magnitude
lower power than state-of-the-art systems and can enable
always-on gesture recognition for smartphones and tablets
[42]”. With the collected amplitude information, the struc-
ture of magnitude changes and the timing information are
combined to classify different gestures. The authors
develop RFID-based and TV-based prototypes to evaluate
AllSee's identification performances on eight gestures (flick,
push, pull, double flick, punch, lever, zoom in, and zoom
out). The results show an average accuracy of 97% and 94.4%
on RFID- and TV-based prototypes, respectively. At the same
time, AllSee obtains some good characters, such as low false
positive rate (0.083 events per hour over a 24-h period),
small response time (80 μs) and low power cost (5.85 μW).
In addition, the hardware prototype is integrated with an
off-the-shelf Nexus phone to recognize above gestures in
through-the-pocket scenarios and 92.5% accuracy is
achieved.

Wang et al. [61] present a virtual touch screen system,
RF-IDraw, which utilizes multi-resolution positioning tech-
nique to trace the trajectory shape of RFID tag on user's
finger and enables the user to input characters or words in
air. Existing RF-based positioning systems often leverage the
beam steering capability of antenna array to detect the
source location. To achieve high accuracy, a large number of
antennae are required. Therefore, there is a tradeoff
Fig. 6 AllSee’s receiver circuit [42].

Fig. 7 Tradeoff between resolution and unambiguity [61]: (
between resolution and unambiguity. We can see from
Figure 7 that, “as the separation of the antenna pair
(marked in red) increases, the number of beams increases
accordingly, causing ambiguity in localizing the source
(marked in blue). On the other hand, each beam gets
narrower, leading to a higher resolution [61]”. In order
to remove ambiguity while maintaining high resolution,
RF-IDraw combines a few antenna pairs with different
separations. The pairs with smaller separation have wider
beams and act as filters to eliminate the ambiguity; the
pairs with larger separation have narrower beams and hence
define the resolution. Fig. 8 shows the result when combin-
ing two resolutions in Fig. 7(a) and (c). To evaluate RF-
IDraw's performance, handwriting recognition Android app is
used to recognize RF-IDraw's reconstructed trajectories for
letters and words. The results show that the accuracies on
character recognition experiment and word recognition
experiment are 97.5% and 92%, respectively.

Liu et al. [62] deploy an array of active RFID tags on
ground. When a subject moves through the tag covered
area, the signal fluctuation of the tags is collected and
analyzed to infer the subject's activities.
a) λ/2 separation, (b) λ separation and (c) 8λ separation.

Fig. 8 Multi-resolution positioning [61].
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5. Other radio based activity recognition

Except ZigBee, WiFi and RFID radio, there are some other
radios that can also be used for activity recognition, such as
FM radio, microwave, etc. Shi et al. [63] propose an FM
broadcast signals based localization and activity recognition
method. The authors observe that the FM signal strength is
correlated with receiver’s positions. Besides, the signals
show different fluctuation patterns for different activities.
Accordingly, simple amplitude-based features are extracted
and classification model is trained to recognize lying,
standing and walking of one subject in two locations.
Experimental results show an overall accuracy of more than
70% for Naive Bayes, k-Nearest Neighbors and Decision Tree
classifiers.

Scholz et al. [64,65] place two USRP software defined
radio (SDR) devices with 900 MHz transceiver to both sides
of a door to detect the door state, talking on mobile phone
and walking activity. Sigg et al. [66] deploy several USRP
SDR devices on the ground in indoor environments to
distinguish five activities (walking, crawling, standing, lying
and empty) conducted simultaneously by two subjects.

Sekine et al. [67] utilize Doppler Effect of 24.1 GHz
microwave for activity monitoring. One hundred and one
features in time domain, frequency domain and time-and-
frequency domain are extracted to recognize eight daily
human activities. Adib et al. [68] present a wireless breath
monitoring system, Vital-Radio, which detects the reflec-
tions of low-power wireless signal off the human body and
identifies the minute chest motion due to the inhale and
exhale process (as shown in Fig. 9).
6. Comparison of radio based activity
recognition methods

Each method introduced above does have its advantages
and disadvantages, and only suits for specific application
scenarios. We select some representative methods from
four categories and give a qualitative comparison, based on
technical metrics such as coverage, activity type, accuracy,
existing infrastructure usage, system deployment cost, on-
body device, etc. Coverage indicates the scope of valid
recognition area. Activity types include body motion, home
activity, gesture, etc. Accuracy shows the experimental
recognition performance reported in the paper, which is
Fig. 9 Chest motion due to breathing: (a) inhale motion and
(b) exhale motion [68].
roughly divided into three grades: high (Z80%), middle
(o80% and Z60%), and low (o60%). Existing infrastructure
usage means whether the recognition system can (partially)
utilize existing infrastructure in our daily living such as FM
broadcast station, WiFi access point (AP), smart TV, desk-
tops, etc. System deployment cost indicates the labor cost
of recognition system construction. On-body device means
whether the user needs to wear on-body device or not. The
comparison results are shown in Tab.2, which contains 10
aforementioned activity recognition methods.

7. Future research directions

Although there has been some related work in radio based
activity recognition, this new research topic is still at its
initial development stage. There are a lot of potential
research questions that need to be answered. We list and
discuss a few directions at follows:
1)
 Free infrastructure based recognition methods: As we
introduced above, different radios can be used for
activity recognition. However, in a specific application
environment, there are some existing radios that can be
used for free, such as WiFi radio in an office room. Taking
full advantage of free infrastructure will eliminate the
burden of specific device deployment, decrease system
cost, and increase user acceptance. Besides, free infra-
structure based recognition methods are easier to be
widely spread. Except WiFi, there are some other free
radios that have not been explored yet. For example, the
BlueTooth radio in wearable device network.
2)
 Multi-radio fusion based recognition methods: Sometimes,
an application requires high recognition accuracy, which is
out of reach for single radio based recognition. Then, one
possible way is to combine two or more types of radios and
implement recognition tasks simultaneously and coopera-
tively. As different radios have different transmission
characters, their fusion will certainly improve the recogni-
tion performance. However, how to define the best radio
combination and how to fusion multiple radios are still
under exploration and need further research.
3)
 Combining radio sensing with conventional sensors:
Another way to improve recognition accuracy is to com-
bine radio sensing with conventional sensors, especially
in body sensor network based activity recognition.
Because traditional recognition methods need collect
physical sensor data and send it to an aggregator or base
station using wireless communication, the conventional
sensor data and the radio features are available at the
same time. Combining radio sensing with conventional
sensors can enhance the performance and stability of
recognition system especially when the wireless data
transmission is not adequately stable. But, on the other
hand, the combination brings extra computation cost.
Therefore, a strategy is necessary to balance the gain
and cost and assist decide when to combine these two
information sources. In addition, the combination algo-
rithm should adapt to different application requirements
to minimize system cost.
4)
 Interference impact analysis: As radio based methods
utilize the body attenuation and/or channel fading of



Tab. 2 Comparison results of radio based activity recognition methods.

Category Method Comparison metrics

Coverage Activity type Accuracy Existing
infrastructure
usage

System
deployment
cost

On-body
device

ZigBee
based

Qi et al.
[40]

Body Body motion High Yes Low Yes

Ekure et al.
[51]

Body Body motion Middle Yes Low Yes

Scholz
et al. [53]

Room Body motion High No High Yes/No

WiFi
based

Wang et al.
[41]

Room Home activity High Yes Low No

Adib et al.
[57]

Room Location tracking /gesture High No Low No

Pu et al.
[58]

Room Whole-body gesture High Yes Low No

RFID
based

Kellogg
et al. [42]

Near
receiver

Gesture High Yes Low Yes/No

Wang et al.
[61]

Room Trajectory tracing/word
input recognition

High No High Yes

Others Shi et al.
[63]

Near
receiver

Body motion Middle Yes Low No

Adib et al.
[68]

Near
transceiver

Breath monitoring N/A No Low No
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wireless radio to recognize human activities, radio
interference can change the radio communication pat-
terns and, thus, affect the recognition performance.
Some interference may come from the same type of
radio. For example, ZigBee communication of nearby
sensor nodes will interfere with packet reception of a
body sensor network. Some other interference may be
caused by different types of radios, such as WiFi and
BlueTooth that also operate in the same 2.4 GHz ISM
band. In this subtopic, we foresee two research ques-
tions: (1) How to evaluate the interference impact on
the recognition performance? (2) How to mitigate the
impact of radio interference?
5)
 Context-aware recognition strategy: As activity recogni-
tion algorithm might be used in different scenarios,
the application layer contexts (accuracy requirements,
difference in human subjects, etc.) and the lower
layer contexts (power left, device availability, network
condition, etc.) may be different or change dynamically.
Fixed recognition strategy may not obtain the maximum
system performance. Therefore, context-aware recogni-
tion strategy is necessary. For example, with the con-
sideration of difference in human subjects, a self-
adaptive strategy could be designed to evolve fixed
recognition model to personal recognition model. The
context-aware recognition strategy would take one or
more contexts into consideration, according to the
application requirements. Normally, the more contexts
a strategy includes, the more complex it will be.
6)
 Energy efficiency issue: Radio sensing is based on wire-
less communication, which consumes much energy. The
most direct way for energy saving is to reduce the
sending rate of wireless packets. But it accordingly
decreases the recognition accuracy and increases the
recognition delay. One research question here is how to
locate the break-even between gain and cost. In addition,
human activity status tracking and prediction is helpful to
further decrease packet sending rate and, hence, improve
energy efficiency. Therefore, another potential research
question to answer is: how to accurately predict human
activity status based on the recognition history?
7)
 Parameter optimization: As shown in [40], a recognition
algorithm may contain several parameters, such as
transmission power level, packet sending rate and
smoothing window size. Each parameter may have a big
impact on the final recognition results. The situation
becomes worse when the parameters are correlated with
each other. It is very hard to optimize all the parameters
through manual adjustment. Therefore, one research
question to answer is: how to optimize all algorithm
parameters simultaneously and automatically? To deal
with this problem, some existing theories may be help-
ful, such as control theory in the field of automation.
8)
 Theory basis for radio based activity recognition: Almost
all aforementioned related works demonstrate the effec-
tiveness of radio sensing through real world experiments.
There may be some bias as the dataset is limited and
often collected under control. Up till now, there is no
theory basis for radio based activity recognition, which
can mathematically model and analyze the relationship
between human activities and corresponding radio trans-
mission features or system parameters. Information
theoretic analysis may gain fundamental insights to guide
the optimal design of radio based recognition system.
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9)
 Privacy issue: Compared with traditional recognition
methods, radio based approaches have no physical sen-
sing components and are more suitable for privacy
protection. However, private information may also be
digged out from wireless radio features. How to keep
user’s privacy during recognition is another important
research topic.

8. Conclusion

This paper gives a brief review on radio based activity
recognition, a new research topic in the field of ubiquitous
computing. Different with traditional activity recognition
methods that rely on specifically physical sensors, radio
based recognition methods take advantage of body attenua-
tion and/or channel fading of wireless radios. This paper
introduces and compares some existing work in ZigBee,
WiFi, RFID and other radio based activity recognition. In
addition, some directions for future research are provided
and discussed.
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